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These notes continue what we started in Physics 425.

Our goal is still to explore the “physics of astro-

physics”. This term we’ll develop the radiation-

physics tools we’ll need, and focus more on galax-

ies, their interstellar medium, and high-energy astro-

physics.
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1 Galaxies, normal and otherwise

To start, let’s recall the large-scale structure of galax-

ies. We are going to focus on bright galaxies, spirals

and ellipticals. A lot is known about these objects; in

addition to being pretty, they are bright and extended,

thus easy to study. We should remember, however,

that most galaxies in the universe are neither S nor E.

By counting galaxies we can determine the luminosity

function, that is the number of galaxies at luminosity

L (per volume usually). This is called the Schechter

function, and has the approximate form,

Φ(L) = Φo

(

L

L∗

)−α

e−L/L∗ (1.1)

Here, Φo is a normalizing constant (which depends

on the local environment: for instance Φo is much

larger for a rich cluster than for the field). The slope

α ∼ 1.25; and L∗ ∼ 7 × 1010L⊙ is comparable to

the characteristic luminosity of bright galaxies (values

quoted by Elmegreen, for the V band). We know that

the galaxy luminosity connects directly to the galaxy’s

mass: M/L ∼ 30 − 100 (in solar units; depending

somewhat on the galaxy type, and with some scatter).

Thus the Schecter function also measures the mass dis-

tribution of galaxies.

Important point: this is a composite luminosity func-

tion, determined by adding all galaxy types. Most S

and E galaxies sit within a factor of a few of L∗. But

the LF has been measured over a range ∼ 10 magni-

tudes, that is a factor ∼ 104 in luminosity, and it keeps

rising to smaller luminosities. It follows that most of

the galaxies in the universe are neither spirals nor el-

lipticals. Most galaxies are either Irregulars (small,

patchy structure, rotation supported) or dwarf Ellip-

ticals (small, featureless, probably not rotation sup-

ported). Check Figure 23.34 of Carroll & Ostlie for

a recent break-down of the total LF by galaxy type. In

this course we will focus on the big galaxies, which are

better understood; but don’t forget the little guys.

1.1 Normal galaxies: spirals

Our galaxy is a medium-size spiral, and we can use it

to study a “typical” spiral. As with all spirals, its most

notable feature is its disk, which contains both stars

and gas. The surface mass density of the stellar disk

is exponential, Σ(R) ∝ e−R/H , with H ∼ few kpc

(that number is typical of other nearby spirals). Thus

the density of stars dies after several H distances. The

gas (HI and molecular gas), however, extends much

further; in big spirals gas can be traced to 40-50 kpc,

and it has been traced to at least ∼ 20 kpc in our galaxy.

The surface density of the gas falls, in some galaxies

exponentially and in others more irregularly; its radial

scale length is generally larger than that of the stars.

What is the structure of the gravitating matter?

The disk is supported vertically by the random motions

(“heat”) of the stars and gas. Think about individual

stars: each one moves up and down, through the galac-

tic plane, in approximate harmonic motion. The ver-

tical extent of its motion depends on the local gravity.

Or, think about the stars as a “gas”,1 with random mo-

tions at speed σ. We can describe the ensemble of stars

in a given volume by a “pressure” (p ↔ nmσ2 = ρσ2,

for number density n and stellar mass m). We then

expect the vertical disk structure to be described by

hydrostatic equilibrium. This last can be written as a

vector equation, or alternatively we can isolate its z
(“vertical”) component:

∇p = ρg ;
dp

dz
= ρgz (1.2)

The typical scale height of the disk, locally, is H ∼
200− 300 pc (varying somewhat for different types of

stars, or different phases of the ISM). The surface mass

density in the disk can be found in two ways. One, we

can measure the local density of stars and gas directly,

to get a density of luminous mass. Two, we can use the

vertical support condition (1.2) to find the local gravity,

and from this (remembering Poisson’s law for gravity,

∇2ΦG = −∇ · g = 4πGρ), we can find the density

of gravitating mass. This latter approach gives Σ ∼
75M⊙/pc2, while the former (counting stars) gives a

value that is only about half of this. Thus, about half

of the gravitating mass in the local disk is dark: it does

not emit any radiation that we have been able to detect.

In addition, the galaxy has more dark matter on larger

scales. Consider our galaxy: the disk is supported

“horizontally” by its rotation; our local rotation speed

∼ 220 km/s, which gives a rotation period at the sun’s

distance (8.5 kpc) of ∼ 230 Myr. The stellar orbits

are nearly circular, and the galaxy is close to axisym-

metric (or truly, we are assuming its mass distribution

is spherically symmetric!), so we can use the simplest

form of Kepler’s law:

v2rot =
GM(r)

r
(1.3)

1If you don’t like this idea, look at §1.4 for some discussion.
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where M(r) is the mass within r. This provides a sim-

ple way to estimate the gravitating mass of the galaxy.

Turning to nearby external spiral galaxies, we can use

the rotation curve to find the gravitating mass. Rota-

tion curves in big spirals can be traced out to several

tens of kpc using HI, and their rotation velocity vrot
stays constant out that far. Thus, the gravitating mass

M(< r) ∝ r: the mass of the galaxy keeps rising as

we go to larger distances. This is not what happens

to the total luminous mass (in stars plus gas), how-

ever: the integral of an exponential converges to a fi-

nite value. Thus, the ratio of total mass to luminous

mass increases as we go to larger scales. By the outer

∼ 40− 50 kpc in big systems, the ratio of (gravitating

mass)/(luminous mass) ∼ O(10); there is something

like ten times more mass in the system than we can

see.

A note on spiral arms...they are of course the most

striking, defining features of spiral galaxies. They

are not, however, fundametal to the galaxy’s structure.

Rather they are waves or perturbations in the self-

gravitating disk of the galaxy. Some authors like to

work with linear density waves – i.e. small-amplitude

waves with a spiral shape. Other authors like to work

with global perturbations of the galactic disk – which

have a generally spiral shape but need not be linear.

Still other authors consider local perturbations – in

which a local overdensity, say, is enhanced (due to its

own self-gravity) and sheared into a spiral fragment

(due to the differential rotation of the disk). Probably

each approach describes some fraction of spiral galax-

ies.

And a note on the dark matter ... we have no direct ob-

servation of the spatial distribution of the dark matter.

It seems likely, however, that the dark haloes of spiral

galaxies are spheroidal – i.e. supported by their inter-

nal, random motions (“heat”), just as elliptical galaxies

are (as we discuss in the next section). This idea comes

from numerical simulations of structure formation, as

well as the fact that the dark matter (by assumption!)

does not “cool”, so can’t dissipate its internal energy –

thus it probably has not been able to flatten into a disk.

1.2 Normal galaxies: ellipticals

Elliptical galaxies are quite different. They are smooth

and featureless structures, showing a core (of roughly

constant density) and an outer envelope (or declining

density). Their surface brightness follows the heuristic

De Vaucoulers law: Σ(r) = Σoe
−(r/ro)1/4 (where ro is

a constant, a length scale). In a three-dimensional sys-

tem such as this, the surface brightness is a projection

of the underlying 3D spatial density:

Σ(R) = 2

∫ ∞

R
n(r)

rdr√
r2 −R2

(1.4)

The stellar density is decently well fit by n(r) =
no/[r(r + a)2], or by similar (analytic) forms which

have a characteristic “core” radius, a ∼ 1− 2 kpc. 2

We might think they are very simple...but that’s not the

case. One hint comes from rotation: elliptical galax-

ies are not rotation supported. In a large elliptical

the rotation speed is much smaller than the dispersion:

vrot <∼ 0.1σ typically. (For smaller galaxies, vrot is a

larger fraction of σ). In addition, E galaxies are truly

three-dimensional. To see this, consider shape of the

surface brightness isophotes. They are, of course, el-

liptical (and close to circular in some E galaxies). But,

the direction of their major axis rotates going out from

the galactic center. This isophote twist is a clear sign of

a trixial system. Both of these facts tell us that the stel-

lar orbits must be complex, randomly oriented, and not

necessarily closed (that is a star can wander through

much of the volume of the galaxy over it’s lifetime).

Despite the complexity of the orbits, we can find a sim-

ple model of the structure of the galaxy. Assume spher-

ical symmetry to simplify, and following the arguments

above write down a “hydrostatic balance” equation for

the stars:

d(ρσ2)

dr
= ρ

GM(r)

r2
;

dM

dr
= 4πρr2 (1.5)

Now do some algebra, and combine these into one

second-order ODE for ρ(r). The resulting equation

has two solutions. One is analytic, ρ ∝ 1/r2. This

solution diverges in the center (that’s not good) and its

mass, M(r) ∝
∫

ρr2dr, diverges at infinity (that’s also

not good). The other must be found numerically, but

turns out to have a finite central density, and a charac-

teristic core radius; at large radii it approaches the first,

analytic, solution. And: you have no doubt recognized

this solution, from last term. It is the self-gravitating

isothermal sphere, an important solution in several dif-

ferent astrophysical applications.

2This is the “NFW” (Navarro, Frenk & White) profile; it turns

up commonly in numerical, N-body simulations of collapsing,

self-gravitating galaxies; and is a reasonable match to the profiles

of real galaxies.
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The divergence at infinity cannot be fixed analytically

in this approach. The most attractive solution that I

know of, comes from considering the internal veloc-

ity distribution of the stars; those at the highest ve-

locities will exceed the escape velocity of the galaxy.

King took this into account in numerical models of

the isothermal sphere, and found solutions which are

nicely well-behaved at infinity. He also gives an ap-

proximate expression for the density of the resulting

system:

ρKing(r) =
ρoa

3

(r2 + a2)3/2
(1.6)

What about the mass of an elliptical? Is dark matter

important? Due to the complexity and variety of the

shapes of allowed stellar orbits, we can’t easily use

Kepler-type arguments, as we could for spirals. We can

of course use approximate arguments, such as the virial

theorem, to estimate Mgrav from the stellar velocity

dispersion: GMgrav ≃ σ2r. Quantitatively, however,

to get accuracies at the tens of percent level is not as

easy as it is for spirals. Several approaches can be used:

• One, the strongest result in my opinion, uses the

small (but non-trivial) minority of the population

which have flattened, extended HI disks. These disks

rotate, in simple Keplerian motion, which allows us to

find the gravitating mass directly. The result: M/L
for big E’s is similar to that for big S’s, (∼ 10 − 30
typically), and also tends to increase with radius.

• Another approach uses the hot, X-ray loud gas found

in every big elliptical. This gas sits in approximate

hydrostatic equilibrium in the potential well of the

galaxy; from its spatial distribution we can estimate

the gravitating mass. I defer details here until the next

chapter; the results for M/L are generally consistent

with those from flattened HI disks.

• Careful interpretation of the stellar kinematics in-

volves making a model of the gravitational potential,

doing numerical integrations to find out what the al-

lowed stellar orbits look like, and verifying that if one

populated those orbits with stars the resulting object

would look like a real galaxy and would reproduce the

potential assumed at the beginning. At present it is not

very common to be able to do this in the far outer re-

gions of elliptical galaxies. In the inner, bright portions

of the galaxy the mass is dominated by stars rather than

by dark matter.

1.3 Query: why are they different?

Although this isn’t a course in galactic structure, it

seems appropriate to ask why there are two character-

istic types of big galaxies – one flat and supported by

rotation, the other round and supported by random mo-

tions. Two possibilities have been discussed for ages:

• We might think that galaxies form in isolation: by

gravitational collapse of their dark matter, and subse-

quent dissipational collapse of the baryonic gas (nor-

mal ISM!) within the dark halo. (An important point

here is that normal, baryonic material can radiate away

its interal energy; so it can cool, and collapse in a grav-

itational field. Dark matter, being non-baryonic, can-

not). If this is the case, then the E/S difference might

be due to how early in the process stars formed. Early

star formation might lead to an E; later star formation,

after the ISM has collapsed into a disk, could lead to

an S.

• However there’s another possibility: galaxies might

influence each other during their formation process.

Two facts are germane here. First, we know that E’s

are commonly found in regions of high galaxy den-

sity – rich clusters of galaxies. Second, simulations

show that if two spiral galaxies collide, closely enough

for their stars to remain bound, the energy of the col-

lision will heat the stars and “puff up” the galaxy –

i.e. making something that looks like an elliptical. So

.... it may well be that E’s are more common in clus-

ters, because conditions (at least early on) were right

for protogalaxy-protogalaxy collisions.

Which of these is right? I suspect the answer lies some-

where inbetween – this is still an active area of current

research.

1.4 Interlude: stellar dynamics

How can we justify talking of a stellar “pressure”?

Here’s a quick overview of the argument, following

Binney & Tremaine. Consider a distribution function

of stellar velocities, f(x,v) (the number of stars “at x

and v”). If stars are conserved, and there are no colli-

sions (in which the position and/or the velocity of the

star changes instantaneously, by a finite amount), then

the evolution of f is goverened by the motion of indi-

vidual stars through (x,v) phase space:

∂f

∂t
+ v · ∇xf + a · ∇vf = 0 (1.7)
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(Think: does this make sense? We’re just counting

stars). Here, ∇x is the usual spatial gradient, ∇v is

the gradient in phase space with respect to the veloc-

ity coordinates, v is the velocity and a ≡ dv/dt is the

acceleration. Here, we specify a = g = −∇Φg, i.e.

the gravitational acceleration. Now, we can derive a

couple of useful results.

First, integrate (1.7) over all velocities. We get (spec-

ify to Cartesian coordinates to make the algebra more

transparent):
∫

∂f

∂t
d3v+

∫

vi
∂f

∂xi
d3v+ gi

∫

∂f

∂vi
d3v = 0 (1.8)

But now, the last term goes to zero (why? The i compo-

nent of the integrand becomes (∂f/∂vi)dvi, a perfect

differential; it integrates to zero if f has “reasonable”

boundary conditions). Also, in the second term we can

take the d/dxi outside the integral (remember that x

and v are independent coordinates). We can define the

stellar density and mean velocity by

n =

∫

fd3v ; 〈v〉 = 1

n

∫

fvd3v (1.9)

Finally, (1.8) becomes

∂n

∂t
+

∂

∂xi
(n〈vi〉) =

∂n

∂t
+∇ · (n〈v〉) = 0 (1.10)

(here and after I’m using ∇ to mean the usual ∇x).

But this is simple: it is just the continuity equation for

stars.

Now, multiply (1.7) by v before integrating over ve-

locity space. The algebra is longer, but the approach

(and mathematical tricks) are the same. One version of

the result is

n
∂〈vj〉
∂t

− 〈vj〉
∂

∂xi
(n〈vi〉) +

∂

∂xi
(n〈vivj〉) = ngj

(1.11)

Now, velocity v is partly due to streaming (all stars

share the same mean velocity) and partly due to ran-

dom motions about this mean. Thus, the mean value

〈vivj〉 can be split into a part that describes the stream-

ing motion (〈vi〉〈vj〉) and a part that describes the in-

ternal velocity dispersion,

σ2
ij = 〈vivj〉 − 〈vi〉〈vj〉 (1.12)

Using this, and letting v now represent the mean

streaming velocity, we can write (1.11) as

n
∂〈vj〉
∂t

+ n〈vi〉
∂〈vj〉
∂xi

= ngi −
∂

∂xi

(

nσ2
ij

)

(1.13)

or – if we note that nmσ2
ij is equivalent to a pressure,

p – this becomes

n
∂v

∂t
+ nv · ∇v = ng− 1

m
∇p (1.14)

This is the general dynamical equation for collision-

less stellar systems. In a steady state, with no bulk

flows, this reduces to the usual hydrostatic equilibrium:

∇p = ρg (being slightly cavalier about the pressure,

which is OK for our purposes here).

1.5 The not-so-normal ones: active galaxies

About one per cent of the bright galaxy population

is “active”. That is, they contain small, highly ener-

getic, non-stellar events in their nuclei. (The fraction

is less common in smaller galaxies; and more common

in bright galaxies at high redshift). Some active galax-

ies are found optically, others are found in radio. We

will return to this topic later in the course. For now,

here, I just note the classes and general properties, with

an eye to their historical discovery.

Seyfert galaxies are spirals with very bright nuclei.

These nuclei are most easily detected by their strong,

optical emission lines; they also have nonthermal con-

tinuum emission. They also have small ( <∼ kpc), faint

radio sources in their cores. The most important point

here is that this phenomenon cannot be explained sim-

ply by stars: some non-stellar event is taking place in

these nuclei.

Radio galaxies are ellipticals which have double-

lobed radio sources, fed by jets emanating from galac-

tic core. They also have compact, non-stellar nuclei,

but on the weak side compared to bright Seyferts.

Quasars were originally called “quasi-stellar objects”.

They are bright, compact (inferred from from variabil-

ity), have very strong emission lines (this is how they

were first found), and a strong nonthermal continuum.

Some (maybe 10%) are “radio-strong”, with a radio-

loud core and extended double-lobed radio structure.

Some of these (“blazars”; maybe 10% again?) are vi-

olently variable, showing a large ∆L/L on short time

scales. These generally also contain radio jets with su-

perluminal motion. Initially no galaxy could be seen

around these very bright, small sources – hence the

name QSO. With dedication and better technology we

now can image the underlying galaxies. This area is

still under discussion, but it looks as if quasars show

the same host-galaxy split as to Seyferts and AGN:
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radio-loud from E’s and radio-weak from S’s. We now

have found quasars out to z ∼ 5, and probably higher

by the time you read these notes.

What all of these objects have in common is an Active

Galactic Nucleus (AGN). An AGN is characterized by

a high luminosity (which can be comparable to the lu-

minosity of the entire host galaxy); a small intrinsic

size (inferred from variability: <∼ light-day or light-

month); a non-stellar spectrum (that is, from diffuse

gas, often including nonthermal particles and B field);

and a preferred axis (as shown by radio jets – showing

us net angular momentum of the core?). The general

model is accretion of matter onto massive black hole

in the nucleus of the galaxy.

1.6 The beast in the core

A striking recent result is that every galaxy appears to

have a massive dark object in its core. At this point

we have no definite proof that these massive things

are black holes; that would require resolving the event

horizon and finding some definitive signature, for in-

stance emission lines red/blue shifted due to the orbital

speed of gas in the last stable orbit. What we can do,

however, is use gravity to detect a massive dark object

(MDO): that is, a total gravitating mass much larger

than what can be accounted for by stars in the region.

1.6.1 Techniques: normal galaxies

There are two important detection techniques here, for

galaxies without strong AGN. In what follows I use the

term “bulges” to mean either elliptical galaxies, or the

bulges of early-type spirals.

•gas disks Some bulges contain gas disks in (apparent)

Kepler rotation around a central MDO. A small num-

ber of these, such as M87, have been resolved fairly

close to the MDO. A few other galaxies have inner gas

disks with maser spots which are easy to resolve with

the VLBA and which can also give the gas velocities.

A larger number of galaxies have gas disks which can

be resolved with HST (albeit not so close to the MDO).

Emission line velocities from these disks, again assum-

ing Keplerian rotation, can be used to find the central

mass.

•stellar cusps Most E’s and spiral bulges, however, do

not have nice gas disks in their cores. For these, we

need to use the fact that a central point mass affects the

distribution of nearby stars. A central star cluster with

no MDO is well described by a self-gravitating isother-

mal sphere – which you remember from earlier in the

course. The stellar density is (approximately) constant

in the inner region of the cluster. On the other hand,

if a large point mass, MBH , sits at the center, it will

cause the stars to form a density cusp, of characteris-

tic scale rcusp ∼ GMbh/σ
2 (if σ is the random stellar

velocity).

• Results The results of this work is striking: essen-

tially every bulge yet observed (carefully enough) con-

tains a massive black hole. Furthermore, the mass of

the central object correlates tightly with σ, the veloc-

ity dispersion of the nearby stars. This is called the

Mbh − σ relation, usually quoted as

Mbh ∼ 1× 108
(

σ

200 km/s

)x

M⊙.

The exact value of the exponent is still being argued

about: Kormendy (2001) gives x = 3.65, while Merritt

& Ferrarese (2001) give x = 4.80. I’d take x ∼ 4 as a

reasonable guess for now. About 40 galaxies had been

studied as of 2001 – about 2/3 of them by stellar cusps,

1/3 by gas disks – with BH masses extending from a

few million to a few billion solar masses. 3

1.6.2 Techniques: extend to AGN

The techniques just listed don’t work for most AGN,

due to the very bright nonstellar nucleus which

swamps the non-AGN signal. Two other techniques

are being developed. I personally don’t yet find them

as convincing as gas disks and stellar cusps, but they

have their adherents and the techniques are becoming

more reliable as time passes. They are:

• Reverberation mapping. Go back to our cartoon

of the emission line clouds close to the AGN. The line

widths tell us the velocity of the gas, which we assume

is gravitationally bound to the BH. To get its distance,

we look at variability. The gas emitting the broad lines

is photoionized by the central engine; when the ioniz-

ing flux varies, so will the ionization level in the line-

emitting gas, but after a delay due to the light travel

time. Monitoring of both the (ionizing) continuum and

3Comment from the author: this is very striking, and was totally

unexpected. Just about everyone in the field thought that only AGN

would have a massive BH in the core. A minor complication was

that quasars are much more common at high redshift – as discussed

below – so people were aware that there must be some ex-quasars

nearby. But few people suspected, before a few years ago, that

MDO’s would be so very common.
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the emission lines can give us the distance of the line-

emitting gas from the BH. Combining this with the

linewidth gives us the mass of the BH. This has been

done for only a handful of AGN so far; the results (as

quoted in Merritt & Farrarese 2001) fit nicely on the

Mbh − σ curve determined for non-active bulges.

