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Basics of Polarization

• Only possible for transverse waves

• Conventionally refers to the E part of the EM 

wave

• Some materials are isotropic and leave EM • Some materials are isotropic and leave EM 

waves unchanged; others do not and are 

called optically active

• A polarizer is a special type of filter that only 

transmits one polarization



More Background on Lingo

• For use with optics, polarization is often 

referred to as “s” or “p” type (like in 

earthquakes)

– “s” – German senkrecht for perpendicular – also – “s” – German senkrecht for perpendicular – also 

TE

– “p” – E field parallel to the plane of incidence –

also TM

• Polarization is commonly referred to as linear, 

circular, or elliptical (more later)



Circularly polarized wave split into linear 

components



Ways to Polarize Light

• Transmission – picket fence          
analogy

• Reflection – Brewster’s angle• Reflection – Brewster’s angle

• Refraction – Birefringence

• Scattering – blue sky example

n = sin(θi)/sin(θr) = sin(θi)/sin(θ90-i) = tan(θi)



Law of Malus

• Developed by Etienne Malus using dichroic
materials

• Observation that completely unpolarized light 
passing through a polarizer, intensity drops by 
halfhalf

• Theta is angle between polarization direction of 
polarized light and transmission axis of polarizer

θ2
cos

o
II =



Polarizer-Analyzer Pairs

• Using Malus’ Law you can determine the 

polarization of light by using polarizers in 

succession

• In this process the second polarizer is called • In this process the second polarizer is called 

the analyzer

• Need a way to measure                                         

the final intensity



Some Formalism

• Way to write EM equations for polarized 
transverse waves (we’ve been doing this all 
along)

• Matrix notation is handy and useful in lab • Matrix notation is handy and useful in lab 
settings

– Jones vectors/matrices

– Stokes vectors - astrophysics

• Adopted from Colby Jurgenson’s lecture from 
a few years back – show quickly in a bit



Applications

• Chirality in living systems
– Dextro (R) or Levo (L)

• Pockel’s Cell
– Use E field to change n of crystalline materials – Use E field to change n of crystalline materials 

resulting in a change in polarization of light going 
through the cell – linear effect

• Kerr Cell
– Same as Pockels with a quadratic effect

– Sometimes called QEO

– Often seen in liquids



Applications continued

• LCDs

• Movie 3D glasses• Movie 3D glasses

• Astronomy – Stokes parameters – I, Q, U & V



Polarized Light

• Poincare Sphere is the 3-D

projection of the 2-D

polarization ellipse.2β

Linear χ = 135°

Right Circular

P
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“The Universe is written in mathematical language, and its characters are triangles, circles, and other 

geometrical figures, without which it is humanly impossible to understand a single word…”

Galileo

2χ Linear χ = 45°

Left Circular



Outline

I. Polarization Ellipse & its Degenerate Forms

II. The Jones Matrix Calculus

III. Something Cool, Something Silly, and

Something to Learn How to Do.
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� I’m going to present this a bit differently than your textbook does.

� The main difference is that I will present the polarization ellipse first, derive all it’s
parameters, and then analyze the Jones vectors with respect to it.

� If you think that this discussion might be helpful as a supplement to your textbook, 
email me and I will send you the presentation.

cjurgenson@mro.nmt.edu



Part I: Polarization Ellipse & Its Degenerate Forms

• Mathematical Description of Electromagnetic 

Wave

• The Polarization Ellipse
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• The Polarization Ellipse

• Linear, Circular, and Elliptical Polarization



• Circa1670 Christian Huygens first suggested the vectoral nature of light to explain
its behavior propagating through crystals.

• In the words of Newton (~1672), it appeared as though light had “sides…”

• In 1818 Fresnel and Arago were able to explain Young’s interference experiment with a
with a light wave that consists of two transverse components (oscillating perpendicular
to the direction of propagation), and no longitudinal component.

• Initially seen as a “defect” in Fresnel’s theory, solving Maxwell’s equations in free space
verified only transverse components arise.

• These transverse components can be expressed as (wave propagating in z direction):
Y
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X

Z



� The propagation of Ex and Ey give rise to a vector describing a locus of points in
space that generates a curve whose form can be derived using the previous equations.

