Linear responses of two convective parameterization schemes

Michael J. Herman1 and Z. Kuang2

1Physics Department and Geophysical Research Center
New Mexico Tech, Socorro, New Mexico

2Department of Earth and Planetary Sciences,
and School of Engineering and Applied Sciences
Harvard University, Cambridge, Massachusetts

April 19, 2012

*This work supported by the National Science Foundation
Cumulus parameterizations

- Express theory or interpretation of observed atmospheric phenomena.
- Mean states often agree.
- Tropics and short-term responses are troublesome.
A comparison

- 3D Cloud System Resolving Model (CSRM)
- Two 1D single-column models (convective parameterization schemes)
Explicit scheme model (CSRM)

- System for Atmospheric Modeling* (SAM)
- horizontal resolution: 2 km
- vertical resolution: 100 m - 1 km
- domain: 128 km x 128 km x 32 km

*(Khairoutdinov and Randall, 2003)
Single-column models

- MIT Single-Column Model\(^1\) (MSCM)
 - CONVECT parameterization scheme
 - vertical resolution: 250 m
 - column height: 20 km

- Diabat3 toy cumulus parameterization\(^2\) (D3)
 - (same resolution and height)

\(^1\)(Emanuel, 1991; Emanuel and Živković, 1999)
\(^2\)(Raymond, 1994; Raymond, 2007)
Identical forcing schemes in all 3 models

Constant radiative cooling

Bulk surface fluxes

- \(FT_{surf} \propto C_D V (SST - T_0) \)
- \(Fq_{surf} \propto C_D V (q_{s0} - q_0) \)
- \(C_D = 1 \times 10^{-3} \)
- \(V_{surf} = 5 \text{ m s}^{-1} \)
- \(SST = 28 \, ^\circ\text{C} \)
Each model \approx linear transformation matrix

$$\frac{dx}{dt} = Mx,* \quad x = (T, q)$$

How to generate matrix columns:

1) Obtain an RCE state

2) Apply unique \dot{T}, \dot{q} → new equilibrium

3) Δequilibrium → anomalies T', q'

(Kuang, 2010)
Assemble the matrix

\[\frac{dX}{dt} = \begin{bmatrix} \dot{T}_{0,0} & \ldots & \dot{T}_{0,n} \\ \vdots & \ddots & \vdots \\ \dot{T}_{m,0} & \ldots & \dot{T}_{m,n} \\ \dot{q}_{0,0} & \ldots & \dot{q}_{0,n} \\ \vdots & \ddots & \vdots \\ \dot{q}_{m,0} & \ldots & \dot{q}_{m,n} \end{bmatrix}, \quad X = \begin{bmatrix} T_{0,0} & \ldots & T_{0,n} \\ \vdots & \ddots & \vdots \\ T_{m,0} & \ldots & T_{m,n} \\ q_{0,0} & \ldots & q_{n,0} \\ \vdots & \ddots & \vdots \\ q_{m,0} & \ldots & q_{m,n} \end{bmatrix} \]

\[M = \left(\frac{dX}{dt} \right) X^{-1} \]

\[\frac{dx}{dt} = Mx(t) \quad \leftarrow \text{2 h avg.} \]
Convective responses to temperature anomalies
$\dot{T}, \dot{q} \leftarrow$ warm anomaly (800 hPa)

SAM: cools anomalous layer and aloft, moistens below

D3: similar behavior, except drying aloft

MSCM: warming and drying aloft, negligible moistening below
$\dot{T}, \dot{q} \leftarrow$ warm anomaly (800 hPa)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: similar behavior, except drying aloft
- **MSCM**: warming and drying aloft, negligible moistening below
\(\dot{T}, \dot{q} \leftarrow \text{warm anomaly (800 hPa)} \)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: similar behavior, except drying aloft
- **MSCM**: warming and drying aloft, negligible moistening below
\(\dot{T}, \dot{q} \leftarrow \text{warm anomaly (800 hPa)} \)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: similar behavior, except drying aloft
- **MSCM**: warming and drying aloft, negligible moistening below
\(\dot{T}, \dot{q} \leftarrow \) warm anomaly (650 hPa)

SAM
- Cools anomalous layer and aloft
- Moistens below

D3
- Highly localized cooling and moistening

MSCM
- Heating inflection point, drying below
- Anomaly (neither convection scheme has cooling aloft)
\(\dot{T}, \dot{q} \leftarrow \text{warm anomaly (650 hPa)} \)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: highly localized cooling and moistening
- **MSCM**: heating inflection point, drying below

anomaly (neither convection scheme has cooling aloft)
\(\dot{T}, \dot{q} \leftarrow \text{warm anomaly (650 hPa)} \)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: highly localized cooling and moistening
\(\dot{T}, \dot{q} \leftarrow \) warm anomaly (650 hPa)

- **SAM**: cools anomalous layer and aloft, moistens below
- **D3**: highly localized cooling and moistening
- **MSCM**: heating inflection point, drying below anomaly (neither convection scheme has cooling aloft)
Convective responses to moisture anomalies
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (800 hPa)} \)

SAM
- Strong localized drying, warming at and above anomaly

D3
- Cooling and moistening aloft,
 \(\Delta q \approx 2.5 \)

MSCM
- No mid-level warming, significant drying aloft
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (800 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly

- **D3**: cooling and moistening aloft, \(\Delta q \approx \Delta T \approx 2.5 \)

- **MSCM**: no mid-level warming, significant drying aloft
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (800 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly
- **D3**: cooling and moistening aloft, \(\Delta q : \Delta T \approx 2 : 5 \)
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (800 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly
- **D3**: cooling and moistening aloft, \(\Delta q : \Delta T \approx 2 : 5 \)
- **MSCM**: no mid-level warming, significant drying aloft
$\dot{T}, \dot{q} \leftarrow$ moist anomaly (650 hPa)

SAM D3 MSCM

SAM: strong localized drying, warming at and above anomaly
D3: (both convection schemes show cooling aloft)
MSCM: moistening aloft
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (650 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly

- **D3**: (both convection schemes show cooling aloft)

- **MSCM**: moistening aloft
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (650 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly

- **D3**: (both convection schemes show cooling aloft)
\(\dot{T}, \dot{q} \leftarrow \text{moist anomaly (650 hPa)} \)

- **SAM**: strong localized drying, warming at and above anomaly
- **D3**: (both convection schemes show cooling aloft)
- **MSCM**: moistening aloft
Conclusions

- The linear transformation matrix is a useful medium for comparison.
- D3 and MSCM manifest highly localized convective responses.
- D3 expresses phase changes where advection may be more important.
- MSCM and D3 show sign errors in \dot{T} and \dot{q}, which may disrupt/prevent certain dynamic phenomena (e.g. convectively-coupled waves).
Extras
Stratospheric relaxation

T and q are relaxed near tropopause over $1/2$ day
2:5 ratio \implies only phase change occurs

\[
MSE = c_p T + gz + L_v q
\]

If a pseudoadiabatic process (rain) occurs at some level...

\[
\Delta MSE \bigg|_{z=z_0} = c_p \Delta T + L_v \Delta q = 0
\]

\[
\frac{\Delta T}{\Delta q} = -\frac{L_v}{c_p} \approx -2/5
\]