• X-ray line profiles. This attractive idea is still being

pursued observationally. The Kα line of iron has now

been seen in Xrays in several objects. The data suggest

it is very broad ( <∼ c/3 linewidth), and has “an asym-

metric red wing consistent with gravitational redshift”.

This is still a very new technique, and needs careful

modelling of the accretion flow in order to do anything

quantitative. Such work may be coming.

1.6.3 The galactic center: stellar orbits

The center of our galaxy is a special case, because it’s

so close (and easier to observe), and of course because

it’s of great personal interest to us. Different tech-

niques can be used here than in external galaxies, be-

cause we can see fainter objects and resolve smaller

scales. On the other hand, the GC is heavily obscured

as seen from here, so we can’t do anything optically.

Radio, IR and high frequencies (X- and γ rays) are our

tools.

As seen in the radio the region is quite a mess – a

complex distribution of thermal gas (HII regions), cold

molecular gas, and nonthermal emission (SNR and dif-

fuse). Most of this is extraneous to our focus here,

namely the existence and size of an MDO in the GC:

we need to search for a compact object and/or ordered

gas motions. Both things exist ...

• Streaming gas can be detected in radio continuum,

and its velocity measured with radio recombination

lines. Its structure has been called a “mini-spiral”, al-

though it is not as ordered as that name would suggest.

Its physical extent ∼ 1 − 22 pc, and its ordered rota-

tion speed ∼ 100− 200 km/s. If this gas is in ordered,

Keplerian motion it points to a gravitating mass of a

few ×106M⊙. This was the first strong sign, but the

uncertainty of the gas orbits and the lack of strong con-

straints on nuclear stars (could the mass be just a dense

star cluster?) kept the skeptical (like your author) from

accepting this as a detection of a BH.

• Sgr A* has long been known to be an unresolved ra-

dio source at what seems to be the dynamical center

of the galaxy. This argument is made as follows. The

data verify that Sgr A* is at the dynamical center of the

streaming gas ring/spiral, and also at the center of the

nuclear star cluster (described next). A more indirect

argument is it’s lack of random motion. VLB moni-

toring over 16 years showed that it has only the paral-

lax consistent with our motion around the GC; its own

space velocity can be no more than 15 km/s. This is

so much lower than other random motions that we can

infer it’s a massive object moving only very slowly. It

is unresolved, even at VLB scales4, making its physi-

cal size smaller than ∼ 1 AU. It is a compact, variable

synchrotron source: a small version of what we find in

other AGN. We don’t have the resolution at X- or γ-

rays to separate its high-frequency emission from the

general mess in the GC region; but an old report of an

e+ − e− annihiliation line, at 0.5 Mev, from the direc-

tion of the GC was tantalizing (and unfortunately has

never been repeated).

Thus: there is suggestive evidence of a massive, com-

pact thing in the GC. The recent result that tied this

down and convinced the skeptics is IR imaging of

the central star cluster. Individual stars can be distin-

guished easily within the central ∼ pc-sized star clus-

ter; and 10 years of monitoring (as reported by Schödel

etal, in a 23-author paper) allow measurement of the

stars’ proper motions. This is a great piece of work: the

orbits of individual stars were followed long enough

to track them through both peri-center and apo-center

passage, which allows a good determination of the or-

bital parameters and the mass of the central object.

This data fits well with other recent estimates of the

mass of the MDO, such as from velocity dispersions;

modelling seems to demonstrate robustly that the grav-

itating mass must be a point mass rather than a dense,

but extended, star cluster. The bottom line: the core of

our galaxy contains a MDO, almost certainly a BH, of

Mbh ∼ 3× 106M⊙.

References

Much of the general discussion is just “off the top of

my head”. Some useful general references on galaxies

are

• Binney & Merrifield, Galactic Astronomy

• Elmegreen, Galaxies & Galactic Structure

4That really means its angular size is small enough to be af-

fected by interstellar scattering, due to the radio waves propagating

through the turbulent ISM
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• Sparke & Gallagher, Galaxies in the Universe

For more detail than you want on stellar dynamics and

the structure of galaxies, a very good book is

• Binney & Tremaine, Galactic Dynamics

I’ll put up AGN references later in the course. For now,

chapter 26 of Carroll & Ostlie is a nice introduction.
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2 The Interstellar Medium

In the previous chapter we reviewed the gravitational

structure of bright (S and E) galaxies. But the stars

and dark matter are not all of the story. Each type

of galaxy contains gas as well as stars: this is the in-

terstellar medium (ISM). To set the stage, paraphrase

from Elmgreen, who’s talking specifically about our

galaxy1: “the ISM is like the ocean of a galaxy, a fluid

confined by gravity to a thin layer, and serving as a

reservoir for all of the material in stars and planets that

will ever form, evolve, and disperse.” The physics of

this ISM, and its connection to stellar birth and stel-

lar death, will be one of our main applications in this

course.

2.1 The diffuse ISM in our galaxy

What I call the diffuse ISM is the ISM that is truly “in-

terstellar” – sitting in the potential well of the overall

galactic disk, and not immediately involved with stars

or star formation regions.

2.1.1 How we oberve the ISM

Our understanding of the physical state of the ISM

has been driven by the data: recent work in radio as-

tronomy and high-energy astronomy has dramatically

changed the field. What are our current ways of look-

ing at the ISM?

• Optical: Gas with temperatures in the range roughly

103 to 104 K emits both continuum and spectral line

optical radiation, and cooler gas can be detected by the

absorption lines it produces when there is a continuum

optical source behind. We see interstellar absorption

lines, stellar reddening, diffuse Hα and other emis-

sion lines, and dark dust clouds. In addition “stellar

ISM” regions such as HII regions, supernova remnants

(SNR), and planetary nebulae emit optically. Galactic

dust tends to prevent us seeing through the plane of the

disk beyond a kpc or so, aside from special lines of

sight.

• Radio: the major discovery here was the HI 21 cm

line, which we see in absorption and emission. This

tracks atomic hydrogen, which is (of necessity) fairly

cool (T < 8000 K). In addition, the diffuse ISM is a

source of synchrotron radiation, which we see in the

radio. This latter comes from relativistic electrons (the

1in Burton, Elmegreen, & Genzel, eds., The Galactic Interstel-

lar Medium, SAAS-FEE Advanced Course 21, 1991.

cosmic ray population) interacting with the galactic

magnetic field.

• Infrared: another strong radiation source – one of

the strongest cooling mechanisms – is IR radiation

from dust grains. They absorb starlight and reradi-

ate it at temperatures ∼ 10 − 100 K. Dust exists in

many places throughout the ISM, at several tempera-

tures (“near IR”, “far IR”, etc.)

• Millimeter: most of the common molecules have

rotational transitions in the mm region (with the no-

table exception of H2); mm-wave astronomy is now a

powerful tool for studying star formation regions and

molecular clouds.

• Ultraviolet: this again typically samples only the lo-

cal region, <∼1/2 kpc, due to obscuration. At this band

we see hot gas, 105 − 106 K, from the so-called “local

bubble”; in absorption, there are important transitions

of atomic and molecular hydrogen. With the advent of

UIT, the UV is also becoming a nice tool for studying

the ISM in external galaxies.

• X- and γ-rays: the local bubble also emits soft X-

rays. In addition, the galactic plane is a source of

harder X-rays and γ-rays; some of these come from

hot gas (such as in SNR), and the hardest component

comes from nuclear reactions between the cosmic rays

and the ISM.

• Plasma propagation: radio signals are affected by

propagation through an ionized plasma. In addition,

the ionized plasma can emit thermal bremsstrahlung.

We can use the following three means to measure elec-

tron densities, path lengths and magnetic field:

dispersion measure : DM ∝
∫

nedl

emission measure : EM ∝
∫

n2
edl

rotation measure : RM ∝
∫

neB · dl

(2.1)

The first refers to plasma dispersion, the fact that

the phase speed of an EM wave depends on its fre-

quency. The second measures the emissivity due to

bremsstrahlung radiation. The third refers to Faraday

rotation, the rotation of the plane of polarization due to

passage through an ionized, magnetized plasma.

2.1.2 A multi-phase equilibrium?

From such observations, we find that the diffuse ISM

is very complex. It comes in several phases, with com-



Physics 426 Notes Spring 2016 9

plex spatial structure. Different authors classify the

phases differently, and papers on this topic can contain

a flurry of acronyms (CNM, WNM, WIM, MOWIM,

RWIM, HIM, etc, etc, etc). I summarize as follows.

• Neutral gas refers to atomic hydrogen, HI. (Molecu-

lar H2 and other species are found in self-gravitating

clouds, thus are discussed in the next section; they

are not really part of the diffuse ISM). We now know

that the spatial structure of neutral HI is quite compli-

cated. First, there is “cold” HI (seen in absorption) and

“warm” HI, still neutral, seen in emission. Heiles esti-

mates the warm HI has T >∼ 1000 K, n ∼ 0.3 cm−3

The cold phase comes in sheets, filaments, and bub-

bles. Early observations – which had only spectral

resolution (and so picked up gas at different veloc-

ities), not spatial, talked about “interstellar clouds”.

This terminology is still around, but our cartoon is

no longer a raisins-in-a-pudding picture. Typical tem-

peratures are ∼ 10 − 75 K and typical densities are

∼ 20 − 2500 cm−3. There seems to be a wide range

of “cloud” sizes (i.e., path lengths through clumps or

sheets), up to big “clouds” >∼ 100 M⊙.

• Warm ionized gas refers to partly to mostly ionized

hydrogen. This used to be the “intercloud medium”;

then for awhile it was thought to be located on in-

terfaces between the cold HI clouds and the really

hot, coronal gas. Now, observations of external galax-

ies show that there is also a diffuse, extended warm

component, occupying filaments, clouds, bubbles and

chimneys. We see it mainly in diffuse Hα and other

optical lines; earlier work also found it locally in ab-

sorption lines.

Heiles argues that these are two separate types of

warm, ionized gas. One is the diffuse component,

throughout the galactic plane, maintained by photoion-

ization by starlight. Heiles estimates T ∼ 8000 K

and n <∼ 0.1 cm−3 for this gas (sometimes called the

Reynolds layer, after the person who first studied it in

depth). The second type is, indeed, the warm interfaces

between cold and hot gas. Heiles gives T ∼ 8000 K

and n ∼ 0.1− 0.4 cm−3.

• Hot “coronal” gas refers to the phase at T ∼ 105 −
106K, n ∼ 10−3 − 10−2cm−3. We detect this gas by

its X-ray emission, and also some UV lines. It is as-

sociated with, but not confined to, the interiors of su-

pernova remnants and “superbubbles” (large, multi-SN

complexes).

If we look at all phases, we see that each has the prod-

uct nT on the order of a few thousand (cm−3K). Thus,

within the accuracy of the diverse data, each has the

same typical pressure: this product converts to an en-

ergy density ∼ 1 eV/cm−3. We are seeing three phases

in approximate pressure balance with each other.

2.1.3 Other components of the ISM

There are three other significant components of the dif-

fuse ISM.

• Dust grains tie up about 1% of the mass of the

ISM, including most of the heavy elements. They are

often found with, or comprised of, complex organic

molecules. Polycyclic aromatic hydrocarbons (PAH’s,

the stuff of soot) are thought to be one major group.

Dust absorbs and scatters optical starlight very effec-

tively (this is why we can’t see vary far optically) and

reradiates it in the infrared, providing a major part of

the bolometric luminosity of the galaxy.

• Cosmic rays are relativistic particles, electrons and

ions, tied to the galaxy by its magnetic field. We de-

tect them directly at the earth though their distribution

is modified by passage through the solar wind and the

earth’s atmosphere. Their detected energies range from

∼ 1010 eV to ∼ 1021 eV. We also detect them in-

directly by their diffuse synchrotron emission (in the

galactic magnetic field) and by their high-energy pho-

ton emission (arising from nuclear reactions with the

thermal ISM). Their energy density locally is compa-

rable to that of the ISM gas, ∼ 1 eV/cm−3, and may

increase by a factor of a few going inwards towards

the center of the galaxy.

• the Magnetic field of the galaxy is detected through

Faraday rotation, synchrotron emission, optical po-

larization of starlight (due to alignment of IS grains

across B) and Zeeman splitting. It is fairly ordered,

with field lines tending to lie in the galactic plane, and

somewhat along the spiral arms. Typical field strength

is usually quoted as ∼ 3µG, with strong spatial vari-

ation, and higher fields locally in some regions. Its

energy density locally is also – you guessed it – >∼
1 eV/cm−3. As with cosmic rays, there is some sug-

gestion that the energy density in the field rises going

towards the galactic center.

2.2 “Star stuff” in our galaxy

In addition to the diffuse medium, many well-known

examples of so-called interstellar matter come from

ISM closely related to stars. In particular, any of the
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prettiest pictures come from nebulae associated with

young stars or old, dying stars. They include:

• HII regions are regions of ionized hydrogen sur-

rounding, and ionized by, hot young stars. They are

strong optical and radio sources.

• Planetary nebulae are the outer layers of older stars,

ejected by instabilities in the star’s structure.

• Stellar winds are produced by nearly all stars at

some level; hot, young stars have by far the strongest

winds. While not as spectacular as the first two, winds

are strong sources of mass and energy supply for the

ISM.

• Stellar jets are produced both by young stars, in

the formation process, and by compact stellar rem-

nants (e.g., neutron stars and their surrounding accre-

tion disks). They are striking radio and optical sources

when we can catch them; a few have apparent superlu-

minal expansion velocities.

• Supernovae remnants result when massive stars

eject something like half their mass, or more, in a vi-

olent explosion. We see SNR as strong radio, optical

and X-ray sources; in addition they are thought to be

strong sources of cosmic rays. They are also important

contributors to the energy and mass budget of the ISM.

These nebulae all share the property that they are over-

pressured relative to the diffuse ISM: they arise from

and are tied to stars. In addition, molecular gas is found

in overpressured, self gravitating clumps called

• Molecular Clouds. These are detected in “trace”

heavy-element molecules such as CO, which have

strong millimeter line transitions; we infer that H2 is

also present, in larger quantites. These clouds can

be very cold, T ∼ 30 − 100K, and very big, up to

∼ 105 − 106M⊙. They have line widths much greater

than the Doppler width one would expect from their

temperatures: thus they are either collapsing (under

their own self-gravity) or supported by turbulent, dis-

ordered internal motions. They are the stellar nurseries

of the galaxy, the sites of ongoing star formation.

2.3 Galactic ecology

Taking the galaxy as a whole, we must keep in mind

that the ISM is not static. It is continually being con-

sumed in new star formation (at a rate ∼ 3− 10M⊙/yr

over the galaxy) and continually being replenished by

stellar ejecta (everything from winds to supernovae).

It loses energy by radiation, over all wavelengths, and

gains energy as it is replenished by the stellar ejecta.

Thus, we can think of stars as simply long-lived phases

of the ISM; they are formed from it and they return to

it.

However, there is a trend: not all stellar material is

returned to the ISM. Low-mass stars become white

dwarfs, and quietly cool forever; high-mass stars recy-

cle much of their mass, but most are believed to leave

compact cores, neutron stars or black holes. Thus, the

overall trend of the system is towards cold, dense ex-

stars. This will take awhile, however; at present we

find quite a mixture of stellar and diffuse matter in the

galaxy.

2.4 The ISM in Ellipticals

Our understanding of ellipticals (the stars as well as the

ISM) has changed dramatically over the past couple of

decades. Originally it was thought that these galaxies

have no ISM. The older stellar population characteris-

tic of E’s, and the lack of strong star formation, also

seemed to argue against any interstellar matter. Then

people started looking...and it now appears that these

galaxies also have a complex, multi-phase ISM, with

total mass comparable to that in spirals. Unlike spirals,

however, the ISM in E’s tends to be hotter, that is with

smaller amounts in cool, neutral or “warm” phases, and

most of the gas being in the hot phase. This is still a

new and evolving field, being limited both by detector

sensitivity and by amount of effort (not as many peo-

ple look at these faint, distant things). In these notes I

summarize the current state of things.

2.4.1 Everything that isn’t the hot phase

Some – not all – E’s have now been shown to have

neutral hydrogen, molecular gas, dust grains, and a

“warm” ISM (the latter detected in optical emission

lines, placing it at ∼ 104K). Some have been shown

to have onging star formation in their cores. Because

a smaller fraction of the total ISM is “cool”, its sig-

nal is faint; a non-detection does not necessarily mean

there is no cool gas in a particular galaxy. On the

other hand, there seems to be an ongoing argument

as to whether galaxies detected strongly in, say, HI or

CO are “typical” (“real ellipticals don’t eat quiche,” to

quote Rupen2). Some authors argue that only unusual,

or disturbed, E’s contain detectable amounts of cool

gas...thereby defining a “pure E” as one without such

2M. Rupen, private communication, a few years back.
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gas. Given sensitivity limitations, I tend to think this

view may eventually be proved wrong. But I agree that

we do not, yet, understand the multi-phase cool gas in

the ISM of an elliptical.

2.4.2 The hot phase – the x-ray loud gas

Our understanding of the ISM in E’s started to change

in 1985, when the ⁀Einstein X-ray observatory discov-

ered that normal E’s are strong X-ray sources. (This

has since been explored in detail by ROSAT, and now

CHANDRA is adding to the picture). “Hot” means

at temperatures to emit X-ray bremsstrahlung: T ∼
107K. (We can estimate the temperature roughly from

the fact that the gas is an X-ray source, and more

specifically from X-ray emission lines). The spatial

distribution of the gas is consistent with it sitting in hy-

drostatic equilibrium in the potential well of the galaxy.

The amounts are large: Sarazin gives 109 − 1011M⊙

in gas, or comparing to the optical (blue) light of the

galaxy, Mgas/M⊙ ≃ 0.2(LB/Lsun). This is most of

the ISM; the fractions estimated in all of the cool com-

ponents are much smaller.

Why is so much of the ISM hot in an elliptical? Think

about the ecology of this ISM. As in a spiral, the

gas is ejected from stars, by the usual mass-loss pro-

cesses (stellar winds and SNe). Unlike a spiral, how-

ever, the stars have quite high random motions (200-

300 km/s is typical for gravitational support). It fol-

lows that collisions between the ejected gas, and ei-

ther gas ejected by nearby stars or the local ambient

ISM will thermalize the kinetic energy of the injected

gas. (This is a direct application of shock physics —

which we’ll see later in the course). This means the

gas is effectively injected with at least T ∼ mσ2/k ∼
7 × 107K(σ/300 km s−1)2 (any larger injection ve-

locities, due to winds or SN flows, will only raise this

number). We can also note that the radiative cooling

from this hot gas will be less effective than from the

cooler, denser gas of a spiral galaxy. The details of

why this is so must wait until later in the course; it

has to do with lower density (the same amount of gas

spread over a larger volume) and strongly ionized gas

at these hot temperatures (so emission lines, which are

strong coolants, aren’t as important).
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3 Some Radiation Basics

In this chapter I’ll store some basic tools we need for

working with radiation astrophysically. This mate-

rial comes directly from Rybicki & Lightman (“RL”),

where you can find a more complete discussion of it

all.

Our apporoach will be ray optics. You remember that

radiation can be approached as EM waves, as discrete

photons, or in the ’ray optics’ limit – we’re thinking

in terms of ray optics here. Some of this material will

look pretty dry to you ... as you go along, look for these

important quantities, which will be useful tools for us

later.

Intensity, Iν (equation 3.1)

Flux, Fν (equation 3.2)

Energy density, uν (equation 3.4)

Intensity in thermal equilibrium (TE), Bν

(equation 3.17)

Emission coefficient (per solid angle), jν
(equation 3.23)

Emissivity, ǫν → 4πjν ( equation 3.24)

Absorption coefficient, κν (per solid angle;

equation 3.26)

Source function, Sν = jν/κν (equation

3.29)

Opacity, τν ( equation 3.27)

OK, here goes.

3.1 Radiation: some important definitions

We begin with some important definitions.

• Intensity. Consider a little (differential) area dA =
dA n̂, with a radiation beam passing through it. At a

particular frequency ν, the energy passing through dA
in a particular direction (θ, φ) (measured relative to n̂),

per frequency range dν, per time dt, and per solid angle

dΩ, is given by

dE = Iν dA dt dν dΩ. (3.1)

This relation implicitly defines our basic quantity, the

intensity: Iν
1 Most of our other quantities are defined

1NOTATION ALERT: Iν is traditional notation in this field,

and means “I is a function of ν”. So, I(ν) ↔ Iν , and ditto for

jν , κν , etc.

in terms of Iν . Intensity is also called specific intensity,

brightness or surface brightness. In cgs, its units look

like erg cm−2 Hz−1 s−1 str−1.

• Flux is the net energy passing through dA, in all di-

rections:

Fν =

∫

Iν cos θ d(cos θ) dφ (3.2)

(with units erg cm−2 s−1 Hz−1 or W m−2 Hz−1).