� We start by dividing out by the amplitude and applying the double angle formulae to the
argument of the cosine function:

� Re-arranging terms, subtracting, and using the double angle formula again, the 
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� Re-arranging terms, subtracting, and using the double angle formula again, the 
following two expressions can be written:

� Squaring the above two expressions, and adding them together yields (δ = δy - δx):



� This is the equation for an ellipse.  What it shows is that at any instant of time the 
locus of points described by the propagation of Ex and Ey will trace out this curve.

X

Y

χ

2E0x

• β is measure of the

of the ellipticity

• χ is rotation of the 
ellipse (consequence
of the cross term in 
above equation)
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Z

χ

β
2E0y

above equation)



� For specific values of E0x, E0y, and δ, the polarization ellipse reduces to 4 specialized
forms:

� Case I: Linear horizontal, or linear vertical polarization

E0y = 0 (Linear Horizontal) E0x = 0 (Linear Vertical)

Y

X

Y
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X
X

Z
Z



� Case II: Linear ±45° polarization (δ = 0 or π, and E0x = E0y)

• The slope of the resultant 
vector is either positive or
negative depending upon the 
relative phase shift between 
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relative phase shift between 
the two waves.



� Case III: Right or Left Circular Polarization (δ = π/2 or 3π/2, and E0x = E0y = E0)

δ = π/2
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• Right circular occurs when Ey is advanced in

phase by λ/4.

• Left circular occurs when Ex is advanced in

phase by λ/4.



� Case IV: Elliptical Polarization (Linear + Circular = Elliptical)
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� When δ = π/2 or 3π/2 the polarization ellipse reduces to the standard equation of an 
ellipse:



� Illustration Aids:

• http://webphysics.davidson.edu/physlet_resources/dav_optics/examples/polarization.html
• http://www.ub.es/javaoptics/index-en.html 
• http://www.colorado.edu/physics/2000/applets/polarized.html
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� The next few slides will discuss the relationship between the parameters of the 
polarization ellipse.

� Recall the form of the polarization ellipse (again, δ = δy - δx):

� Due to the cross term, the ellipse is rotated relative to the x and y directions.

� The purpose of the next couple slides is to show the mathematical relations between

polarization ellipse, E0x, E0y, δ and the angle of rotation χ, and β the ellipticity angle.

� From the figure below, the transformation between the primed and unprimed coordinates:

Y’
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X

X’

Y

β

χ

ab



� Using the rotated components:

Y’

� The equation of the ellipse in terms of primed coordinates:

� The original equations for the optical field:

� And a whole lot of algebra, the following can be derived:
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X

X’

Y

β

χ

ab



Part II: The Jones Matrix Calculus

• The Jones Vector

• Linear, Circular, and Elliptical Polarization

Representations
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Representations

• Polarizer, Retarder, and Rotator Matrices



� We can also write the plane wave components of the optical field in terms of complex
quantities:

� The total complex field for an electromagnetic wave propagating in the z-direction
can then be written as:
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� If you recall from the polarization ellipse, the polarization state of the wave is 

completely determined by the amplitudes (E0x/E0y), and phases (δx/δy).  

The bracketed term in the above equation (   ) referred to as the complex amplitude, 
contains all the information needed to determine the state of polarization of the optical
field.

This complex amplitude can be written as a two element matrix, known as a Jones Vector:

� It is important to realize that E0x and E0y are REAL quantities, the presence of the
exponent with imaginary arguments causes Ex and Ey to be imaginary.



� Before determining the Jones vectors for the different polarization states, it is 
customary to normalize the vectors to gain simpler expressions.  

� This is done by dividing the vector elements by a scalar (real or complex) quantity  such
that the sum of the squares of the components is 1.

� The Jones vector for linear horizontal polarized (LHP) light (Ey = 0, suppress δx since 
wave is unimodular):

� So to find the normalization factor (I understand this is a completely trivial example,
but it’s important to see how the method evolves, and we’ll get more complicated later):
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but it’s important to see how the method evolves, and we’ll get more complicated later):

� So that the normalized Jones vector for LHP is simply:



� That wasn’t a very interesting example, but we’ll get there, so lets do the case for
linear +45 polarized light.