• Heads up here: Flux and intensity are

similar but not the same; you’ll need to be

able to work with both. There is some de-

tailed discussion in Appendix I to this chap-

ter. Basically, intensity is what is shown in

an image of a source and flux is what you

get if you integrate everything in the image.

• One can also define a mean intensity, averaged over

all solid angles:

Jν =
1

4π

∫

Iν d(cos θ) dφ (3.3)

• The energy density is clearly related to the intensity

by a factor of lightspeed. The most useful definition is

in terms of the angular mean.

uν =
4π

c
Jν =

1

c

∫

Iν d(cos θ) dφ (3.4)

The units are erg cm−3 Hz−1 (of course).

• Frequency integrated. You should also note that

each of the quantities above can be integrated over fre-

quency:

F =

∫

Fνdν ; I =

∫

Iνdν ; u =

∫

uνdν

(3.5)

and so on.

3.2 Thermal equilibrium: an ideal gas

You’ve probably seen this elsewhere; I’ll just review

the basics here. Consider a small system – say, one

atom in a gas – which is in thermal contact with a large

system. That means that energy exchange is allowed,

most likely through collisions with the rest of the gas.

Let the big system – the so-called “reservoir”– have

a temperature T . The fundamental result of classical
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thermodynamics is that the probability of finding the

small (test) system in a state of energy E is

P(E) ∝ e−E/kBT (3.6)

This is the Boltzmann factor; the proportionality con-

stant is used to normalize the probability, in a specific

system (as, below).

Now, let’s apply this to an ideal, monatomic gas. Let

the test system be a single atom in the gas, and let the

rest of the gas be the reservoir, at T . Each atom has

a mass, m, and a random velocity, v; the energy as-

sociated with this velocity is E(v) = 1
2mv2. (This

could of course describe a plasma as well as a neutral,

atomic gas). The probability that a particle has energy

E is then

P(v) ∝ e−mv2/2kBT (3.7)

We want to use this to derive the distribution of parti-

cle velocities. In addition to the Boltzmann factor, we

need to know the number of ways in which a particle

of velocity v can have E(v). If the gas is isotropic

– if there are no restrictions on the possible orien-

tation of the velocity vector – then the factor which

weights the Boltzmann factor is just the number of pos-

sible directions the velocity vector can point. That is,

P(v) ∝ 4πv2e−mv2/2kBT . Now,if we normalize the

answer to the total number density, so that

n =

∫

v

P(v)d3v =

∫ ∞

0
f(v)dv (3.8)

defines the distribution function, f(v), we end up with

f(v) = 4πn

(

m

2πkBT

)3/2

v2e−mv2/2kBT (3.9)

which is (one way to write) the Maxwell-Boltzmann

distribution of particle velocities.

Taking means (or moments) of this distribution, we

find the mean particle velocity,

〈v〉 =
∫ ∞

0
vf(v)dv =

(

8kBT

πm

)1/2

(3.10)

and

〈E〉 =
∫ ∞

0

1

2
mv2f(v)dv =

3

2
kBT (3.11)

We can extend this type of analysis to find the pressure

of the gas. For a simple, MB distribution, this recovers

the usual ideal gas law:

p = nkBT (3.12)

This analysis can also be used to get the pressure of a

relativistic ideal gas, or of a photon gas. I’ve put the

details in Appendix II to this chapter.

3.3 Thermal equilibrium: radiation

Here, we consider a photon gas which is in thermal

contact with something at temperature T . That “some-

thing” could be the walls of a closed box (the prover-

bial black body), or a dense gas cloud (which could be

a dark interstellar cloud, or a star). As with a parti-

cle gas, thermal contact means the photons exchange

energy with the “something” through collisions; here,

this could mean particle-photon scattering, such as

Thompson scattering of photons on electrons; or it

could mean that the matter absorbs and re-emits pho-

tons. Now, in particle-particle collisions the particle

number is conserved (in standard, elastic collisions,

anyway). In photon-matter “collisions”, on the other

hand, the photon number is not conserved; it is quite

possible for an atom to absorb one photon and re-emit

several, still while conserving energy (for instance, the

atom could absorb to the n = 10 level and re-emit

10 → 8, 8 → 5 and 5 → 1 photons as it decayed).

Thus, in dealing with the particle gas, we normalized

the probability function by assuming a certain total

number density of particles. For radiation in TE, the

number density of photons is predicted if we know T .

The analog of the Boltzmann factor for a photon gas

is the Planck distribution: the probability of finding a

photon at energy E = hν is

P(E) ∝ 1

eE/kBT − 1
(3.13)

which, of course, resembles the classical (non-

quantum mechanical) Boltzmann factor for energies

E >> kBT . We find the density of states allowed

at energy E just as we did for particles, by looking

at the number of ways photons of wavevector k =
p/h̄ = E/h̄c = 2πν/c = 2π/λ can be put into a vol-

ume. But, recalling standing waves, we remember that

a one-dimensional box of length ℓ can contain standing

waves of wavenumber k = 2πq/ℓ if q is any integer.

So, the number of photon states in three dimensions in

(k,k+ dk) is

d3q =
ℓ3

8π3
4πk2dk (3.14)

From this, we find the density of states per volume by

dividing by ℓ3 and adding the usual factor 2 for the two
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spin (polarization) states, and express things in terms

of ν rather than k:

density of states = 8π
ν2

c3
dν (3.15)

This is the factor which weights P(E) (from equation

3.6) to find the density of photons at energy E = hν.

(Note that this is 4π times larger than RL’s expression

for ρs; they are working in density of states per solid

angle.) However, it is common to multiply this density

by hν to find the energy density of radiation in TE at

T :

urad(ν, T )dν =
8πν2

c3
hν

ehν/kBT − 1
dν (3.16)

(In dealing with black body radiation, watch out for

units; different authors do different things. urad in

equation (3.16) has units energy/volume-Hz; some au-

thors divide by 4π to get energy/steradian-volume-Hz.)

Another way to express this result is in terms of the en-

ergy in radiation crossing a unit area per Hz per time

(and usually per steradian). As we saw above, this

quantity is the intensity, and is related to the energy

density in radiation by I(ν) = curad(ν)/4π. For (and

only for) the specific case of Black Body radiation, the

intensity is denoted B(ν, T ) or Bν(T ), rather than Iν .

For black body radiation, we therefore have

B(ν, T ) = Bν(T ) =
2hν3

c2
1

ehν/kBT − 1
(3.17)

with units, energy/area-time-steradian-Hz. If you are

working with wavelengths rather than frequencies, the

analogous version is

B(λ, T ) = Bλ(T ) =
2hc2

λ5

1

ehc/λkBT − 1

and it will give you an intensity in units of energy/area-

time-steradian-wavelength.

Equations (3.16) and (3.17) are the basic result describ-

ing radiation in TE. However, several extensions and

approximations are standard. First, we can integrate

them over frequency to find the total energy (per vol-

ume, or per area per time):

urad(T ) =

∫ ∞

0
urad(ν, T )dν

=
4π

c

∫

Bν(T )dν = aT 4
(3.18)

where the constant a = 8π5k4B/15c
3h3 = 7.56 ×

10−15 erg/cm3deg4. In addition, we have

B(T ) =

∫ ∞

0
Bν(T )dν =

ac

4π
T 4 (3.19)

and, finally, the emergent flux obeys F = πB(T ), so

that

F (T ) =

∫

Fνdν = π

∫

Bνdν = σSBT
4 (3.20)

where σSB = ac/4 = 5.67 × 10−5erg/cm2deg4s−1.

Finally, a couple of limits of Bν(T ) are worth noting.

For high frequencies with hν ≫ kBT , we have the

Wien limit:

Bν(T ) ≃
2hν3

c2
e−hν/kBT (3.21)

which recovers the exponential form. For low frequen-

cies hν ≪ kBT , we have the Rayleigh-Jeans limit:

Bν(T ) ≃
2ν2

c2
kBT =

2

λ2
kBT (3.22)

which is very frequently used as an approximation to

the black body function in the radio part of the spec-

trum.

3.4 Radiative transfer

Start with a beam of radiation, described as usual by

intensity Iν . Consider such a beam, from some back-

ground source, hitting a slab of material. It will be

absorbed by the material as it passes, and the material

may well also emit radiation into the beam.

x=0 x=L

I o

I

Figure 3.1 Geometry of radiation transfer through a slab

of material, possibly with a background source Io.

3.4.1 More definitions

We need more definitions now. In addition to the in-

tensity, Iν , we need to think about the plasma through

which the beam passes.
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• The plasma has an emission coefficient jν , defined

in terms of the contribution to a radiation beam (Iν as

it propagates a distance dx:

dIν = jνdx (3.23)

and the units of jν are erg cm−3 s−1 Hz−1 str−1.

This is the fundamental radiated power, at frequency ν,

from the matter; its details depend on the local physics.

Note also that the mean intenstiy Jν that we saw earlier

is not the same as the emission coefficient jν .

• For some problems it’s more useful to work with the

volume emissivity,

ǫν = 4πjν (3.24)

(This assumes isotropic emission). We’ll run into this

later.

• We also need the absorption coefficient κν ,2 which

describes the fractional absorption or scattering of a

radiation beam, per unit length dx:

dIν = −κνIνdx (3.25)

This has units cm−1. It can also be written microscop-

ically (to reveal the physics), in terms of the number

density of absorbers n and their absorption cross sec-

tion σν : κν = nσν . Question for the reader: How,

then, is the absorption coefficient related to the mean

free path of a photon?

3.4.2 Transfer analysis

With these definitions, the basic transfer equation can

be written down,

dIν
dx

= jν − κνIν (3.26)

Before solving this, we introduce an important and

useful quantity, the optical depth:

τν =

∫ ℓ

o
κνdx (3.27)

where the integral is taken from back to front through

the slab of matter. From the discussion of κν , above,

we see that τν = ℓ/λ measures the number of absorp-

tion mean free paths through the source. We would

expect, then, that a system with τν ≪ 1 would have

2NOTATION ALERT: about half the literature uses αν for the

absorption coefficient; the other half uses κν , as I do here.

little effect on any source behind it (that is, it would be

nearly transparent), and a system with τν ≫ 1 would

be nearly opaque, absorbing most of the light. We can

rewrite (3.26) with τ as the independent variable:

dIν
dτν

= Sν − Iν (3.28)

where we have defined the source function,

Sν =
jν
κν

(3.29)

Now, solve (3.28). If we put a source of intensity Io
behind the slab, the formal solution (remember inte-

grating factors?) is

Iν(τν) = Ioe
−τν +

∫ τν

0
Sν(τ

′)e−(τν−τ ′)dτ ′ (3.30)

Look at this: the first term is simply the attenuation of

the background source by the slab. The variable τ ′ is a

distance through the slab, but it’s measured in dimen-

sionless optical depth units. The second term describes

the emission of radiation from within the slab, at po-

sition τ ′, and the attenuation of this radiation by the

smaller optical depth, τν − τ ′, between the emission

point and the front of the slab.

3.4.3 Optically thick and thin limits

In the important case of a homogeneous source, with

Io = 0, (3.30) simplifies to

Iν(τν) = Sν

(

1− e−τν
)

(3.31)

describing emission only from the cloud/slab itself.

This has two important limits:

• Optically thin, τ ≪ 1: we see

Iν ≃ Sντν = jνℓ (3.32)

This limit just integrates the emissivity through the

cloud, without modifying it by internal absorption.

• Optically thick, τ ≫ 1:

Iν ≃ Sν (3.33)

In this limit, the emergent intensity is just equal to

the source function. NOTE this may be quite differ-

ent from the internal emissivity; transfer through the

source has modified the spectrum.

From the optically thick limit we can make a couple of

important connections.
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• Consider the case when radiation is in TE with the

local plasma. This means Iν → Bν (the Planck func-

tion, (3.17 or its limits); and also τν ≫ 1 (because

you need lots of collisions, it i.e. optically thick, to

gain TE). Thus, from (3.31), we expect Sν ≃ Bν (the

source function approaches the Planck function), and

from this we derive an important relation:

jν ≃ Bνκν (3.34)

This is called Kirchoff’s law. It says: if we can assume

thermal equilibrium (as we will do in chapters 3 and

4), the emissivity and absorption are related through

the Planck function.

• Astronomers working at radio frequencies com-

monly quote the intensity, Iν , in terms of the Bright-

ness Temperature, TB , defined by

Iν = 2
ν2

c2
kBTB (3.35)

But from comparing (3.22) and (3.35), we find that

TB → T as the source becomes optically thick: the

brightness temperature approaches the physical tem-

perature. (Question for you: if the source is optically

thin, how are T and TB related? How does your an-

swer depend on the conditions in the source?)

3.5 Appendix I: some examples with intensity

Working with intensity, flux, etc, can be confusing (at

least to your author!); so I’m putting some specific ex-

amples here – mostly directly from RL.

3.5.1 Isotropic radiation field

If the radiation field is isotropic life is simple: Jν = Iν
(is that obvious?) and Fν = 0 (there’s no net energy

flow; there’s as much going “out” as going “in”). Also,

by inspection of (3.4), we see that uν = 4πIν/c.

3.5.2 Intensity is constant along a ray

We should note one important fact: in the absence

of absorption or emission, the intensity Iν is constant

along any ray. RL present one (rather formal) deriva-

tion of this, illustrated in Fig 3.2, which I summarize

here. The key points are that intensity is defined per

solid angle, and that energy is conserved. Think about

the set of rays passing through both dA1 and dA2. The

energy in that set of rays is

dE = I1 dA1 dt dΩ1 dν = I2 dA2 dt dΩ2 dν (3.36)

But, thanks to the inverse square law, dΩ1 = dA2/R
2,

and dΩ2 = dA1/R
2. Thus, because the same dE

passes through both little areas, we must have I1 = I2.

Q.E.D.

2

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

R

dA
1 dA

2

dΩ 1 dΩ

Figure 3.2 One way to establish the constancy of I along a

ray. Two little areas, dA1 and dA2, are separated by R. dA1

subtends a solid angle dΩ2, as seen by 2; and vice versa for

dA2 as seen by 1. Following RL Fig 1.5.

Wait .. does this seem unphysical? What about the

inverse-square law that we know applies to radiated

power? The key is that intensity is not the same as flux

– and flux satisfies the 1/R2 law. This is contained in

(3.36), because the solid angle dΩ = dA/R2; so that

the energy per area passing through any dA falls off

∝ 1/R2.

Or, if this argument isn’t very transparent, you might

prefer the next example.

3.5.3 Flux from a sphere

Here’s a nice example, to verify that radiative flux does

indeed obey the inverse square law. Put yourself at dis-

tance D from a sphere of uniform brightness B; that

means all rays leaving the surface have the same inten-

sity, I = Io, independent of direction. (The geometry

is shown in Figure 3.3).

(I = B)

R

D
(obs)

θ

θ
c

Figure 3.3 The geometry used for calculating the flux

from a uniformly bright sphere. The observer is at a dis-

tance D away; the sphere radius is R; the radius subtends

an angle θc as seen by the observer; the intensity is assumed

uniform, I = Io, along every ray that leaves the surface.

Following RL Fig 1.6.

The intensity you see, then, is I = Io from rays which

intersect the sphere; and I = 0 from other angles. The



Physics 426 Notes Spring 2016 17

flux you observe is thus

F =

∫ 2π

0
dφ

∫ θc

0
I(θ, φ) cos θd cos θ (3.37)

But this is easy to integrate:3

F = πIo
(

1− cos2 θc
)

= πIo sin
2 θc (3.38)

This nicely recovers the inverse square law as long as

the distances involved are not cosmological:

F = πIo
R2

D2
(3.39)

for a uniform source of circular cross-section. Also,

note that at R = D (when you’re right at the surface of

the star), the flux is

F (D = R) = πIo (3.40)

We can also invert this solution. Say we observe flux

F at earth.4 The intensity at the source is, clearly,

Iν =
Fν

π

D2

R2
(3.41)

But also, remember θc = sin−1(R/D) ≃ R/D (this

last for a distance source); so the solid angle subtended

by a distant source is Ωc = πθ2c . Thus, we can go from

the flux (at earth) to the intensity (at the source) by

Iν =
Fν

Ωc
(3.42)

3.6 Appendix II: more on pressure

3.6.1 Ideal gases: the pressure integral

We can also use the MB distribution to find the pres-

sure of an ideal gas. (We will derive this is a fairly

formal way, to use later on). (For this subsection, we

use p for the single-particle momentum, and P for the

pressure). The pressure is, of course, the force exerted

per unit area from collisions of the gas particles. Con-

sider some “test surface” within the gas, and we can

find this force. One particle, with momentum p, ap-

proaches this surface at angle θ. When it recoils from

3Just to be more difficult ... some authors (e.g. Mihalas “absorb

the π (in 3.39) into the definition of flux”, and call it “astrophysical

flux”. I think the moral is, be careful when you go from author to

author – JAE.
4NOTATION ALERT: the flux at earth is often called S or Sν ,

at least in radio astronomy.

the surface, it transfers momentum ∆p = 2p cos θ to

the surface. Now, the rate of particles approaching at

this p and this θ is

j(p, θ) = v(p) cos θ
1

2
f(p) sin θ

(that is, the normal velocity times the number of parti-

cles “at θ”; and noting that only half of the particles “at

θ” are approaching the surface). The pressure, then, is

this rate times the ∆p per collision, integrated over all

angles and all velocities:

P =

∫ π/2

0
dθ

∫ ∞

0
dp2p cos θj(p, θ) (3.43)

If we now assume the gas is isotropic, we can do the θ
integral right away, and we end up with

P =
1

3

∫ ∞

0
pv(p)f(p)dp (3.44)

If we put in the MB distribution, from (3.9), and as-

sume a subrelativistic gas, so that v(p) = p/2m, we

find P ∝
∫∞
0 p2e−p2/2mkBTdp, and end up with

P = nkBT (3.45)

as we expect.

Another interesting limit is that of a relativistic ideal

gas, in which the single particle energy E ≫ mc2. In

this limit, we have p ≃ E/c and v ≃ c, so that

P ≃ 1

3

∫

Ef(E)dE (3.46)

(where we have used f(E)dE = f(p)dp). But the

integral is just the energy density of the gas, u; so we

have

P =
1

3
u (3.47)

which is a general result for an internally relativistic

gas (whether of particles or of photons).

3.6.2 Radiation pressure

Although not limited to radiation in TE, this is as good

a place as any to put the basic facts about radiation

pressure. For a general radiation field, we can use the

general equation (3.43), with the photon flux written as

j(ν, θ) =
c

2hν
cos θ urad(ν, θ) sin θ (3.48)
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To evaulate Prad, we would have to know the angular

distribution of urad (for instance, the basic radiation-

pressure applications, such as an astronaut with a flash-

light, or a spaceship with a light sail near the sun, as-

sume a highly directed urad).

One simple limit is the case of an isotropic radiation

field (which is a good description of a radiation field

in which the photons scatter, such as the interior of a

star – that is, a photon field which is probably also in

TE). Here, we can start with equation (3.44), and we

can certainly use the relativistic limit; thus, we get

Prad =
1

3
urad (3.49)

in general, for an isotropic radiation field.

The other simple limit is the case of a unidirectional

radiation field – for instance radiation from the sun

as seen at the distance of the earth. We could more

properly talk about radiation force here: dimension-

ally that’s the (radiation power)×(surface area of the

absorber)/c. One application of this is the luminos-

ity at which the radiation pressure (or force) from

some object of mass M balances its gravity. This is

the Eddington luminosity. If we’re talking about ion-

ized gas for which Thomson scattering (cross section

σT ) dominates, the Eddington luminosity is Ledd =
4πcGMmp/σT (which you remember from last term).

References

The discussion about ideal gas laws, pressure integrals,

etc, can be found in any basic statistical mechanics

book – two good ones are

• Reif, Statistical and Thermal Physics; Kittel, Ther-

mal Physics.

The material on radiation comes straight from one of

the fundamental references in the field,

• Rybicki & Lightman, Radiation Processes in Astro-

physics

but also

• Mihalas, Stellar Atmospheres, has a good discussion

of the intensity basics.

Key points

• Basic definitions, Iν ; Fν ; uν , and what they mean;

• Radiation in TE: Black body physics

• Radiative transfer: jν , κν , and τν : what they are,

what they mean.

• Radiative transfer: solutions to Iν(τν), optically

thick and thin limits.

• Brightness temperature and the approach to TE (as

τν gets big).
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4 Bremsstrahlung radiation

Bremsstrahlung arises when a free electron is accel-

erated in the field of an ion – hence the English name

“free-free,” representing the transition between two un-

bound electronic states. The German name “braking

radiation” refers to the acceleration of the electron.

4.1 Some basic tools

Before we start bremsstrahlung per se, we need to in-

troduce two important general tools used for general

analysis of astrophysical radiation.

4.1.1 Power; Larmor formula

You probably remember that if you shake an electron,

it will radiate E&M waves. We want to connect the to-

tal power in the E&M radiation to “how hard the elec-

tron was shaken”.

The formal result is that a charge e, which feels an ac-

celeration a(t), radiates a power (erg s−1) given by

cgs : P (t) =
2

3

e2

c3
|a(t)|2 (4.1)

Note this is cgs.1

To derive this, you need to work out the E and B

fields which are produced by the accelerated charge;

then fold them together into the Poynting flux, S =
cE×B/4π.2 That gives us the energy per unit area per

unit time carried away from the particle by the fields,

i.e. the radiated power. Griffiths has a good derivation

in chapter 11; Rybicki & Lightman have a more terse

derivation in chapter 3. You should note that this for-

mula holds for non-relativistic motion; we’ll extend it

to the relativistic case, later.

4.1.2 Spectrum: Fourier analysis

The other basic tool we need is the spectrum of the

radiation. When our electron is shaken, it emits a pulse

of radiation, which has a finite duration. This pulse

is a wave packet – a superposition of E&M waves of

various frequencies. The pulse width in time, ∆t, is

related to the range of frequencies in the packet, δν, by

1In SI, the formula is

SI : P (t) =
µo

6π

e2

c
|a(t)|2

2or, S = E×B/µo in SI.

the usual uncertainty principle: ∆t∆ν ∼ O(1) (as in

Figure 4.1). The amplitude of frequency component ν
gives what we’ll identify as the radiation spectrum.

E(t)

∆t

t

Figure 4.1 Remembering the wave content of a wave

packet. The time duration of this packet ∼ ∆t (note this

is estimated “by eye” here); it contains frequencies <∼1/∆t.

To get there formally, we use the Fourier transform

(“FT”). I take this from chapter 2 of Rybicki & Light-

man. Think about our pulse of radiation; let the electric

field in the pulse have some time behavior, E(t). We

can, of course, consider the Fourier transform of this,

and its inverse (I’ll drop vectors to simplify the nota-

tion):

Ê(ω) =
1

2π

∫ ∞

−∞
E(t)eiωtdt

⇔ E(t) =

∫ ∞

−∞
Ê(ω)e−iωtdω

(4.2)

Two FT facts will be useful. First, because E(t) is real,

we know that

Ê(−ω) = Ê∗(ω) ; |Ê(−ω)|2 = |Ê(ω)|2 (4.3)

(that is, the negative frequencies contain no new infor-

mation). Second, a general result from Fourier trans-

forms (Parseval’s theorem) tells us that
∫ ∞

−∞
E(t)2dt = 2π

∫ ∞

−∞
|Ê(ω)|2dω

= 4π

∫ ∞

0
|Ê(ω)|2dω

(4.4)

(I’ve used 4.3 in the last step).

Now: the total energy per unit area emitted in the radi-

ation pulse is

dW

dA
=

c

4π

∫ ∞

−∞
E(t)2dt (4.5)

(to see this, start with the Poynting flux, and remember

that E = B for an EM wave in cgs). Now by (4.4), we

can rewrite this as

dW

dA
= c

∫ ∞

0
|Ê(ω)|2dω (4.6)
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So: we’re just about there. What we do, essentially,

is think of the integral in (4.6) as an integral over

the frequency spectrum of the radiation pulse: that is,

c|Ê(ω)|2 measures the energy in the pulse “at ω”.3

Thus: looking back to (4.1), we can connect this for-

malism to the Larmor result. Compare (4.1) to (4.6):

they both described the total energy within the pulse.

So, think about the Fourier transform of some compo-

nent (x, y or z) of the acceleration:

ai(t) =

∫ ∞

−∞
âi(ω)e

−iωtdω (4.7)

We can thus identify

P (ω) =
8π

3

e2

c3
|â(ω)|2 (4.8)

with what we want, namely, the spectrum of the radi-

ation. The 4π difference between the frequency-space

definition here and the real-time definition (4.1) arises

in the Fourier transform (4.4).

4.2 Bremsstrahlung I: single particle

We can now apply this to radiation from an electron-

ion collision, using the usual geometry (which you re-

member from chapter 3 of our Phys 425 notes).

b

v

Figure 4.2 The usual geometry, as an electron is deflected

by an ion. The impact parameter is b; let the electron move

in the x direction to start, with velocity v.

The two components of acceleration are

ax =
e2vt

m(b2 + v2t2)3/2

az =
e2b

m(b2 + v2t2)3/2

(4.9)

where we have used the impact parameter, b, have set

the origin of time at the time of closest approach, and

3There is an important technical detail here. The expression

(energy/area) in (4.5) or (4.6) is not per unit time, rather it’s inte-

grated over the pulse. If we tried to do this argument “per dt” and

“per dω”, we’d violate the uncertainty relation between ω and t in

the wave packet. However, if the pulses repeat frequency, one can

formally take limits and get the same result ... cf. RL for details

here.

have assumed the particle suffers only a small deflec-

tion, so that the v does not change by much. The ra-

diated spectrum will depend on the FT of this accel-

eration. Without doing this out algebraically, we can

predict the answer, using what we know about Fourier

transforms. In particular, we note that

(i) The z-component of the acceleration will be the

dominant factor over the course of the encounter be-

cause it does not go to zero at closest approach.

(ii) Since a(t) is large only when the two particles are

close together – just as we argued in the Coulomb colli-

sion discussion – P (t) will be significant only for times
<∼ 2b/v.

(iii) Therefore, we expect the spectrum will be domi-

nated by the FT of az , and that the FT will have power

at frequencies ω <∼ v/2b.

Doing the actual work, Longair gives the result for both

parallel and perpendicular acceleration:

âx(ω) =
1

2π

∫ ∞

−∞

e2vt

me

eiωt

(b2 + v2t2)3/2
dt

=
1

2π

e2

mebv

2ωb

v
iK0

(

ωb

v

)
(4.10)

and

âz(ω) =
1

2π

∫ ∞

−∞

e2b

me

eiωt

(b2 + v2t2)3/2
dt

=
1

2π

e2

mebv

2ωb

v
K1

(

ωb

v

)
(4.11)

where Ko(ωb/v) and K1(ωb/v) are modified Bessel

functions. We can find analytic forms for K1 and Ko

in the limits of large and small arguments:

K0(x) → − lnx x ≪ 1

→
√

π

2x
e−x x ≫ 1

(4.12)

and

K1(x) →
1

x
x ≪ 1

→
√

π

2x
e−x x ≫ 1

(4.13)

From this, we can add both acceleration terms

(squared) to get the radiated spectrum:

P (ω) =
8πe2

3c3
[

|âx(ω)|2 + |âz(ω)|2
]

(4.14)
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Using the analytic expressions for the modified Bessel

functions, we find the limiting forms for the spectrum

radiated in a single-particle encounter:

P (ω) ≃ 8

3π

e6

m2
ec

3v2b2
ω ≪ v

2b

P (ω) ≃ 8

3π

e6

m2
ec

3v2b2
e−ωb/v ω ≫ v

2b

(4.15)

You should note that the exponential cutoff in the sec-

ond equation, here, means there is effectively no radi-

ation above ω ∼ v/b — which is consistent with what

we expect from the duration of the wave packet.

The low frequency limit of (4.15) is worth commenting

on. P (ω) → constant as ω → 0, and is well behaved.

However, the photon emissivity, P (ω)/h̄ω diverges as

1/ω as ω → 0. This is a well-known problem in both

classical and quantum electrodynamics, known as the

“infrared divergence.” This is essentially an artifact of

our derivations, rather than a problem with the physics

(for instance, see Jauch and Rohrlich, The Theory of

Photons and Electrons). Here, we will simply note that

the energy lost is finite, and that self-absorption in any

finite system (see below) will keep us from ever seeing

this divergence anyway. We will, therefore, carry on

happily.

4.3 Bremsstrahlung II: from a plasma

Now, we want to extend this to consider a particle in

a plasma, and to take all of its collisions into account.

We did this last term, when we derived Coulomb scat-

tering – we had to take all impact parameters into ac-

count. We’ll do essentially the same thing here.

First, consider the range of impact parameters that one

particle encounters. Since the number of ions that one

electron, at velocity v, sees per second at impact pa-

rameter b is 2πnivbdb, we can find the total radiated

spectrum from that electron,

P (ω, v) =

∫ bmax

bmin

P (ω, v, b)2πnivb db

=

∫ bmax

bmin

8

3π

e6

m2
eb

2v2c3
niv2πb db

=
16

3

e6ni

m2
evc

3
ln

(

bmax

bmin

)

(4.16)

Again, the range of impact parameters must be chosen

with some physics in mind. And again, luckily, our

choice only affects the answer logarithmically. Typical

choices are bmin ∼ e2/mev
2, and bmax ∼ v/ω or

∼ h̄/2mev.

Next, we use this to find the total energy loss rate for

one particle. We do this by integrating P (ω, v) over

all frequencies. Since P (ω, v) is only a weak function

of ω (it appears only in ln(bmax/bmin)), up to the fre-

quency cutoff ωmax ≃ mev
2/h̄ (which is the highest

photon frequency we can expect, from simple energy

conservation), we have

P (v) =

∫ ωmax

ωmin

P (ω, v)dω

=
16

3

e6

c3meh̄
ln

(

bmax

bmin

)

niv

(4.17)

This has the functional form P (E) ∝ E1/2.

Returning to the single particle spectrum (4.16), we

can now integrate over all particles in the plasma to get

the total emissivity from that plasma. We need to know

the distribution of electron speeds, and we will assume

a Maxwell-Boltzmann distribution. We also switch

from ω to ν = ω/2π, to connect with observations;

and we derive jff (ν), the emissivity per steradian, to

connect with the radiative transfer applications, above.

(That means simply a 4π factor, since the single parti-

cle emission is essentially isotropic). Thus,

jff (ν) =
1

4π

∫ ∞

0
P (ω, v)f(v)dv (4.18)

with f(v) assumed to be the Maxwellian of (3.9), nor-

malized to ne. This gives us

jff (ν) =
8

3

(

2π

3

)1/2 e6

m
3/2
e c3

× neni

(kBT )1/2
gff (ν, T )e

−hν/kBT

(4.19)

Numerically, with everything in cgs units, this is

jff (ν) =5.44 × 10−39gff (ν, T )
neni

T 1/2
e−hν/kBT

erg s−1cm−3Hz−1str−1 (4.20)

In this expression, we have implicitly defined the

Gaunt factor, gff (ν, T ). It arises from the velocity

dependence of ln(bmax/bmin), inside the integral in

(4.18): the essential part of the integral is
∫

1

v
f(v) ln

(

bmax(v)

bmin(v)

)

→ 〈1
v
〉〈ln

(

bmax(v)

bmin(v)

)

〉
(4.21)
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We see that the 〈1/v〉 becomes the (kBT )
−1/2 term;

the mean of the logarithmic factor becomes gff (ν, t),
the Gaunt factor. Note that both bmax and bmin might

be functions of ν and of v. As with Coulomb scatter-

ing, different expressions, corresponding to different

choices of bmax and/or bmin, are used in different sit-

uations. A couple of common cases are, first, in the

radio range, with hν ≪ kBT :

gff (ν, T ) ≃
√
3

π
ln

(

2

π

(kBT )
3/2

e2m
1/2
e ν

)

≃ 10

(

1.0 + 0.1 log
T 3/2

ν

) (4.22)

Second, in the X-ray range, with hν <∼kBT , people use

gff (ν, T ) ≃
√
3

π
ln

(

kBT

hν

)

(4.23)

Finally, the total emissivity of the plasma can be found,

by integrating jff (ν) over all frequencies and all solid

angles. This is

εff = 4π

∫ ∞

0
jff (ν)dν

=

(

2πkB
3me

)1/2 32πe6

3hmec3
neni〈gff 〉T 1/2

≃ 1.4 × 10−27neni〈gff 〉T 1/2 erg cm−3s−1

(4.24)

where 〈gff 〉 is the mean Gaunt factor, averaged over

frequency.

We are also interested in free-free absorption. This

is the inverse of the emission process; a free elec-

tron absorbs a photon (the ion must be there, as well,

to conserve momentum and energy at the same time).

For absorption by a Maxwellian plasma, for which we

have just derived the emissivity jff (ν), we can get the

absorption coefficient, κff (ν), immediately from Kir-

choff’s law (3.34):

κff (ν) =
4

3π

(

2π

3

)1/2 e6nenigff (ν, T )

m
3/2
e c(kBT )3/2ν2

≃ 0.018gff (ν, T )
neni

T 3/2ν2
cm−1

(4.25)

This expression is valid in the Rayleigh-Jeans limit

(3.22); and the second expression is all in cgs units).

You should note that this expression also contains the

Gaunt factor. The most common use of free-free ab-

sorption is in the radio range (given the 1/ν2 form),

and a commonly used form of the absorption, which

includes a particular expression for the Gaunt factor, is

κff (ν) ≃ 0.08235
neni

T 1.35ν2.1GHz

pc−1 (4.26)

Note the oddball units: ν is in GHz; κ is in inverse

pc(!); but ne, ni and T are still in cgs.4 Avrett, Fron-

tiers of Astrophysics, says this is good for 0.1 < ν <
50 GHz, and for 6000 < T < 18, 000 K (which de-

scribes HII regions and much of the warm, ionized

ISM, for instance).

-1 0 1 2
-3

-2.5

-2

-1.5

log frequency

Figure 4.3 Illustrating the full bremsstrahlung spectrum

we expect from a source which has a finite size, and thus

a finite optical depth. Note, the jagged appearance of the

high-frequency exponential is the fault of my simple plot-

ting program, not the physics.

Finally: let’s connect this to bremsstrahlung emission

from a finite object. Think, for instance, about a galac-

tic HII region (such as the Orion nebula). Typical tem-

peratures are T ≃ 104 K, and typical densities might

be n ∼ 100 cm−3; the size might be on the order of

a pc. We can estimate τff (ν) = κff (ν)ℓ, where ℓ is

again the line-of-sight thickness of the object, and we

find τff (ν) ≃ 1 for frequencies in the low radio range

(a fraction of a GHz, say). Below this frequency the

source will be optically thick, and the emergent inten-

sity will obey Iν = Bν(T ) ∝ ν2, from the Rayleigh-

Jeans limit of the Planck function. At higher frequen-

cies, the source is optically thin, and the emergent in-

tensity has the same frequency dependence as the fun-

damental emissivity: Iν ∝ jff (ν, T ). Thus, the inten-

sity will be approximately constant at higher frequen-

cies. At very high frequencies, hν ∼ kBT (that is,

tens of eV → 1016 Hz or so), the exponential cutoff

will appear. Figure 4.3 sketches this behavior.

4That’s astronomers for you ..
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Key points (for chapter 4)

• Total power (Larmor formula);

• Wave content ↔ radiation spectrum; “seat-of-the-

pants” FT analysis.

• Bremsstrahlung: basic physical picture, single parti-

cle

• Bremsstrahlung: from a plasma; intrinsic spectrum

and power

• Bremsstrahlung: emissivity, absorption coefficients,

total spectrum
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5 Thermal state of the ISM

What determines the energy balance of diffuse astro-

physical gases? In general, systems which have had

time to reach a thermal balance will have a tempera-

ture determined by the balance of heating and cooling

rates. For most phases of the ISM (although probably

not including the hot, coronal gas), the cooling is due

to radiation, from an optically thin gas. The specific

radiation mechanisms which cool a cloud or nebula

will depend on the composition, the internal excitation

states and the temperature of the cloud. This part of

the problem is fairly well understood by now, at least

for the low-density conditions which describe the ISM.

The heating mechanism must also be specified; in gen-

eral, the ISM can be heated by the local radiation field,

and by the local cosmic ray population. Since the rate

of energy transfer from either of these mechanisms can

depend on the local ionized fraction, we must also con-

sider ionization balance. In this chapter, we will first

look at some general features of cooling and heating in

this context. We will then look at two well-understood

examples, one being the thermal state of an HII region,

and the other being the multiphase ISM.

NOTE to the student: This chapter contains

quite a few details and a lot of unfriendly-

looking equations. That’s because we need

these details in order to understand the vari-

ous processes whose balance determines the

thermal state of the ISM. In addition to the

Key Points at the end of the chapter, I’m

adding “Look ahead” comments to each of

the major sections .

5.1 Heating and cooling: general considerations

The energetics of astrophysical fluids or plasmas can

be more complicated than lab fluids, because direct

heating and cooling can be important. By “direct” I

mean that a small volume element, deep inside a cloud,

can exchange energy directly with the outside world

via photons or other particles.

LOOKING AHEAD: The biggest result here

is the general cooling curve, Λ(T ), shown in

Figure 5.1, and described in the text. The

other important bit is the list of processes

which contribute to heating the ISM.

5.1.1 Cooling

For energy loss, the most important astrophysical case

is radiation. If the plasma or cloud is optically thin,

radiation generated inside the volume element escapes

the cloud without further interaction. The net energy

loss (per volume per time, frequency-integrated) is of-

ten called

Λ(n, T ) = n2L(T ) (5.1)

and has dimensions, erg cm−3 s−1. Note the sepa-

ration into n2 and a function L(T ) of T only. It re-

flects the fact that radiative cooling processes are all

two-body processes (electron-ion scattering, electron-

atom collisions, etc). The total cooling rate from a ther-

mal astrophysical plasma is due to the sum of all possi-

ble spectral lines emitted and also continuous emission

due to electron-ion collisions. You’ve already seen the

latter; it’s bremsstrahlung. The former can be quite

complicated – one has to know the excitation state of

each level of each atom (which depends on the tem-

perature of the gas and the microphysics of excitation

and de-exciation processes) – and must be calculated

numerically.

Figure 5.1 Cooling rates as a function of temperature, for

diffuse astrophysical plasma at a density of 1 cm−3. Differ-

ent curves indicate differing heavy metal abundances (rela-

tive to hydrogen) by number. Cooling rates for other densi-

ties can be obtained by scaling as n2. From Maio et al 2007,

MNRAS 379, 963; see also an older version in Spitzer Fig-

ure 6.2.
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Figure 5.1 shows the result, from a calculation (orig-

inally due to Raymond, Cox & Smith 1977), which

adds up all of the different cooling mechanisms, to get

what’s called the standard cooling curve. The main

coolants, in the various temperature regions, are:

• T < 104 K: collisional excitation of fine structure

levels of various heavy elements; lines mostly in the

IR.

• T ∼ 104 K: excitation of hydrogen lines; the

great abundance of hydrogen makes this the dominant

coolant in the temperature range where H is signifi-

cantly excited at or above the first excited state.

• T ∼ 104 − 107 K: excitation of optical/UV lines of

heavy elements, often forbidden lines.

• T >∼ 107 K: no species are left un-ionized, so

bremsstrahlung is the only coolant.

At temperatures T >∼ 109 K, other reactions – such as

pair production – become important; very few astro-

physical plasmas are this hot, and if they are, other

physics is probably important as well.

5.1.2 Heating

Direct heating of astrophysical plasmas isn’t so simple,

because it depends on the environment of the cloud,

not just its internal state (density and temperature). We

know, in general, the heating sources for the diffuse

ISM. Stars are the fundamental energy sources; they

lose energy, and supply power to the ISM, by starlight

and also through dynamic input from such events as su-

pernovae and stellar winds. What we need to quantify

here, however, is the microphysics: how does this en-

ergy couple to some small test volume deep within an

interstellar cloud? This area is still under discussion.

Here I lean on the discussion from McKee (1995),

which focuses on the diffuse ISM; but add photoion-

ization heating which is important for HII regions.

• Cosmic Rays. These high-energy particles pen-

etrate the cold ISM, and can transfer energy both

through ionization of the neutral component and

through Coulomb interactions with the ionized com-

ponent. This is the heating mechanism first suggested

by Field, Goldsmith, &Habing (1969), in their origi-

nal model of the multiphase ISM. Since then other au-

thors have argued that cosmic rays can’t supply enough

power, and that other possibilities are more important.

• X-rays. These have also been suggested, as they can

also penetrate the ISM. They heat by ionization. How-

ever, most authors seem to agree that their heating rate

is also too low to be useful.

• Magnetic dissipation. This is attractive but harder

to quantify. The idea is that the large-scale galactic

field will dissipate locally, either by local reconnec-

tion events (similar to solar flares), or by dissipation of

MHD waves. The latter in particular could be a heating

mechanism for the cool ISM, as the waves could prop-

agate fairly far from their sources before dissipating.

I have not seen this treated quantitatively, however, in

any ISM modelling.

• Photoelectric heating. This seems to be the cur-

rent favorite. Starlight is abundant in the galaxy (it

also has a density ∼ 1 eV/cm3); can it couple to the

ISM? Most starlight is too cool to ionize the ISM. It

can, however, be absorbed by interstellar grains which

then eject electrons, in a standard photoelectric effect.

This can be quantitatively effective if very small grains

and also large organic molecules (polycyclic aromatic

hydrocarbons, PAH’s) are included in the models.

• Photoionization heating. This will be treated in

more detail immediately below. It is unlikely to be im-

portant in the diffuse ISM, because there are not very

many “loose photons” with hν > 13.6 eV; but it is the

dominant heating mechanism close to hot, young stars

(and probably close to active galactic nuclei).

For our purposes here, the total heating rate – whatever

it may be – will be called

Γ = nH (5.2)

and has units erg cm−3 s−1. Once again, we’ve ex-

tracted the density dependence as most of the heating

mechanisms described here depend on the first power

of the density (i.e., on how many atoms are around to

be heated).