� The Jones vector (Ex = Ey = E0, δx = δy = 0):

� To determine the normalization factor:
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� The normalized Jones vector for linear +45 is then:



� For linear -45, the Jones vector (Ex = Ey = E0, δy - δx = π):

� To determine the normalization factor:
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� The normalized Jones vector for linear -45 is then:



� now for left-hand circular polarized (LCP) light.  In this case, E0x = E0y = E0 and

δy - δx = +90°:

� To determine the normalization factor:
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� The normalized Jones vector for LCP is then written:

� QUIZ 1: What is the form for right-hand circular polarized (RCP) light?



� A useful property of the Jones vectors is that we can superpose them to create 
different polarization states.

� For example, what happens when we superpose the Jones vectors for LHP, and LVP?

� This is the Jones vector for elliptically polarized light.  Therefore, superposing two
orthogonal linear polarizations gives rise to elliptically polarized light.

� If E0x = E0y, and δy = δx:
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� QUIZ 2: Which polarization state does this Jones vector describe (absent the 
normalization factor)?

� Linear +45



� For another example, superpose LCP and RCP of equal amplitudes (we found the 
normalized forms back on slide 19).

� QUIZ 3: Which polarization state does this Jones vector describe?

� Linear horizontal.
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� For the final example it will be shown that elliptical polarization can be created from 
the superposition of LCP and RCP with unequal amplitudes.

� The Jones vectors for LCP and RCP with unequal amplitudes can be written as:

� Adding them together:
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� Writing this out in component form:

� And, restoring the propagator term (kz-ωt):



� Taking the real part of the complex representations (setting τ=kz-ωt):

� Now, keeping in mind the derivation of the polarization ellipse (slides 4-6), we square 
Ex and Ey, and add them together:
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� QUIZ 4: Is a four part question: 

1. What is this an equation for?
2. what do (a+b) and (a-b) represent physically?
3. Which direction, if any, is the resultant vector of Ex and Ey rotating?
4. Given your answer to (1), is it rotated?



� QUIZ 4: Question 1, what is this an equation for?

� An ellipse.

� QUIZ 4: Question 2, what do (a+b) and (a-b) represent physically?

� The major and minor axes respectively of the ellipse.

� QUIZ 4: Question 3, Which direction is the resultant vector of Ex and Ey rotating?

� Counterclockwise.
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� Counterclockwise.

� QUIZ 4: Question 4, Given your answer to (1), 
is it rotated?

� No.

� Go back to slides 6 through 13 .



� There are 3 types of devices that will transmit, but modify the state of polarization of
light:

1. Polarizer: Removes all or most of one vibration while transmitting the other.
2. Phase Retarder: Introduces a phase difference between the two components.
3. Rotator: Rotates the direction of linearly polarized light.

� The action of these 3 devices can be described by 2 X 2 matrices, called 
Jones Matrices.

� In order to do this it is assumed that the components of a beam emerging from a
polarizing element are linearly related to the components of the incident beam:
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� Where Ex’, Ey’ are the components of the emerging beam, Ex/Ey are those of the incident,
and the jik, I,k = x,y are the transformation factors.

� This can be re-written in matrix form:



� We now determine the Jones matrix for a polarizer, which has the characteristics:

� For complete transmission, px,y = 1, and for complete attenuation px,y = 0.

� In general then, the Jones vector for a polarizer can be expressed as:

� For complete transmission along the x-axis, px=1, and py=0:
Ey

36

Incident 

Beam
Ex

Ey

Polarizer

Ex’



� We now determine the Jones matrix for a Phase Retarder.

� As mentioned in your text, the phase retarder behaves as if it were to advance 
one component relative to the other (fast axis and slow axis), thus introducing some

total phase shift φ between the two orthogonal components.

� This behavior can be described as advancing one of the axis by φ/2, and retarding the
other by -φ/2.

� Where I have chosen the y-axis as the fast axis.  The Jones formalism is then:
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� Two of the most common types of phase retarders are the quarter-wave (φ=90), and the
half-wave (φ=180).  These Jones matrices can be expressed as:



� We now determine the Jones matrix for a rotator.