5.2 HII regions

Let’s start with a spherical chicken. That is, we will

start with the ionization and thermal structure of a sim-

ple, one-star HII1 region. Consider one hot star (O or

B type, with a significant part of its luminosity above

the ionization edge of hydrogen, 13.6 eV), sitting in

the ISM. The UV photons from this star will ionize

and heat the local hydrogen, producing an HII region

1Notation: HII (called “H-two”) refers to ionized hydrogen; HI

(“H-one”) is neutral hydrogen. And just to be confusing, H2 (also

called “H-two”) is molecular hydrogen.
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around the star. Within an HII region, the central star

(or stars) will dominate the energy and ionization bal-

ances, which simplifies the problem (compared to the

more general case of the diffuse ISM). To start, then,

we will therefore consider the equilibrium of a purely

photonionized nebula.

LOOKING AHEAD: The important features

in here are (i) the definitions of ionization

and recombination rates (say equations 5.4

and 5.5); their use in ionization balance

(equations 5.7, 5.8); the Stromgren sphere

(5.17); the general discussion of heating and

cooling (§5.2.2); and the final result, 8000-

10,000 K “always”.

5.2.1 Ionization structure

Let the central star have a spectrum L(ν) (in erg/s-Hz).

At a distance r from the star, the mean intensity is

J(ν, r) =
L(ν)

4πr2
e−τ(ν,r). (5.3)

Look back to chapter 3: J(ν, r) = 1
4π

∫

I(ν, r)dΩ is

the mean intensity averaged over solid angle. The ex-

pression in (5.3) describes the intensity from the cen-

tral star, attenuated by some optical depth τ(ν, r) to

be evaluated below. Photons above hν1 = 13.6eV
will ionize hydrogen; the ionization cross section is

σion(ν) ≃ 6.6× 10−18(ν/ν1)
−3 cm−2. We can there-

fore write down the ionization rate per hydrogen atom,

ϕuv(r) =

∫ ∞

ν1

4π
J(ν, r)

hν
σion(ν) dν (5.4)

Note that ϕuv has units s−1; the ionization rate per

volume is nHIϕuv, units cm−3 s−1.

We also need the recombination rate to level j, from

the continuum; call it neαj(T ) recombinations per sec-

ond per atom. From the recombination cross section,

again assuming a Maxwellian distribution of free elec-

tron velocities, αj(T ) is

neαj(T ) =

∫

vσrec,jf(v)dv

≃ 2.1× 10−11gjne

[1 + j2kBT/13.6eV)] j2T 1.2

(5.5)

where gj is the statistical weight of that level. This can

be summed over all levels to get the total recombina-

tion rate per atom,

α(T ) =
∑

j

αj(T ) ≃ 2.1 × 10−11Φ(T )

T 1/2
cm3s−1

(5.6)

where Φ(T ) is yet another order-unity factor, which

varies only slowly with temperature in the range 102−
105K.

In equilibrium, the ionization rate will be balanced by

the recombination rate, nHIIneα(T ) (recombinations

per volume per second). The balance is then given by

nHIϕuv = nHIIneα(T ) (5.7)

Now, the total hydrogen density is n = nHI +nHII ; if

the nebula is mostly hydrogen, ne ≃ nHII . Thus, we

can define x = nHII/n as the ionized fraction (so that

n(1− x) is the neutral fraction), and write (5.7) as

1− x

x2
=

nα(T )

ϕuv
(5.8)

We note, ϕuv is a function of position in this case, from

(5.4).

Consider the solutions to (5.8) for x. We know 0 ≤
x ≤ 1, by definition. Now, close to the star, the right

hand side of (5.8) will be ≪ 1. We therefore know

x ≃ 1, and the quadratic solution of (5.8) will be

1− x ≃ nα(T )

ϕuv
≪ 1 (5.9)

Far from the star, the right hand side will be ≫ 1 (as

ϕuv drops), and the solution will be

x ≃
(

ϕuv

nα(T )

)1/2

≪ 1 (5.10)

In addition, the region (of r) over which nα(T )/ϕuv

changes from large to small turns out to be small (you

can show that this region has width ∆r ∼ the mean

free path of a photon in the neutral gas). Thus, we

expect the ionization structure to go from fully ionized,

to hardly ionized, over a very short distance.

NOW, We want to study the structure of the nebula in

a bit more detail, and to find the location of the ion-

ized/neutral transition. To start, we need the optical

depth, from the star out to radius r:

τ(ν, r) =

∫ r

0
n(1− x)σion(ν)dr

≃ n(1− x)σion(ν)r

(5.11)
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where the last step assumes a uniform density and that

(1 − x) ≃ 0 ≃ constant (which is true within the ion-

ized region). Now, consider the local radiation density,

u(ν, r) = J(ν, r)/c. Using (5.3), we can write

d

dr

(

4πr2cu(ν, r)
)

=
d

dr

(

L(ν)e−τ(ν,r)
)

= −L(ν)e−τ(ν,r)dτ(ν, r)

dr

(5.12)

And, using (5.11), this becomes

d

dr

(

4πr2cu(ν, r)
)

= −L(ν)e−τ(ν,r)n(1− x)σion(ν) .

(5.13)

Now, we can (a) use (5.7) to eliminate n(1− x) on the

right hand side; (b) multiply both sides by dν/nν, and

(c) integrate over ν:

d

dr

[

4πr2c

∫ ∞

ν1

u(ν, r)

nν
dν

]

= −4πr2c
α(T )n2x2

ϕuv

∫ ∞

ν1

u(ν, r)σion(ν)

hν
dν

(5.14)

At this point, we can identify terms. The quantity in

brackets on the left of the equation is the number of UV

photons per second crossing the surface at r, Suv(r).
The integral on the right side is just ϕuv(r)/c. Thus,

the equation simplifies quite nicely to

dSuv(r)

dr
= −4πr2α(T )n2x2 (5.15)

For a constant density region, in which x ≃ 1, we can

easily solve this equation:

Suv(r) = Suv(0) −
4π

3
r3α(T )n2x2 (5.16)

where Suv(0) is the photon flux at the star.

From this, we can define the Stromgren radius as the

distance at which the photon flux goes to zero:

Suv(0) =
4π

3
R3

sα(T )n
2x2 (5.17)

This limit defines the Stromgren sphere. We note that –

due to the assumption of local ionization balance – the

expression for Rs only depends on the total number of

UV photons, not on their energy, or how many central

stars there are, or the ionization cross section, or any

number of physical parameters one might have thought

interesting. Rs is determined only by Suv(0)/n
2. (Re-

member that x ≃ 1 inside Rs). The physical picture

is, simply, that the size of the HII region – Rs – is set

by the volume inside of which the number of recom-

binations per second exactly balanced the number of

ionizing photons put out by the star per second.

5.2.2 Energy balance and temperature

Photoionization also provides the heating for the neb-

ula. A photon of energy ν > ν1 ionizes an atom, and

the leftover energy h(ν − ν1) goes to kinetic energy of

the free electron. This electron can then share the en-

ergy with the ions, through Coulomb collisions, so that

this becomes a general heating mechanism for the gas.

The heating rate per HI atom can be written

∫ ∞

ν1

4π
J(ν)

hν
σion(ν)h(ν − ν1)dν

≃ ϕuv〈h(ν − ν1)〉
(5.18)

where the second expression defines the mean energy

transfer per ionization (with the mean taken over the

input photon spectrum). Note, we have suppressed the

r dependence in J(ν), to ease the notation. Thus, the

heating rate per volume is

Γuv = nHIϕuv〈h(ν − ν1)〉 (5.19)

We can again assume ionization balance, and this can

be written in terms of the local density and tempera-

ture, as

Γuv = n2x2α(T )〈h(ν − ν1)〉 (5.20)

To determine the equilibrium temperature, we want to

balance Γuv against all of the important radiative cool-

ing mechanisms (assuming the HII region is optically

thin, which is a good assumption for visible ones – the

ones in the pretty pictures). It turns out that there are

two important types of coolants – recombination lines

from hydrogen (and helium, which is a small correc-

tion), and collisionally excited lines from heavy ele-

ments. To do the calculation, we have to to compute

the cooling rates numerically for these lines (or find

someone who has done it already!).

The hydrogen recombination cooling rate is

Λrec = nHII

∑

j

∫

σrec,j(v)vf(v)
1

2
mev

2dv (5.21)
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Now, the integral-sum on the RHS is essentially the net

recombination rate, (cf.equation 5.5), times the mean

energy released per recombination:

Λrec ≃ n2x2α(T )kBT . (5.22)

The integral is over the electron distribution function,

and the sum is over all relevant energy levels.

Can hydrogen cooling alone account for the temper-

ature of an HII region? We observe temperatures
<∼ 104 K. Now, if the heating is by hydrogen ioniza-

tion, and the cooling is by hydrogen recombination,

our thermal balance would be

Γuv(T ) = ΛH,rec(T ) (5.23)

Comparing (5.20) and (5.22), we see that this solves to

kBT ≃ 〈h(ν − ν1)〉 (5.24)

(everything about the density and ionization state drops

out, note – due to the ionization rate balance). But

this is too hot; recall hν1 = 13.6 eV. Thus, simple

estimates don’t work here – we need to include heavy

element cooling, which turns out to be stronger, and

results in the lower temperatures we see.

For the heavy element cooling rates, we can write

schematically (for element X)

ΛX =
∑

j,k

nX,jAX,jkhνjk (5.25)

where the sum is over all “upper” and “lower” states,

and the level populations nX,j must be determined by

the methods discussed previously. An important fact to

know is that the levels are collisionally excited (but ra-

diatively de-excited, of course). Thus, the net cooling

rate Λx ∝ nenX ∝ n2, since it is a collisional process.

Thermal balance in the nebula can then be written as

Γuv(T ) = Λrec(T ) +
∑

X

ΛX(T ) . (5.26)

Solutions of this equation determine the temperature of

the nebula. From (5.20), and the discussion just above,

we see that both sides ∝ n2, so that the equilibrium

temperature does not depend on the density. The tem-

perature can be found numerically.

This is the big result: the temperature does not depend

on the density; only on the details of the ionizing spec-

trum and coolants. Thus, the temperature of any (pho-

toionized) HII region is ∼ 8000−10, 000 K. This result

is independent of the density (nearly) and of the num-

ber of stars ionizing the region; it has some dependence

on the ionizing spectrum and the abundance of heavy

elements, primarily oxygen. Through the level popula-

tions it does have a weak dependence on the density.

5.3 The diffuse ISM: multiphase equilibrium

For the general diffuse ISM, things aren’t quite so sim-

ple. However, Field etal (1969) developed a very nice

semi-analytic formulation; here I simplify the algebra2

by extracting only the dominant terms. We begin by

determining what the most important cooling and heat-

ing mechanisms are. We start with cooling, which is

the simpler of the two, as it only depends on micro-

phyics.

LOOKING AHEAD: The big results here are

(i) the general idea of setting up a “heating

= cooling” balance for the ISM; and (ii) the

result, that the cold and warm phases which

coexist in the ISM are thought to be two sta-

ble solutions of a “heating = cooling” bal-

ance.

5.3.1 Cooling: what dominates here?

The ISM cools by radiation (it’s optically thin to

many/most photons). The radiation is generated, typi-

cally, by collisional excitation of some atom or other,

by a free electron. The atom de-excites by radiation,

leading to a net energy loss from the system. If we

want to find which of all possible line transitions are

important for cooling, we can think of several criteria.

• The species must be fairly abundant;

• its excitation energy must be comparable to, or less

than, the typical electron thermal energy;

• it must have a large cross section for such excitation;

• it must have a high probability to de-excite before

another collision occurs;

• and it must generate photons to which the ISM is

optically thin.

Given this general argument, we find that two of the

most important coolants for the temperature range that

describes the cold and warm hydrogen (which is a few

×102 to a few ×103 K) are particular lines from hydro-

gen and from carbon. We can approximate the cool-

2honestly, folks!
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ing rate of these by saying that the line radiatively de-

excites as soon as it is excited; thus, the cooling rate is

just proportional to the excitation rate. But the colli-

sional excitation rate is, typically,

qX;ij ≃ qXoT
−1/2e−hνij/kBT (5.27)

for excitation from level i to level j of species X. The

term qXo is a numerical factor containing atomic con-

stants.3 For our two main coolants, the cooling rate can

be written,

ΛH ≃ nenHI
qH

T 1/2
e−hνH/kBThνH (5.28)

and

ΛC ≃ nenHI
nC

nH

qC

T 1/2
e−hνC/kBThνC (5.29)

Here, we are assuming that x ≪ 1, so that nHI ≃
n. We note that the line frequencies are given by

hνC/kB ≃ 92 K, and hνH/kB ≃ 105 K. Thus, at

low temperatures C cooling dominates, and at higher

temperatures H cooling dominates.

5.3.2 Heating: by cosmic rays?

As an example of how this can be quantified, consider

cosmic ray heating. This may not be the dominant

heating; however it is easy to write down analytically

(as Field etal did), and therefore provides a useful ex-

ample of the analysis. In addition, cosmic ray heat-

ing is proportional to the local density, just as X-ray

heating and photoelectric heating are (and probably as

magnetic heating would be, too). Thus, the analysis

I present here could be extended to PAH heating by

changing the constants; the results for the multiphase

ISM should be fairly robust.

In cosmic ray heating, the neutral fraction will be

heated by ionization. If σion(E) is the cross section

for ionization by a cosmic ray of energy E, fcr(E) is

the density of cosmic rays at energy E, and ∆E is the

excess energy the electron comes away with in this ion-

ization, the ionization rate per volume can be written,

nHIϕcr = n(1− x)

∫

fcr(E)v(E)σion(E)dE

(5.30)

3The exponential, and the inverse T 1/2, arise from an integral

of the collision rate, 1/nσ(v)v, integrated over the electron veloc-

ity distribution; see if you can justify this for yourself.

From this, the heating rate due to cosmic ray ionization

can be written,

Γcr,ion = n(1− x)

∫

fcr(E)v(E)σion(E)∆EdE

= n(1− x)ϕcr〈∆E〉
(5.31)

in direct analogy to (5.20). Numerically, this turns out

to be

Γcr,ion ≃ 5× 10−12ϕcrn(1− x) erg cm−3 s−1

Current estimates for ϕcr, averaged over the disk, sug-

gest ϕcr ≃ 10−17 s−1.

The ionized fraction of the gas will be heated by

Coulomb collisions with the cosmic rays. A single cos-

mic ray, once it is relativistic, loses energy as a rate

PC(E) ≃ 6×10−19nx erg/s to the ionized component

(this number comes from the Coulomb collision rate

for relativistic particles). Thus,

Γcr,C =

∫

fcr(E)PC (E)dE (5.32)

To simplify the algebra below, we note that Γcr,C can

be related to ϕcr, since both involve an integral over

fcr(E), the cosmic ray distribution function. We will

write this relation as Γcr,C = Aϕcrnx, where A con-

tains a mean of PC(E)/σion(E), and other (numerical)

factors. Finally, we can also write down the ionization

state of the gas, due to the cosmic rays:

ϕcrn(1− x) = n2x2α(T ) (5.33)

which has limiting solutions for x, just as in (5.7).

5.3.3 Thermal balance and multiphase

equilibrium

We will follow the method first presented by Field et al

(1969), and will approximate the behavior of the heat-

ing and cooling functions to allow us to find an analytic

solution for the equilibrium temperatures. This anal-

ysis addresses the two cooler phases of the ISM, the

cold and warm HI distributions. (The hot, coronal gas

is probably heated dynamically, by supernova shocks

and/or stellar winds, and also cooled dynamically by

its expansion out of the galactic plane; it will not be

included in this analysis).

Now, the general thermal balance equation, for heating

by cosmic rays and cooling by these two spectral lines,
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from C and H, is

ϕcrn(1− x)〈∆E〉+ ϕcrAnx = n2x(1− x)

×
[

qH

T 1/2
e−hνH/kBThνH +

nC

nH

qC

T 1/2
e−hνC/kBThνC

]

(5.34)

This equation gives the implicit (n, T ) solution, for

the density-temperature relation of the equilibrium gas.

We show this solution, below; but it seems worth get-

ting some insight into its behavior first. Consider only

the low-temperature regime, where we can ignore H

cooling, and also ignore Γcr,C (since x ≪ 1). The

balance is then, approximately,

nϕcr(1− x)〈∆E〉
≃ n2x(1− x)

nC

nH

qC

T 1/2
e−hνC/kBThνC

(5.35)

But from this, using the x ≪ 1 limit of (5.33), we find

that

n ∝ Tα(T )e2hνC/kBT ∝ T 1/2e2hνC/kBT (5.36)

This gives us an approximate analytic version of the

(n, T ) relationship for T ∼ 102 − 103 K. We can find

a similar expression for the high-T regions, where H

cooling dominates. The net solution looks like the car-

toon in Figure 5.2. This solution can also be turned

into a (p, T ) solution, using p ∝ nT , also in Figure

5.2.

But this is, then, (almost) the end of the analysis. That

is, since we know the pressure of the system – as we

do, observationally (nT ∼ few × 103 cm−3 K), we

can find the (p, T ) solutions which are allowed by this

thermal balance. Figure 5.2 illustrates the solutions;

in principle anywhere on the (n, T ) or (p, T ) loci is

a solution. We restrict the possibilities by specifying

the pressure – equating it to the ISM pressure (which

is known). This gives us three possible solutions (as in

Figure 5.2). But will all three exist in the ISM?

5.3.4 Is the thermal balance solution stable?

The final step of the argument is to argue, as Field etal

did, that the outer two solutions – T ∼ 102 K and

T ∼ few × 103 K – are the two stable HI phases; and

that the middle T solution is unstable. The argument

goes as follows. Consider one particular equilibrium

state, with density and temperature specified, as well

as with external pressure fixed. For instance, look the

log n

log T

CII

HII

p

CII
log (nT)

HII

log T

ISM

Figure 5.2 Top; sketch of the (n, T ) solution from (5.34).

The lower temperatures are controlled by CII cooling; the

higher temperatures by HII cooling. Any (n, T ) pair on this

curve is a possible solution; but not all will exist in the ISM.

Bottom: the same solution, but now plotting “pressure” nT
against T . The dotted line indicates the ISM pressure, which

picks out (n, T ) solutions that might exist in the ISM. The

small circles show three possible solutions; however only

the two outer ones are thermally stable. When we put in

real numbers, these stable solutions correspond to the cold

and warm phases of the ISM.

middle T solution in Figure 5.2. Consider a slight com-

pression of this state, in which the temperature drops a

little bit (this is required from the (n, T ) solution in

this region). But the pressure must also drop in the

perturbation (from the (p, T ) curve); so the larger ex-

ternal pressure will compress the perturbation still fur-

ther – and the density will drop still more, and it will

cool faster . . . and so on. That is, this system is

thermally unstable; a slight compression will collapse

and cool, and a slight rarefaction will expand and reach

higher temperatures. The timescale for this runaway

∼ tcool ∼ kBT/Λnet(T ), as always; for the ISM, this

is a short time, so the instability will develop rapidly.

Conversely, for the outer two solutions, the slope of

the (p, T ) curve is reversed, so that – say, a small com-

pression will reach higher pressures, and expand back

to its original state (or vice-versa for a small rarefac-

tion). Thus, the two outer states should be stable, and
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are believed to represent the two cool phases of the

ISM.

More formally, Field etal (1969) worked with the net

cooling function, C = Λ − Γ = n2L − nH. Again,

the cooling term is Λ = n2L as in Figure 5.1. The

heating term is written as Γ = nH to highlight the

linear dependence on density n. They showed that the

system is unstable if

∂C
∂T

∣

∣

∣

p
=

∂C
∂T

∣

∣

∣

n
− n

T

∂C
∂T

∣

∣

∣

T
< 0 (5.37)

Now, using C = 0 (which means we start in thermal

balance, before we perturb the system) in (5.37) turns

this condition into

∂C
∂T

∣

∣

∣

p
= n2 dL

dT
− n2L

T
< 0 (5.38)

as the condition for instability. This can be rewritten as

d lnL
d ln T

< 1 (5.39)

for the instability condition; the system is stable other-

wise. This makes it clear that the slope of the cooling

curve in Figure 5.1 controls the thermal stability of the

system. The middle phase of Figure 5.2 lies at a T
where L is a very slow function of T ; so this phase is

unstable. The outer two phases of Figures 5.2 lie at T
where L is a steep function of T ; thus these phases are

thermally stable.

References

Most of the formal material here can be found in

• Spitzer (Physics of the Interstellar Medium;

but the thermal stability details come from the original

Field, Goldsmith & Habing paper (1969 ApJ), and I’ve

also pulled more recent arguments (on heating, cooling

mechcanisms) from the current literature.

Key points

• The ISM cooling curve (and what’s inside it);

• Photonionization heating “always” gives ∼ 104 K;

• Stromgren spheres – what they are, what size they

are;

• General ISM thermal balance and why we have the

two cooler phases;

• Why does ISM thermal balance not explain the hot

(coronal) phase?
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6 Dynamics of the ISM: energetics & shocks

Last term we worked with the mass and momentum

conservation laws of fluid dynamics, and applied them

to various problems. We now return to fluid dynamics,

and consider the physics of shocks in fluid flow. But

we can’t do that until we look at the third important

conservation law, energy conservation in fluids.

6.1 Fluids: energetics

We must consider two forms of energy: the kinetic en-

ergy density of bulk flows, ρv2/2, and internal energy

density. The latter is the energy contained in random

(thermal) motions of the particles. We will work with

the internal energy per unit mass, e = 1
γ−1

p
ρ . For a sub-

relativistic, monatomic gas, for instance, e = 3
2
kBT
m .

The net energy in our volume V is
∫

V ρ(e + 1
2v

2)dV .

The net rate of change of this energy from intrinsic

changes and from flows is

∫

V

∂

∂t

[

ρ

(

e+
1

2
v2
)]

dV

+

∫

V
∇ ·
[

ρv

(

e+
1

2
v2
)]

dV,

(6.1)

where we have used the divergence theorem to convert

a surface integral to a volume integral as in Chapter

4 of the 425 notes. This net energy change must be

accounted for by (a) work done by an external accel-

eration f , which is often taken to be gravity; (b) work

done by the external pressure; (c) direct energy gains

or losses, most commonly direct heating (by photons

or cosmic rays, say), or radiative losses, as in chapter

5. These three energy-change factors are

∫

V
ρf · vdV −

∫

A
pn̂ · vdA +

∫

V
(Γ− Λ)dV (6.2)

Again we can use the divergence theorem to convert

the pressure work term to a volume integral, and we

can derive one version of the differential energy con-

servation law:

∂

∂t

[

ρ

(

e+
1

2
v2
)]

+∇ ·
[

ρv

(

e+
1

2
v2
)]

= ρf · v −∇ · (pv) + Γ− Λ

(6.3)

The forms we derived for the mass and momentum

conservation equations are pretty standard. However,

there does not seem to be one standard form for the en-

ergy conservation equation; rather, one uses the form

that works best in a given application. Therefore, at

the expense of a little algebra, we will look at several

alternate forms of (6.3).

First, with the help of the continuity equation1 we can

separate out the ∂ρ/∂t and ∇ · (ρv) terms in (6.3), we

find

ρ
∂

∂t

(

e+
1

2
v2
)

+ ρv · ∇
(

e+
1

2
v2
)

= ρf · v −∇ · (pv) + Γ− Λ

(6.4)

which is one alternate form that we will use again. We

can isolate the rate of change of e, from (6.4), by sub-

tracting v·(the momentum conservation equation), giv-

ing

ρ
∂e

∂t
+ ρv · ∇e = −p∇ · v + Γ− Λ (6.5)

In this expression, we can see that the rate of change of

the internal energy depends explicitly on compression

work (“pdV ” work), and on the net heating and cooling

rates.

Yet another common form of the energy equation is

found by defining the convective, total or Lagrangian

derivative,
D

Dt
=

∂

∂t
+ v · ∇ (6.6)

With this, we can use the continuity equation to write

∇ · v in terms of the density derivatives, and use e =
1

γ−1
p
ρ to write

ρ

γ − 1

D

Dt

(

p

ρ

)

− p

ρ

Dρ

Dt
= Γ− Λ (6.7)

or, if we collect the p and ρ derivatives separately, we

get

ργ
D

Dt

(

p

ργ

)

= (γ − 1)(Γ− Λ) (6.8)

which is the last of our alternate forms of the energy

equation.

This last form allows us to consider a couple of impor-

tant limits. The first is the adiabatic limit. If Γ−Λ = 0,

so that there is no net gain or loss of energy to the sys-

tem, (6.8) shows that

p

ργ
= constant (6.9)

1You saw this last term, in chapter 4 of the P425 notes. One

form is
∂ρ

∂t
+∇ · (ρv) = 0



Physics 426 Notes Spring 2016 33

which is the usual adiabatic law (the consequence of

there being no gain or loss of heat from a system).

The second limit is the isothermal limit. A good many

calculations assume T = constant, which simplifies

things enormously. From (6.5), we see that

p∇ · v = Γ− Λ (6.10)

is the condition that must be satisfied if T (or e) is con-

stant.

6.2 Supersonic flow and shock fronts

In P425, we found a characteristic signal speed in a

gas, namely the sound speed, cs. This is a critical find-

ing: because this is the speed at which a perturbation

propagates, “information” about changes in the flow

can only propagate at cs. Figure 6.1 illustrates this, in

a moving flow.

c c ss

reverse waves forward waves

perturbation

Undisturbed flow

Figure 6.1 Illustrating signal propagation in a flow. A per-

turbation “whacks” the pipe at one spot; the information that

this has happened travels upstream and downstream at cs,

relative to the flow. Following Thompson figure 8.6.

Consider, then, gas moving at a speed greater than the

sound speed; if follows that information cannot prop-

agate upstream. This means the gas generally cannot

adjust smoothly to changes in the ambient or bound-

ary conditions, but rather must adjust instantaneously

- creating a discontinuity in the flow. Such a disconti-

nuity is a shock. Examples are bow shocks around su-

personic aircraft, or around the planets (since the solar

wind is supersonic); or standing shocks, such as where

supersonic flow runs into a zero-velocity surface (for

instance, at the end of a radio jet, where it runs into the

ambient plasma).

We treat a shock as an infinitely thin discontinuity in a

flow. The true width of the shock is determined by

collision processes within the fluid, and by assump-

tion these operate on scales much smaller than those

described by the fluid equations. The intent is to de-

rive “jump conditions” – to use the basic conserva-

tion laws to derive relations between the fundamental

variables (ρ, p, T, v) upstream and downstream of the

shock. Let “1” describe upstream, and “2” describe

downstream
        

v
1

n
1

p
1

1

v
2

n
2

p
2

TT 2

S

upstream
   = "in"     = "out"

Figure 6.2 A close-up look at a shock, S, in a frame in

which the shock is at rest. The incoming fluid is labelled

with subscript “1”; outgoing with subscript “2”. The in-

coming fluid must be supersonic, v1 > cs1. The outgoing

fluid is slower (v2 < v1), denser, n2 > n1), and probably

hotter (T2 > T1, for an adiabatic shock); the incoming ki-

netic energy is converted to heat when the shock decelerates

the flow.

the downsteam flow, as seen in a frame moving with

the shock (as in Figure 6.2). Let the Mach number

be M = v/cs (generally defined for upstream flow).

Consider steady, one-dimensional flow, with no exter-

nal forces, and with no net external heating or cool-

ing. Referring back to the footnote on the prevous

page, the continuity equation for the fluid in steady

state becomes ∇ · (ρv) = 0. If we integrate this over

a small, Gaussian surface enclosing some part of the

shock plane, we get

ρ1v1 = ρ2v2 (6.11)

This is, of course, simply mass conservation: the flux

in (per area) must equal the flux out. The force equa-

tion for the fluid is

∇ · (ρvv) +∇p = 0 (6.12)

(again, go back to your P425 notes, where this form

was presented implicitly, as equation (4.3), but not

elaborated on). Integrating this across the shock face,

we get

ρ1v
2
1 + p1 = ρ2v

2
2 + p2 (6.13)

These two equations are general. The energy equation

is generally applied in either the adiabatic or isother-

mal limits.

6.2.1 Adiabatic shocks

The form (6.3) of the energy equation, with some alge-

bra (always!) and applied to our conditions here, gives
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us

γ

γ − 1
p1v1 +

1

2
ρ1v

3
1 =

γ

γ − 1
p2v2 +

1

2
ρ2v

3
2

Factoring out ρv from each side, and using (6.13), this

can be written

γ

γ − 1

p1
ρ1

+
1

2
v21 =

γ

γ − 1

p2
ρ2

+
1

2
v22 (6.14)

Now, this can be combined with (6.11) and (6.13), to

express three post-shock quantities, ρ2, v2 and p2, in

terms of their pre-shock counterparts. This solution is:

ρ1
ρ2

=
γ − 1

γ + 1
+

1

M2

2

γ + 1

p2
p1

=
2γM2 − (γ − 1)

γ + 1
v2
v1

=
γ − 1

γ + 1
+

1

M2

2

γ + 1

(6.15)

When M ≫ 1, these equations simplify, to

ρ1
ρ2

=
γ − 1

γ + 1

p2
p1

=
2γM2

γ + 1
v2
v1

=
γ − 1

γ + 1

(6.16)

In particular, if γ = 5/3, we find ρ2/ρ1 = v1/v2 = 4
(this is often quoted as the strong shock limit). And, in

this limit, the temperature jump is T2/T1 = 5M2/16,

giving kBT2 = 3mv21/32; the upstream kinetic energy

is converted to internal energy in an adiabatic shock.

6.2.2 Isothermal shocks

The energy equation is this case is simple: T2 = T1

by assumption. The possibility of an isothermal shock

depends on the cooling times. We would expect a gen-

eral shock to have a structure as in Figure 6.3. The

gas passing through the shock is initially heated, by

adiabatic compression, and suffers a moderate density

jump. This hotter gas (assuming an optically thin sit-

uation), can then cool by radiation, and while cool-

ing the gas travels a distance ∼ v2tcool. This “cool-

ing distance” thus measures the effective width of the

transition to an isothermal shock – assuming that some

heating/cooling balance, as we described for the ISM,

maintains the upstream and far-downstream tempera-

ture at T1.
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v 2

n2 T
2

(transition region)

Figure 6.3 Schematic diagram of a radiating shock. In the

upper diagram, the fluid is coming in from the left. At x1 it

enters the nonradiative shock. This is followed, to the right,

by the transition region, where the temperature drops as the

gas cools by radiation. The changes of density and tempera-

ture are shown schematically in the lower figure. Following

Spitzer figure 10.1.

Combining T2 = T1 with (6.11) and (6.13), to express

isothermal jump conditions,

ρ2
ρ1

= M2

v2
v1

=
1

M2

p2
p1

= M2

(6.17)

Thus, the compression factor, and deceleration factor,

can be much higher for an isothermal shock than for an

adiabatic one.

6.2.3 Magnetized shocks

The previous analysis ignored the magnetic field. This

is probably too naive, as we know the ISM is magne-

tized. We can understand the effect of a shock on the

field by considering flux freezing. Refer to the left part

of Figure 6.4. In this case, the field is parallel to the

shock face. In this geometry, the field is tied to the gas

by flux freezing; thus the field behind the shock will

be increased, in the same amount as the gas is com-

pressed. By comparison, consider the right part of the

figure, in which the shock propagates along the field

lines. In this case, the density jump will not affect the

magnetic field (why? can you see how this is consistent

with flux freezing?).

6.2.4 Oblique shocks

Finally, what if the shock face is not perpendicular to

the flow? The answer is qualitatively simple, and can

be readily understood by thinking about an oblique in-
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1 2

quasi−perpendicular shock quasi−parallel shock

Figure 6.4 Schematic picture of magnetized shock, in

two important limits The shock speed relative to the medium

is vs. Left, quasi-perpendicular shock (note vs ⊥ B): flux

freezing increases the post-shock field, by a factorB2/B1 =
ρ2/ρ1. Right, quasi-parallel shock; the gas flows along the

field lines without perturbing the field.

coming velocity (w in the Figure 6.5, which illustrates

the geometry) in terms of its components parallel and

perpendicular to the shock face. The component per-

pendicular to the shock face is decelerated, just as in

the normal-shock results above. The component par-

allel to the shock face, however, is not affected (query

to the reader: why not?). Thus, the net velocity bends

toward the shock face.

v1

1

v 2

u2

w1

w2

u

β

β2

w1

w2

β

δ

Figure 6.5 Oblique shocks. The velocity bends towards

the shock face, as shown in the right figure; this can be un-

derstood by considering the effect of the shock on the veloc-

ity components, as in the left figure.

Where do we expect to deal with oblique shocks? In

just about any 2D situation ... a good example is the

terrestrial bow shock, where the supersonic solar wind

encounters the earth. The flow coming in bends to-

ward the shock normal, and thus is deflected around

the earth. The jump conditions (extensions of 6.15 or

6.17) can be quite complicated algebraically; we won’t

deal with them in this course.

Key points

• Energy conservation: adiabatic and isothermal limits

• Shock fronts: jump conditions across the shock

• Shock fronts: adiabatic and isothermal limits

• Effects of B field or oblique angle: qualitative
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7 Stellar Winds & Supernovae Remnants

Now let’s look at some supersonic flow situations

which involve shocks. You remember that we worked

with smooth transonic flows last term – for instance

the solar wind. These are rare; it’s very easy to form

shocks when supersonic flows are decelerated or bent

by their surroundings. In this chapter we’ll work with

2-1/2 examples: stellar wind shocks, and two types of

supernova remnants.

7.1 Stellar winds and the surrounding ISM

We worked with smooth, transonic stellar wind flow

last term ... and found a solution in which the outer

regions of the wind flow are supersonic. But this can’t

carry on forever. At some point the wind flow must run

into the ambient ISM. We expect the deceration to lead

to an outer shock in the wind; what are the details? By

way of review, I’ll repeat the basics of the inner-wind

solution here.

7.1.1 The basic solution

• Mass conservation in a steady, spherical flow is

ρvr2 = constant; or,

1

ρ

dρ

dr
+

1

v

dv

dr
+

2

r
= 0 (7.1)

while the momentum equation becomes in this case

(noting that gravity from the central star is important),

ρv
dv

dr
+

dp

dr
= −ρ

GM

r2
(7.2)

Writing dp/dr = c2sdρ/dr, these two equations com-

bine to give the basic wind equation,

(

v − c2s
v

)

dv

dr
=

2c2s
r

− GM

r2
(7.3)

This does not have analytic solutions over the whole

range of r. However, we can learn quite a bit about the

nature of the solutions simply by inspection of (7.3), as

follows.

• First, the left hand side contains a zero, at v2 = c2s .

If we want to consider well-behaved flows, that is to

say those in which the derivative dv/dr does not blow

up, then the right hand side of (7.3) must go to zero at

the same point. This defines the condition that must be

met at the sonic point:

v2 = c2s at r = rs =
GM

2c2s
(7.4)

Whether or not a particular flow satisfies this condition

depends on the starting conditions, such as with what

velocity and temperature it left the stellar surface, and

also what the boundary conditions at large distances

are. If it does not start in such a way to satisfy this

condition, it either stays subsonic (corresponding to fi-

nite pressure at infinity), or cannot establish a steady

flow.

• Further, the solution beyond the sonic point depends

on the temperature structure of the wind. The only so-

lutions with dv/dr > 0 for r > rs are those for which

c2s(r) drops off more slowly than 1/r; it is only these

for which the right-hand side stays positive. In the case

of an isothermal wind, with c2s = constant, (7.3) can be

solved in the limit r ≫ rs:

v2(r) ≃ 4c2s ln r + constant (7.5)

Thus, the wind will be supersonic, by a factor of a few,

as r → ∞. The question of how the solar wind man-

ages to stay nearly isothermal is not solved; it is prob-

ably due to energy transport by some sort of waves

(MHD or plasma waves, for instance) which are gen-

erated in the photosphere and damped somewhere far

out in the wind.

7.1.2 The outer shock

The pressure in this supersonic wind is dropping with

radius (since ρ ∝ 1/vr2, with v being only slowly

varying; thus p ∝ ρT ∝ 1/r2, approximately, in

an isothermal wind). Therefore, when the wind pres-

sure is close to the ISM pressure, the wind must slow

down. At this outer boundary, we expect some sort of

shock transition, since the wind is supersonic. Past this

shock, the hot, shocked wind-gas will expand into the

ISM (at about its own sound speed, to start); as long

as this expansion is supersonic relative to the ISM, the

expanding hot gas will drive a “snowplowed” shell of

ISM, and a second shock, out into the ISM.

A cartoon of this region, at some point in time, would

be that in Figure 7.1. Let region “a” be the wind; S1

be the inner shock; region “b” be the wind-gas which

has been through the shock; C be the contact sur-

face between the wind and the ISM; region “c” be the

shocked ISM; and S2 be the outer shock (moving into

the ISM). We expect S1 to be an adiabatic shock (since

the wind is probably hot and low density, and thus will

have a long cooling time); region “b” will contain hot,

shocked wind, with Tb ∼ 3
16

mv2wind
kB

∼ several×107 K



Physics 426 Notes Spring 2016 37

(noting that m = 1
2mp is the mean mass per particle if

region “b” is fully ionized). The outer shock will prob-

ably be isothermal, since the ISM is denser and cooler

than the wind. Thus, the shocked ISM will be in a

thin shell, containing all of the original ISM that lay

between S2 and the star.
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Figure 7.1 Cartoon of the structure of a stellar wind, and

its interaction with the ISM. Left: the shock structure within

the wind. Right: The outer shell of dense, snowplowed ISM.

From Dyson & Williams figures 7.3 and 7.4.

To start, consider the position of this shell, R(t), as a

function of time. We start with a force equation. The

mass is the ISM shell is the mass that was originally

within R(t): 4π
3 ρoR

3(t). The force acting on the shell

is just the pressure behind it, which drives it outward:

d

dt

(

4π

3
R3ρo

dR

dt

)

= 4πR2pb (7.6)

if pb is the pressure, in the outer part of region “b”,

which acts on the shell. Next, we need an equation

for pb(t). The energy within region “b” – which we

will take to be nearly all of the volume within R(t)
– is ≃ 2πpbR

3(t); the rate of change of this energy

is given by the difference between the input (from the

wind) and the “pdV” work done by the expansion:

d

dt

(

2πR3pb
)

= Ėwind − pb
d

dt

(

4π

3
R3

)

(7.7)

if Ėwind is the energy input rate from the wind, as-

sumed constant. These two equations can be com-

bined, for instance by eliminating pb, to get

aR4d
3R

dt3
+ bR3dR

dt

d2R

dt2
+ cR2

(

dR

dt

)3

=
3

2π

Ėwind

ρo
(7.8)

where a, b, c are numerical constants. Noting that each

term on the left hand side has the same dependence on

R and t (∼ R5t−3), we can try a power law solution,

R(t) = Atα. A small bit of algebra tells us that α =

3/5 is the allowed solution, and we can also find an

expression for A. Thus, the solution is

R(t) = 0.76

(

Ėwind

ρo

)1/5

t3/5 (7.9)

and

v(t) =
dR

dt
= 0.46

(

Ėwind

ρo

)1/5

t−2/5 (7.10)

Thus, the shell decelerates with time, as it ought to if

it is picking up more and more ISM. One can then use

these, and (7.6), to work out the pressure acting on the

outer shell:

pb(t) =
7

25
A2ρot

−4/5 (7.11)

so that the outer pressure drops with time. Finally, one

can also work out the kinetic energy of the shell, which

must give the energy input to the general ISM from the

wind. This turns out to be

2π

3
R3ρo

(

dR

dt

)2

≃ 0.2Ėwindt (7.12)

so that about 20% of the wind energy goes to the ISM.

(The rest goes to heating the bubble, and to “pdV”

work).

7.1.3 What about the inner shock?

The location of the inner shock, S1, is determined by a

combination of the jump conditions, applied at S1, and

the pressure at the outside of the region, pb, as follows.

• The jump conditions, at S1, are ρsb = 4ρsa, if “sb”

and “sa” subscripts refer to postshock (region “b”) and

preshock (region “a”), respectively. Also, vsb = vsa/4
– here we assume M ≫ 1, the strong shock limit,

and also an adiabatic shock. At the shock, momentum

conservation1 tells us that ρv2 + p is conserved; thus,

psb =
3

4
ρsav

2
sa + psa ≃ 3

4
ρsav

2
sa

where we have used the fact that vsa ≫ cs in the wind

region.

• In region “b”, where we can ignore gravity (com-

pared to the internal energy, 3
2p), the momentum equa-

tion is

ρv
dv

dr
+

dp

dr
≃ 0

1Check back to chapter 4 from last term, P425; equation 4.4.



38 Physics 426 Notes Spring 2016

and, since v ≪ cs in most of region “b”, ρ ≃ con-

stant, and we have 1
2ρv

2 + p ≃ constant. Now –

we know that v drops from vsb = vsa/4, at S1, to

vs2 ∝ t−2/5 ≪ cs,sb at S2 (from the shock conditions).

Thus, we connect the conditions just past S1 to the con-

ditions at S2 (remembering that we called the pressure

in region “b” at S2, pb; ugly notation, I agree!),

pb ≃ psb +
1

2
ρsbv

2
sb =

7

8
ρsav

2
sa

Thus, pb, at S2, is set by the dynamic pressure at S1.

If pb is also set by external conditions – say the ISM

pressure – then the location of S1 must be where ρsav
2
sa

satisfies the above condition.

• But we can find this location. We note, again, that the

dynamic pressure in the wind region, ρv2 ∝ Ṁv/r2

drops approximately as 1/r2 (since v is slowly vary-

ing). Thus, the behavior of the dynamic pressure

within the wind region is fixed by the basic wind so-

lution. Thus, the shock S1 must form where ρv2, as

determined by the wind solution, matches ∼ 8
7pb.

7.2 Supernova remnants

First, set the stage: a star explodes. You probably recall

the basic picture: stars meet a violent death about 4-5

times per century in a galaxy the size of ours. There

are two possible types of supernovae. Type I super-

nova (more correctly Type Ia) arise from the explosion

of a white dwarf in a close binary system, presumably

initiated by sudden mass transfer from the companion

which leads to a thermonuclear reaction in the dwarf

star.2 Type II supernovae come from evolved, mas-

sive stars in which nuclear burning has run out of fuel.

The stellar core collapses inwards and bounces, pro-

ducing the explosion.