� In this case, the optical device rotates the orthogonal components Ex/Ey through an 

angle θ.

� from the figure, θ describes rotation of Ex to Ex’, and Ey to Ey’.  β is the angle between
E and Ex.

EyEy’

E

� In the Ex’/Ey’ coordinate system:

� In the Ex/Ey coordinate system:
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Ex

Ex’

β
θ

� Expanding the trig functions for Ex’/Ey’:

� Using the equations for Ex/Ey and 
collecting like terms:



� From the previous slide:

� We can then write for the Jones formulism:

� Problem 14-1 from your textbook asks you to derive Equation 14-15.  I’ll do that now.

� The problem is to derive a general matrix representing a linear polarizer with its

transmission axis at some arbitrary angle θ.  The problem can be set up by the following:
E
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Ey′′′

Ex′′′

Y′

Ey

X′

Ex

Incident

Beam

Rotated polarizing

component Emerging

Beam

θ

X

Y

J
J′′′′

J′′′′′′′′

J′′′′′′′′′′′′

� Ex/Ey described by 
incident Jones vector J.

� J′ is incident components
along X′/Y′.

� J′′ is Jones vector for 
emergent beam from 
polarizer.

� J′′′ is Jones vector for 
emergent.



E

� The components of the incident beam, J, along the x′/y′ axes can be written in terms of
the Jones vector as:

� Where Mθ is the Jones matrix for rotation, and J′ is the Jones vector for the beam whose
axes are along x′/y′.

� The J′ beam now interacts with the polarizing element whose matrix is Mpol.  The Jones
vector, J′′, or the beam emerging from the rotated polarized component is:
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Ey′′′

Ex′′′

Y′

Ey

X′

Ex

Incident

Beam

Rotated polarizing

component Emerging

Beam

θ

X

Y

J
J′′′′

J′′′′′′′′

J′′′′′′′′′′′′



E

� Finally, the components of the beam emerging from the rotated polarizer (J′′), must be
must be taken along the original x/y axes.  This is described by a rotation of J′′ through
(-θ), back to the original x/y axes.

� The Jones matrix for an arbitrarily rotated polarizer is then:

� Assuming the ideal case for transmission along the x-axis, px=1/py=0:
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Ey′′′

Ex′′′

Y′

Ey

X′

Ex

Incident

Beam

Rotated polarizing

component Emerging

Beam

θ

X

Y

J
J′′′′

J′′′′′′′′

J′′′′′′′′′′′′



� Problem 14-13: Light is first sent through an ideal linear polarizer with transmission
axis along the x-axis.  It is then sent through a linear polarizer rotated

at 45°, and finally through a quarter wave-plate with slow axis 
horizontal.  Use the Jones matrices to determine and describe the 
product.

TA1 along x

TA2 at 45° to x

FA

SA
J
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J′

J′′

J′′′

QWP

SA
J



� Problem 14-13: The problem is worded somewhat strangely, but I take it to mean that

J′ is linear horizontal polarized light because of the first polarizer.
Therefore we don’t care what J is.

� Need to determine J′′, J′′′.  From the diagram on the previous slide:

� For the Jones matrices:
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� Solving for the Jones vectors:

� Which we know from table 14.1 is RCP.  I’ll let you go into more detail if needed.



Part III: Something Cool, Something Silly, and

Something to learn how to do. 

• Polarized Art

• Polarized Clock
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• Polarized Clock

• Can we train our eyes to see polarization?



� NASA scientist Peter Wasilewski painting with ice and light:Peter.J.Wasilewski.1@gsfc.nasa.gov
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� The Aurora Clock by Chrono Art (http://homepage.mac.com/chronart1/index.html):
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� Can we train our eyes to see polarized light?  Apparently…

� “Haidingers Brush: How to see polarization with the naked eye.”

http://www.polarization.com/haidinger/haidinger.html
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� References:

� Polarized Light by Dennis Goldstein
� Optics by Eugene Hecht
� Principles of Optics by Born & Wolf
� Polarization of Light: From Basics to Instruments by N. Manset CFHT

(Do a google search to get the Powerpoint, link is to long to paste)
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