For the purposes of these notes, both types of SNe re-

sult in very similar remnants. The dynamics of the

ejected material will be sightly different at very early

times, due to the differing local environments; but af-

ter a short time, both can be treated similarly. That

is the approach we will take here. Think of an in-

stantaneous release of energy (E ∼ 1051 ergs) from

a point source, in ambient gas of density ρo. The en-

ergy released will heat the gas near the explosion to

2Current work splits this hair. The distinction between Type

I and Type II SNe was originally based on the presence, or ab-

sence, of strong hydrogen lines in the explosion spectra. Origi-

nally, all stars without H lines were thought to be explosions of

white dwarfs; now I gather Type Ib and Ic are identified with core

collapse.

very high temperature and pressure, driving an expan-

sion. This expansion will be very supersonic, setting

up a spherical shock wave moving into the surround-

ings and sweeping up gas as it goes.

This picture is similar to our previous model of an ex-

panding stellar wind bubble; but different in some re-

spects. First, obviously, is the δ-function nature of

the explosion. We expect that to change details, for

instance the power-law evolution of the radius of the

shock. In addition, we have to consider the radiative

cooling rate at the outer shell. With stellar winds, we

argued that the outer shock is radiative (isothermal);

this is justified (after the fact) by the high densities and

slow expansion speeds of the wind system. For SNR,

however, the situation is different. They can occur in

lower density regions (for instance an HII region?), and

have much higher explosion speeds (thus much hot-

ter post-shock temperatures). We must consider two

phases, then: (a) an early energy-conserving phase,

during which radiative losses are unimportant, and (b)

a later snowplow phase, in which the shell becomes

dense and cool, and the remnant evolves by momen-

tum conservation.

7.2.1 Early: energy conserving (Sedov) phase.

The remnant in this stage can be thought of as a

large hot bubble, filled with ambient gas that has been

through the outer, strong shock. Again, let the radius of

the outer shock be R(t). In this case, both the internal

and kinetic energies per mass are given by

e =
1

2
v2 =

9

32
Ṙ2 (7.13)

This is a direct post-shock result, and holds in a fixed

reference frame – one in which the shock is advancing

into a medium at rest. We will also assume that gra-

dients within the bubble are small so that (7.13) holds

throughout. ( This latter is an OK, but not wonderful,

assumption – cf. Figure 7.2.) The total energy is then

Etot =
4π

3
R3ρo

(

e+
1

2
v2
)

=
3π

4
ρoR

3Ṙ2 (7.14)

But now, we require Etot = ESN , the input energy

from the SN. We thus have an equation of motion for

the shock:

R3Ṙ2 =
4

3π

ESN

ρo
(7.15)

This solves to

R(t) =

(

25

3π

)1/5 (ESN

ρo

)1/5

t2/5 (7.16)
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and

V (t) = Ṙ(t) =
2

5

(

25

3π

)1/5(ESN

ρo

)1/5

t−3/5

(7.17)

Compare these to (7.9, 7.10) for a stellar wind: note

the different functional dependence on time.

To go further, the basic fluid equations can be used to

determine the structure of the interior of the hot bubble.

It is the well-known Sedov-Taylor solution. I do not

reproduce it here, but show the results (which must be

done numerically) in Figure 7.2.

Figure 7.2 Solution for the interior structure of the hot

bubble in the energy-conserving phase of the SNR. The ra-

dius is scaled to rsh = R(t) in our notation; this solution

preserves its functional shape as the remnant expands. From

Shu Fig. 17.3.

7.2.2 Late: momentum conserving (snowplow)

phase.

At some point the outer shell will cool; as its pressure

drops it will be compressed by the hot, expanding inner

gas. This is reminiscent of the outer shell in the wind

case, but with differences. Here, the dense shell con-

tains only a small fraction of the ISM which was ini-

tially inside R(t). In addition, the interior hot bubble

is not receiving ongoing energy input, so the pressure

on the outwards shell is dropping quickly with time.

The basic analysis of this late-time remnant, then, is

based on the simple assumption of momentum conser-

vation. Say the remnant enters this phase at some time

to, when it has radius Ro and velocity Ṙo. Conserva-

tion of momentum has,

4π

3
R3ρoṘ = constant =

4π

3
R3

oρoṘo (7.18)

and this integrates to

R(t) = Ro

[

1 + 4
Ṙo

Ro
(t− to)

]1/4

∝ t1/4 (7.19)

and

V (t) = Ṙ(t) = Ṙo

[

1 + 4
Ṙo

Ro
(t− to)

]−3/4

∝ t−3/4

(7.20)

where the last proportionality statements are valid for

t ≫ Ro/Ṙo. Thus, comparing this to (7.16,7.17)

shows that in the momentum-conserving phase, the

remnant expands more slowly . . . as one would ex-

pect, right?

Dyson & Williams present some numbers. The Sedov

phase has R(t) ≃ 3.6 × 10−4t2/5 pc, and V (t) ≃
4.4 × 109t−3/5 km/s (if t is in seconds). Strong cool-

ing typically takes over for Ṙo ∼ 250 km/s, giving

Ro ∼ 24 pc and an age ∼ 30 × 104 years. At that

point, about 1400M⊙ of ISM has been swept up –

much larger than the mass initially ejected (something

like 4M⊙). Thus, we are looking almost entirely at the

dynamics of the ISM which was dramatically heated in

the star’s explosion.

7.3 Plerions, a.k.a. pulsar wind nebulae

The preceding section discussed the “classical” picture

of supernova remnants, in which energy is injected at

one instant into the ambient ISM. Many galactic SNR

are well described by this model. But not all: in some

cases the exploding star leaves behind an active pul-

sar as its remnant. We now know that many (most?

all?) pulsars drive a relativistic wind out from the star.

The wind acts as a source of mass and energy, fill-

ing the interior of the SNR with hot (or relativistic)

plasma. These “filled” SNR used to be called pleri-

ons (mostly in the SNR community); these days they

are being called pulsar wind nebulae (in the ISM/X-

ray community). As far as I know the two terms refer

to the same type of object.

We have direct evidence of pulsar winds. For older

pulsars (those not currently within SNR), we see struc-

tures in the nearby ISM which are clearly bow shocks

associated with the star’s high-speed motion through

the ISM. From the standoff distance of the bow shock

we can estimate the wind energy, and compare it to

standard models of the pulsar. For young pulsars (those

still within their SNR), recent CHANDRA images di-

rectly reveal the outflow from the pulsars (at this point

there is a good handful of such images; the Crab and

Vela pulsars are the most famous). These outflow are

complex: they show jets, which presumably come out

along the star’s rotation axis (this is the only symme-
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try axis in the system), and equatorial winds, which

probably arise from the combined effects of the star’s

strong magnetic field and its rapid rotation.

When a relativistic wind hits the local ISM (which may

be the ejecta from the SN), we expect strong shocks

to form. Such shocks may be effective at accelerating

particles in the local plasma to relativistic energies (we

will discuss this in detail later in the course). Thus,

the material which has been through the shock may

contain a large fraction of relativistic particles – which

could, for instance, maintain the nonthermal emission

from the surrounding nebula (Crab or Vela). The dyan-

mics of such a system – assuming it’s close to spheri-

cally symmetric – are of course very similar to the dy-

namics of a stellar wind hitting the ISM.

Key points

• Solar-wind solutions (from last term);

• The outer wind shock and getting its location from

dimensional analysis;

• Supernova remnants, Sedov and snowplow phases;

• Plerions, what they are, how they work qualitatively.
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8 Relativistic particles in astrophysics

Based on our knowledge of cosmic rays and, less di-

rectly, of the relativistic electrons which radiate in

synchrotron sources, our general picture is of parti-

cles which are highly relativistic – that is, with γ =
E/mc2 ≫ 1 – but which are also tied to the back-

ground, thermal plasma in which they find themselves.

The distribution function of these particles is found to

be a power law, rather than a Maxwellian; thus, these

particles cannot have had time to thermalize (in the

two-body sense). In this section, we will consider the

dynamics of these particles and how they are tied to the

background plasma). Later on we’ll address how they

may be accelerated.

8.1 Recap: basics for relativistic particles

First, basic special relativity. The total total energy of

a relativistic particle is given by E2 = p2c2 + m2c4;

we also have the definition E = γmc2, where γ2 =
1/(1 − β2), and β = v/c. In the limit E ≫ mc2, we

also have E ≃ pc (which is exactly true for a photon,

of course; as the particle gets more relativistic, its rest

mass becomes less and less important). Note that the

Lorentz factor γ is often used to represent the energy;

the mc2 factor is implicitly carried along if you need

“real” units.

Power-law distribution functions (motivated by cosmic

rays) are often used:

f(E) = foE
−s , E1 ≤ E ≤ E2 (8.1)

or

n(γ) = noγ
−s , γ1 ≤ γ ≤ γ2 (8.2)

The exponent s depends on the system; the scaling

constant fo or no connects to the total number (or num-

ber density) of particles. That is, the total number of

particles will be N =
∫

f(E)dE =
∫

n(γ)dγ. It fol-

lows, then, that f(E) and n(γ) have different units –

watch out, this difference can bite you.1

1To be specific: the two DF’s are equivalent if

f(E)dE = n(γ)dγ ; f(E) = n(γ)dγ/dE

(so that we have the same number of particles “at E = γmc2”).

For the specific power law case, above, this gives

foE
−sdE = noγ

−sdγ ; fo = no(mc2)s−1.

Remaining question to the reader: how is no related to the total

number of particles N?

8.2 Quick overview of the observations

We have seen that astrophysical plasmas contain two

species. One species is the thermal interstellar gas

which we have been considering. In this context, its

important properties are that it seems to be well de-

scribed by a thermal equilibrium distribution function

(a Maxwell Boltzmann velocity distribution), and that

the energy per particle is subrelativistic. (Recall tem-

peratures range from O(10)K to O(106)K).

In addition, many astrophysical plasmas – including

the galactic ISM – contain a significant population of

highly relativistic particles which are not in a thermal

distribution. We saw last term that we have direct and

indirect evidence of these particles; I’ll review the ar-

guments here.

Baryons. Here we have direct evidence – these are

the cosmic rays. They are mostly protons, but there is

a heavy element component, with approximately solar

abundances (so they come from processed material).

They are very isotropic in arrival direction, probably

at all energies (although arrival directions for the very

highest energy particles remain uncertain).

• The baryon energy distribution is a power law,

N(E) ∝ E−s, with a break at E ∼ 1015 eV (the

“knee”), and another at E ∼ 1019 eV (the “ankle”).

The exponent s ∼ 2.7 below the ankle, and higher

above. Comparison of the gyroradius to the scale of the

galaxy suggests that the highest energy CR, above the

ankle, are extragalactic, while the lower energy ones

are galactic in origin.

Leptons. Here we have some direct evidence – the

lepton component in the cosmic ray spectrum can be

separated from the baryon component. The cosmic ray

lepton distribution falls much more steeply than the

baryon distribution, above energies ∼ 1 GeV, so that

its total contribution to the CR energy density is only

∼ 1% that of the baryons.

In addition, there is also abundant indirect evidence

fore highly relativistic electrons2 throughout the uni-

verse. Synchrotron radiation – which we will study in

detail in the next chapter – is common in many dif-

ferent settings. Because synchrotron radiation comes

from highly relativistic particles (with γ = E/mc2 ≫
1), we know immediately that synchrotron sources

have a relativistic lepton component. Examples of this

2Well, really leptons; we’ll discuss later whether we can distin-

guish electrons from positrons by their radiation signatures.
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are the galactic disk; supernova remnants, both stan-

dard and “filled”; radio jets from compact stars in X-

ray binaries; X- and γ-ray emission from pulsars; ra-

dio jets from active nuclei, and the radio lobes they

create; diffuse synchrotron emission from the plasma

in clusters of galaxies (including a few synchrotron-

bright shocks created when two clusters collide); and

quasars of course.

Looking ahead to the next chapter, we can note some

important characteristics of synchrotron radiation. It

requires magnetic fields and highly relativistic elec-

trons. The spectrum from a single particle, with energy

E = γmc2, peaks at a photon frequency

νsy ∼ 3

4π
γ2

eB

mc
(8.3)

Thus, for a uniform B field, one particle energy γ maps

directly to one (observed) photon frequency, ν. This

single, radiating particle has an energy loss rate

dE

dt
≃ 4

3
cσTγ

2B
2

8π
(8.4)

where σT = 6.65 × 10−25cm2 is the Thompson cross

section. Synchrotron radiation commonly has a power

law spectrum, which tells us (assuming the B field is

simple) that the underlying electron distribution is also

power law (just as it is in galactic cosmic rays). Typical

values for the photon spectrum are j(ν) ∝ ν−α, with

α ∼ 0.5 − 1.0; the associated electron distribution is

n(γ) ∝ γ−s, with s ∼ 2.0 − 3.0.

From(8.4), we see that higher energy electrons lose

energy faster that the lower energy ones, because

dE/dt ∝ E2; from this one can show that an initial

electron power law spectrum will develop a break at

the energy where the particle’s radiative lifetime equals

the age of the plasma. As the plasma gets older, this

break will move to lower energies (and thus to lower

photon frequencies).

8.3 Cosmic rays in the galactic setting

One of the big questions is, how are cosmic rays accel-

erated to such high energies, and how are they main-

tained there (why don’t they eventually thermalize with

the ISM)? Before we go there, let’s recap a few points

about cosmic rays from last fall (P425 notes).

Sources are thought to be two-fold. Supernova rem-

nants have long been thought to be the main source of

CR; I personally suspect that pulsars are probably also

an important source. Still another possibility is that the

highest energy CR may have an extragalactic origin.

Propagation and Trapping. Once generated, CR do

not just fly freely through space. Becuase they are

charged, they are connected to the ISM by their gyro-

motion, and by scattering on turbulent Alfven waves

in the ISM. Thus the CR distribution we observe at

earth may well have been seriously changed, relative

to their “birth” distribution, by propagation and scat-

tering through the ISM on their way to us. From nu-

clear abundances we learn that galactic CR typically

spend most of their life in the galaxy, not in the disk,

but rather in the more extended halo; and that its life-

time to escape from that halo ∼ 20 Myr.

Losses. The leptons, being of smaller mass, are sus-

ceptible to radiative losses (synchrotron in the galactic

magnetic field, inverse Compton scattering on what-

ever radiation is around) as well as Coulomb losses

(scattering on the plasma component of the ISM). This

also modifies the electron energy distribution, com-

pared to the source, and of course reduces the net en-

ergy in the electron component of the CR.

8.4 Particle acceleration, overview

Next, we consider the question of particle accelera-

tion: what is the origin of cosmic rays (which we ob-

serve directly at earth), and of the relativistic electrons

in such sources as supernova remnants and radio jets

(which we observe indirectly via their synchrotron ra-

diation)? How are these charged particles accelerated

to relativistic energies, and how are they maintained in

a non-Maxwellian distribution? The short answer is,

this must be done by electric fields, E 6= 0. Magnetic

fields do no work on the particles, and gravity is a con-

servative force (so that any energy a particle gains by

going into a gravitational potential well must be lost

again when it leaves the well). However, is it not easy

to maintain large-scale electric fields in space, where

the abundant free charges in astrophysical plasmas will

want to short out any static field. Two types of particle

acceleration models exist — which I tend to call “first

stage” and “second stage” mechanisms.

8.5 Particle acceleration, first stage mechanisms

One possibility is that an ordered, large-scale E field is

maintained in the region of some massive object, like a

star (thinking of solar flares) or a pulsar or an accretion

disk, where dynamic processes can maintain a strong
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dynamo; these are called first stage mechanisms. In

this situation there is no minimum energy threshold for

particle acceleration; any charged particle dropped in

a region with E 6= 0 will be energized. There may,

however, be an upper limit to the energy that can be

reached – due to the physical size of the system (and

the consequent limit on the overall potential drop,
∫

E ·
ds). There are a couple basic types of models here:

reconnection sites and unipolar dynamos.

8.5.1 Magnetic reconnection

You saw this last term; I’ll just store a recap here. Con-

sider a region in a plasma in which the direction of the

magnetic field reverses over a small spatial scale – for

instance, the neutral sheet in the earth’s magnetotail,

or the base of a flux tube footed in the solar photo-

sphere. The magnetic field in this region will find a

lower-energy state by “reconnecting”, that is by chang-

ing the magnetic field configuration. Such a region can

be the site of rapid conversion of stored magnetic en-

ergy to kinetic and internal energy of the plasma, Re-

connection is believed to be important in solar flares,

and has been observed in the earth’s magnetotail.

V

V

B

B

B

B
B

B

V V

V

V

Figure 8.1 The geometry of magnetic reconnection. Left,

a simple system before reconnection; the field lines have op-

posing directions and meet in a central current sheet (called

a neutral sheet), shaded in this figure. Right, with reconnec-

tion ongoing; some field lines have changed their topology,

and plasma is driven out of the neutral sheet across the re-

connected field lines. Think: which way do the current and

E field point in the neutral sheet?

The reason reconnection is important for particle ac-

celeration, is that the neutral sheet (where the magnetic

field goes through zero) contains an ordered electric

field, of strength

E = − c

4πσ
∇×B− 1

c
v ×B (8.5)

(This is just Ohm’s law, combined with Maxwell’s

equations; check the section earlier on flux freezing).

Here, σ is the electrical conductivity (not a cross sec-

tion). In the cartoons above, the E field will be in the

plane of the neutral sheet and perpendicular to the pa-

per. The maximum particle energy that can be reached,

then, is set by the potential drop across the neutral

sheet, ∆V =
∫

E · dl.

8.5.2 Unipolar dynamos

This is a jargon-word for massive, rotating, compact

objects – pulsars and accretion disks – which can sup-

port strong fields. (Refer back to Fig 9.3 of your P425

notes.) If a magnetic field is tied to the rotating matter

or plasma (say by a high conductivity, so that the field

is approximately flux-frozen), the rotation will cause a

field E = 1
cvrot ×B to be seen by a local observer.

The numbers that are in principle reached by rotat-

ing compact objects are impressive. For pulsars, flux-

freezing considerations estimate B ≃ 1012 G if the

field was originally the stellar field. The implied elec-

tric field can accelerate a particle to energies of 1016

eV if it operates over a distance ≈ Rns ≈ 10 km.

For an accretion disk around a black hole, the relevant

length scale is rg = GMbh/c
2, the magnetic field can

be 103 G, and the inner parts of the accretion disk ro-

tate at nearly lightspeed. In this case the potential drop

can reach 1019 V.

On the other hand, it is not obvious that these high

fields can be maintained – in fact it’s very unlikely.

The picture we have presented of a rotating, magne-

tized object is a vacuum argument. But the atmo-

spheres of such objects are likely to have some amount

of free charge, which may well short out a large part

of these maximum predicted potential drops. For one

example, think about a relativistic particle being ac-

celerated along the magnetic field line in a pulsar by

these strong E fields. As it gets accelerated, it radiates

– and the γ-ray photons it radiates can pair produce

in the pulsar’s strong magnetic field. The newly cre-

ated electron-positron pairs shield most of the rotation-

induced E field ... leading to a net particle energy only

∼ 10−6 or so of the maximum predicted by the simple

order-of-magnitude estimates.

These two families of models, reconnection and unipo-

lar dynamos, represent most of the models of particle

acceleration by large-scale electric fields. What are

the important characteristics of these models, as far

as their relevance to particle acceleration? First, all

charges which see E are accelerated. Second, the max-

imum energy that can be reached is given by the po-

tential drop; but real-world effects, mostly related to
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local plasmas (shorting out part of the potential drop,

or providing turbulence which can stop the speeding

particles before they reach E ∼ e∆V ). Third, due

to the effects just listed, much of the available energy

goes to heating the plasma rather than accelerating a

small fraction of the charged particles to high energies.

The final values of the output particle energies depend

on these details, of course. Observations of solar and

magnetospheric reconnection suggest that some frac-

tion of the charged particles are, indeed, accelerated to

well above thermal energies; but not to relativistic en-

ergies. (The output energy may well be larger in pul-

sars and galactic-nucleus accretion disks; but we can

only work from inference there). Thus, these mecha-

nisms are often thought of as a “first stage” in the ac-

celeration process; stochastic methods may take these

“seed” particles and boost them to much higher ener-

gies.

8.6 Particle acceleration, second stage

mechanisms

The other class of acceleration mechanisms invokes

stochastic electric fields, such as are found in plasma

turbulence. If the particles couple efficiently to the tur-

bulent E fields, they can gain energy from the turbu-

lence. There are again a couple of versions of this: true

turbulence (disordered plasma motions, for instance

somewhere in the dynamic ISM), or shock acceleration

(using shock physics to drive the turbulence).

The fundamental idea of stochastic particle acceration

was invented by Fermi in 1949; his physical picture

was rather naive, but described the basic stochastic

mechanism quite clearly. More recent work has im-

proved the physical description of the scattering mech-

anism, while retaining the basic idea.

We have already seen the most likely scattering mech-

anism: resonant interaction with Alfven waves. In this

situation there is a minimum particle energy which can

interact with the waves, as we saw last term. There-

fore, these models can be thought of as second stage

mechanisms, in that they take “seed” particles created

by first-stage mechanisms and accelerate them to very

high energies. The maximum energy which can be

reached here is also finite, and again tied to the size

of the system (which determines the maximum Alfven

wavelength which can exist, and also determines the

rate at which particles can leak out of the accelera-

tion region). But these upper limits can be higher,

in some astrophysical settings, than those provided by

first-stage mechanisms.

8.6.1 Fermi acceleration

This is the original picture. Think back to last term,

when we talked about “magnetic mirrors”. That is;

for a particle moving in a region of spatially changing

magnetic field, the magnetic moment, µ = p2⊥/2γmB
is conserved, as long as the time during which the par-

ticle sees the field to change is long compared to the

particle’s gyroperiod. But since p2 = p2⊥ + p2‖ is fixed

in the absence of external forces, p2⊥ ≤ p2. Thus, there

is a maximum value of B which is allowed; the particle

is kept out of high-field regions. This effect is called

magnetic mirroring.

Now, to apply this to cosmic rays, envision a field of

randomly moving mirrors (we can think of them as in-

terstellar clouds, or as clumps of high magnetic field)

on which the relativistic particles or cosmic rays scat-

ter elastically. We want the effect of many collisions

with these mirrors, on a particle distribution. Let the

mirrors have random velocity vm, and average spac-

ing L. If a particle is moving faster than the mirrors,

it can undergo either overtaking or head-on collisions.

In a single collision, the particle (mass m, velocity v)

suffers velocity and kinetic energy changes,

head− on :

∆v ≃ 2vm; ∆E ≃ 2mvm(v + vm)

overtaking :

∆v ≃ −2vm; ∆E ≃ 2mvm(v − vm)

(8.6)

But, the rate at which the particle suffers headon colli-

sions is ≃ (v+ vm)/L; its rate of overtaking collisions

is ≃ (v − vm)/L. Thus, the net rate of change of the

particle’s energy is

dE

dt
≃ (v + vm)

L
2mvm(v + vm)

− (v − vm)

L
2mvm(v − vm)

(8.7)

and this collects to the final form,

dE

dt
≃ 16

E

tcoll

(vm
v

)2
(8.8)

where we have written tcoll = L/v. While I wouldn’t

take the factor 16 too seriously, the fundamental form

is: dE/dt ∝ E/tcoll, which is the standard result for

Fermi acceleration.
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A couple of features are worth noting. One, this is a

test particle approach; the energy loss of the mirrors is

not taken into account. Two, the fractional energy gain

per collision is small, since vm ≪ v ≃ c; thus, the

acceleration time tacc ∼ E/(dE/dt) ∼ (v/vm)2tcoll.

What particle spectrum is predicted by this simple

model? One way to find this is as follows. From the

kinematics above, we found that the average energy

gain per collision is ∆E ∼ E(vm/c)2 if the parti-

cles are relativistic. Thus, after p collisions, a parti-

cle which started at Eo will have energy Ep after p
bounces:

Ep ≃ Eo

(

1 +
v2m
c2

)p

(8.9)

which can be written,

ln
Ep

Eo
= p ln

(

1 +
v2m
c2

)

≃ p
v2m
c2

. (8.10)

Now, let the particles have some chance, η, of escaping

from the acceleration region (something must end the

acceleration process, after all!). If the escape time ∼
τ , then η ∼ tcoll/τ . But, the number of particles at

Ep, Epf(Ep), is just the starting number, No, times

the probability of the particle staying in the system for

p bounces:

Epf(Ep) = NoP (p) = No(1− η)p (8.11)

which we can write as

ln[Epf(Ep)] = constant + p ln(1− η)

≃ const− pη
(8.12)

Combining this with (8.10), eliminating p and drop-

ping the p subscript, we find the predicted spectrum:

f(E) ∝ E−(1+ηc2/v2m) (8.13)

Thus, this model – Fermi acceleration plus a constant

probability of escape from the system – results in a

power law spectrum, as is observed in cosmic rays and

elsewhere.. However, as this model stands, the expo-

nent of the power paw, s = 1 + ηc2/v2m, is a sensitive

function of the mirror parameters and the escape time.

This is not very appealing, since the observed values of

s fall in the range 2 <∼s <∼3 almost everywhere (cosmic

rays, supernova remnants, radio galaxies, etc.).

8.6.2 Plasma turbulence: Alfven waves

Modern work has replaced Fermi’s picture of moving

magnetic mirrors with small-scale structures which can

scatter particles: most likely these are Alfven waves.

I’m sure you remember these waves, from last term.

They are transverse waves, which are not compressive,

and which propagate (in the simplest case) along the

magnetic field. Thus, they can be thought of as prop-

agating wiggles in the field lines. Their dispersion re-

lation is ω = kvA, with vA = B/
√
4πρ. Charged

particles interact resonantly with Alfven waves. A par-

ticle moving along B at some velocity v sees a Doppler

shifted frequency ω′ = ω(1− v/vA) = ω − kv. Now,

the particle will interact with the fluctuating E field

of the wave; if the particle “stays in phase” with this

fluctuating wave, it will undergo a strong interaction.

But this happens if the Doppler shifted wave frequency

is close to the particle’s natural frequency, its gyrofre-

quency. That is, the interaction is strong when

ω − kv = ±Ω(γ) (8.14)

For relativistic particles, with v ≫ vA, this condition

is equivalent to an equality between the particles gyro-

radius and the wave’s wavelength:

rL(γ) = γ
mc2

eB
≃ λres(γ) (8.15)

Numerically, note that particles with γ ∼ 103 in a field

B ∼ 1 µG have a gyroradius – and thus a resonant

Alfven wavelength – on the order of an AU.

If the Alfven waves are turbulent (say, just arising from

a turbulent background plasma, such as the ISM), the

picture above carries over directly; vm becomes vA,

and the concept of a scattering length L must be re-

placed with the wave energy density and some mea-

sure of the scattering cross section, similar to that used

above. This process is slow in many applications; it

has dE/dt ∝ v2A/c
2 (and thus is classically a “second

order Fermi process”). In addition, because it relies on

the wave-particle resonance, a particle at energy γ only

sees waves at λres(γ) – which can be a small fraction

of the total energy in the turbulence.

8.6.3 Turbulent shock acceleration

A faster version of turbulent acceleration ties the tur-

bulence to shock fronts. A shock must have v2 < v1
(the post-shock velocity must be less that the pre-shock
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velocity; right?). Thus, in the frame of the shock, the

flows on each side are converging. If the pre-shock

and post-shock plasma also carry Alfven turbulence, a

particle trapped in the shock region and bouncing back

and forth will undergo Fermi acceleration, but will suf-

fer only head-on collisions. With this picture, we can

specify the parameters in the above Fermi analysis. We

need two facts:

• The escape probability is the ratio of downstream to

upstream fluxes: η ≃ 4nrelv2/nrelv = 4v2/c.

• The energy gain of a particle per scattering turns out

to be

E′ = E
[1 + ve1(v1 − v2) cos θe1/c

2]

[1 + ve2(v1 − v2) cos θe2/c2]
(8.16)

if ve1, ve2, θe1 and θe2 are the velocities and angles of

the particle (electron, say), before and after it is scat-

tered. After p bounces, we have

ln
Ep

Eo
≃ 4

3
p
(v1 − v2)

c
(8.17)

With these, we can collect the algebra as above and

find the spectrum predicted by this model:

f(E) ∝ E−s; s =
v1 + 2v2
v1 − v2

(8.18)

Now, for a strong shock, v1 = 4v2, which predicts

s = 2; higher s values will be produced if the velocity

jump in the shock is < 4.

8.6.4 Energy limits for Alfven acceleration

What are the limits on particle energies that can be

scattered and accelerated by Alfven waves? The

particle-wave resonant condition (8.15) makes this

easy to answer. For the lower limit, we noted last

term that Alfven waves can only exist for frequencies

ω < Ωp = eB/mpc, the proton gyrofrequency. This

translates to a lower limit on the particles energies that

can “see” the waves (given in chapter 8 of P425 notes).

The highest particle energy which can possibly be ac-

celerated by Alfven waves is determined by the max-

imum wavelength that can exist in the system (which

can’t be any larger, clearly, than the physical size of

the system). In practice, however, particle acceleration

is limited by losses occuring at the same time as the

acceleration. If the losses are due to synchrotron radi-

ation, higher energy particles lose their energy more

rapidly (equation 8.4); this leads to a second upper

limit on the energy range of accelerated particles.

Key points

• Cosmic rays: in the galactic setting

• Relativistic electrons: indirectly “seen”

• First stage particle acceleration: where, what ener-

gies?

• Fermi acceleration, “classical”

• Alfven wave acceleration, shock and/or turbulent
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9 Synchrotron radiation

A single particle, undergoing gyromotion in a mag-

netic field, is of course accelerated; and thus it will

radiate. When the particle is subrelativistic, this pro-

cess is called cyclotron radiation; when the particle is

relativistic, the process is called synchrotron radiation.

We have already studied bremsstrahlung, a fundamen-

tal continuous radiation mechanism which is important

for thermal astrophysical plasmas. Synchrotron radi-

ation is the other common and important continuous

emission process. It is imortant for magnetized astro-

physical plasmas which contain a significant compo-

nent of relativistic electrons (or, yes, positrons) – com-

monly called a “nonthermal” plasma.

9.1 Total power

We start with the total power radiated by the particle,

over all frequencies. Let the particle have acceleration

a, with components a‖ along its direction of motion

(v), and a⊥ across the direction of motion (NOT the

direction of the magnetic field, here). In the particle’s

rest frame, the total power radiated as a function of

time is

P (t) =
2

3

e2

c3
|a(t)|2 (9.1)

In the observer’s frame, this becomes

P (t) =
2

3

e2

c3
γ4
(

a2⊥ + γ2a2‖

)

(9.2)

Now, for gyromotion, we have a‖ = 0 and a⊥ =
eBcβ⊥/γmc. Let the particle have pitch angle θ – so

that β⊥ = β sin θ. Then, the net power seen by the

observer, per particle at energy γ and pitch angle θ, is

Psy =
2

3

e4B2

m2c3
γ2β2 sin2 θ (9.3)

You should note that this expression assumes γ ≫ 1.

From an ensemble of particles, with an isotropic dis-

tribution of pitch angles, we note that 〈sin2 θ〉 = 2/3;

thus the average single-particle power is

〈Psy〉 =
4

9

e4B2

m2c3
γ2β2 (9.4)

Finally, we note that (9.4) can be rewritten in terms

of the magnetic energy density, uB = B2/8π,

and the Thompson scattering cross section, σT =
(8π/3)(e2/mec

2)2, as

〈Psy〉 =
4

3
cσTγ

2β2uB . (9.5)

9.2 Single particle spectrum

From the discussion of bremsstrahlung, recall: the

power as a function of time, P (t), reflects the time

dependence of the acceleration, a(t); the distribution

of this radiation over frequency – the spectrum – re-

flects the power (Fourier) spectrum of a2(t). In the

synchrotron case, the observed radiation varies with

time due to relativistic beaming effects, in addition to

the fundamental gyromotion. The power spectrum of

the observed P (t) turns out to contain power at fre-

quencies much higher than Ω/2π; this determines the

observed synchrotron emission spectrum.1

• First, guesstimate the answer. The important fact

here is that the radiation from a relativistic particle is

strongly beamed in the direction of the particle’s mo-

tion. A nonrelativistic particle radiates in a dipole pat-

tern, with the dipole axis aligned with the acceleration

a. However, for a relativistic particle, this dipole is

squeezed into a narrow forward cone, aligned with the

motion (v) and with opening angle ≃ 1/γ.

So, think about a relativistic particle in gyromotion.

You – as an observer – only see the particle’s radiation

once per orbit, when the particle’s velocity is within

1/γ of your line of sight. Say that the beam stays

within your line of sight for a time interval, ∆tobs.
You will then see a very narrow pulse, of duration,

∆tobs, once every gyroperiod. From our experience

with Fourier transforms, we know that most of the ra-

diated power must appear at a frequency ∼ 1/∆tobs,

rather than just at Ω (as you might naively guess if you

didn’t think about the beaming effects).

We can estimate ∆tobs from geometry. Let the part of

the particle’s orbit for which you see the radiation have

length ∆s = a∆φ, where a is the radius of curvature

of the path. We can find a from the equation of motion:

∆v

∆t
= v2

∆φ

∆s
=

e

γmc
vB sin θ (9.6)

so that a = ∆s/∆φ = γv/Ωo sin θ. Since ∆φ = 2/γ,

we have ∆s = 2a/γ = 2v/Ωo sin θ. Now, you see

a pulse of radiation; its emitted duration is ∆tem =
∆s/v; and the duration you observed is shortened by

the light-travel time, so that ∆tobs = ∆tem − ∆s/c.
Putting all of this together, we find

∆tobs =
2

Ωo sin θ
(1− β) ≃ 1

γ2Ωo sin θ
(9.7)

1As usual, Ω = eB/γmc = Ωo/γ is the relativistic gyrofre-

quency.
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where in the last step we have used 1/γ2 ≃ 2(1 − β),
which is valid when γ ≫ 1.

Thus – we find that the observed pulse has a duration ≃
2π/γ2Ωo (converting to Hz); we expect this to be the

highest frequency at which there is significant radiated

power.

• Now, do the math. When the calculation is done

more formally, the characteristic frequency for syn-

chrotron radiation turns out to be

νc =
3

4π
γ2

eB

mc
sin θ (9.8)

When the power spectrum is evaluated, we find that the

radiation can be separated into components which are

linearly polarized along and across the magnetic field,

as seen projected on the sky. These are called P‖ and

P⊥. Considering the strong forward beaming effect,

we would expect the component polarized at right an-

gles to the field to dominate (why? Is this clear to you?)

The form of the spectrum comes out to be

P⊥(ν,E) =

√
3

2

e3B sin θ

mc2

[

F

(

ν

νc

)

+G

(

ν

νc

)]

P‖(ν,E) =

√
3

2

e3B sin θ

mc2

[

F

(

ν

νc

)

−G

(

ν

νc

)]

(9.9)

where

G(x) = xK2/3(x) ; F (x) = x

∫ ∞

x
K5/3(x

′)dx′

and the K’s are Bessel functions. Since the F (x) and

G(x) functions behave similarly, this verifies that the

emissivity polarized transverse to the (projected) mag-

netic field is much stronger than the emissivity polar-

ized parallel to the field.

Clearly, the total power

P (ν,E) = P⊥(ν,E) + P‖(ν,E)

=
√
3
e3B sin θ

mc2
F

(

ν

νc

)

(9.10)

Both F (x) and G(x) peak at x ≃ 1. The asymptotic

behavior of F (x) is

F (x) → 4π√
3Γ(1/3)

(x

2

)1/3
x ≪ 1;

F (x) →
(πx

2

)1/2
e−x x ≫ 1

(9.11)

The function G(x) behaves similarly. Remembering

that x = ν/νc, this also verifies our guess: the radia-

tion peaks at νc and falls off exponentially above this.

Further, we note that the particle energy E = γmc2

enters the emissivity expressions (9.9) only through the

scaling of the argument, ν/νc.

9.3 Spectrum from a distribution of particle

energies

The next step is to find the spectrum radiated by a dis-

tribution of electron energies, f(E). Consider the total

emission, the sum of both polarized components, with

total power P (ν,E) = P‖(ν,E)+P⊥(ν,E). We have

for the total emissivity per volume,

jsy(ν) =
1

4π

∫

P (ν,E)f(E)dEdΩ (9.12)

We will assume f(E) is isotropic, and integrate over

solid angle, in what follows.

Motivated by the observed cosmic ray spectrum, and

the photon spectrum seen in many polarized radio

sources, we choose the usual power-law particle spec-

trum,

f(E) = foE
−s (9.13)

for the energy range Emin < E < Emax, where

Emax ≫ Emin is usually assumed. Note that there

must be an Emin; (9.13) diverges at low energies.

There may well be an Emax also – we’ll discuss that

later.

We put this DF into equation (9.12), and

write the single-particle power as P (ν,E) =
PoBF (ν/coBE2). From the form of P (ν,E) and

the energy range chosen, note that we expect strong

emission in the frequency range

νmin < ν < νmax (9.14)

where νmin = νc(Emin) and νmax = νc(Emax).
Putting this f(E) into (9.13), we get

jsy(ν) = PoBfo

∫ Emax

Emin

E−sF (ν/coBE2)dE

(9.15)

Now, by changing the variable of integration from E
to x = ν/coBE2, we end up with

jsy(ν) =PoB
(s+1)/2foν

−(s−1)/2

×
∫ xmax

xmin

x(s−3)/2F (x)dx
(9.16)
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Now, the integral in (9.16) can be evaluated numeri-

cally if xmin → 0 and xmax → ∞ (which is a reason-

able limit for the frequency range in (9.14); Pachol-

czyk, for instance, has numerical values. Thus, the

emissivity in (9.16) can be expressed numerically as

ǫsy(ν) = 4πjsy(ν)

= 1.18× 10−22a(s)foB
(s+1)/2

(

ν

2c1

)−α

(9.17)

where c1 = 6.3× 1018 Hz, α = (s− 1)/2 is called the

spectral index, a(s) is an order-unity function (noting

the dependence of the x-integral in (9.16) on s), and

everything in (9.17) is in cgs units.

Equation (9.17) is good only for the frequency range

(9.14). Outside this range, the emissivity will be domi-

nated by that of particles at Emin (for ν < νmin), or of

particles at Emax (for ν > νmax). Thus, for ν < νmin,

we expect

low ν ′s : jsy(ν) ∝ ν1/3 ; (9.18)

and for ν > νmax, we expect

high ν ′s : jsy(ν) ∝ ν1/2e−ν/νmax . (9.19)

These limits may be repeated in the total spectrum

from a plasma – we’ll discuss this below.

9.4 Polarization

We noted that, since P⊥ > P‖, the radiation from a sin-

gle particle is linearly polarized. The fractional linear

polarization is ususally defined as

π(ν) =
P⊥ − P‖

P⊥ + P‖
(9.20)

For a single particle energy, π(ν) =
G(ν/νc)/F (ν/νc). For a power-law distribution

of particle energies, both P⊥ and P‖ in (9.20) must be

integrated over particle energy; the result is

π =

∫

G(x)E−sdE
∫

F (x)E−sdE
=

s+ 1

s+ 7/3
(9.21)

where we have taken x = ν/νc as above. In evalu-

ating the integrals, we have used the fact that the in-

tegrals
∫∞
0 xpF (x)dx and

∫∞
0 xpG(x)dx can be ex-

pressed in closed form in terms of gamma functions.

Thus, a source with s ≃ 2− 3 will have ∼ 70% polar-

ization.

9.5 Synchrotron self-absorption

This is of course the inverse process – in which a free

electron in a magnetic field can absorb a photon. We

will treat this by relating the absorption probability

to the emissivity, taking stimulated emission into ac-

count, using a powerful statistical method developed

by Einstein, called Einstein coefficients.2 In order to

do this, we will represent the free electron energy state

as a discrete state in a continuum (and after all, even the

free electron phase space is quantized, remember), so

that the absorption is a transition between a lower state,

with energy E − hν, and momentum p(E − hν), and

an upper state with energy E and momentum p(E).

Referring to the Appendix, we see that the absorption

coefficient, at frequency ν, can be written in terms of

the populations of all pairs of upper and lower elec-

tronic states which are separated by hν of energy:

κν =
hν

4π

∑

E

[N(E − hν)B12 −N(E)B21] (9.22)

where N(E) ≃ f(E)dE is something like, “the num-

ber of electrons in the Eth state”, if f(E) is the elec-

tron distribution function. Now, we note several facts:

• B12 = B21 for free electrons, which have the same

degeneracy factors g1 = g2 for the upper and lower

states;

• A21 = (2hν3/c2)B21;

• Psy(ν,E) = hνA21 relates the single particle emis-

sivity to the A21 coefficient;

Now, we switch back from describing discrete electron

states to a continuous picture:

∑

E

n(E) →
∫

f(E)dE →
∫

f(p)d3p

We can thus rewrite (9.22) as

κν =
c2

8πhν3

∫

{f [p(E − hν)− f [p(E)]}

× P [ν,E(p)]d3p

(9.23)

Now, we can use the fact that the photon energy should

be small compared to the electron energy, hν ≪ E,

2We haven’t seen these formally; in case you haven’t seen them

in another class, I’m putting the important discussion in the Ap-

pendix to this chapter.



50 Physics 426 Notes Spring 2016

and expand the difference inside the braces in the inte-

grand:

f [p(E − hν)]− f [p(E)] ≃ hν

c

df(p)

dp
(9.24)

Finally, since we are still assuming an isotropic particle

distribution, we can go back to energy space by noting

that d3p = 4πp2dp = 4πE2c−3dE (where the lat-

ter assumes the particles are highly relativistic). This

gives us a general expression for the synchrotron ab-

sorption from a distribution of electrons,

κν = − c2

8πν2

∫

P (ν,E)E2 d

dE

[

f(E)

E2

]

dE (9.25)

Equation (9.25) is still general, except for the assump-

tion of an isotropic particle distribution. Now, if we

specify f(E) to be the usual power law, and use the

same variable transform as in (9.16), we find the syn-

chrotron self-absorption from a power-law electron

distribution:

κsy(ν) =(s+ 2)
c2

8π
Pofoc

(s+8)/2
o

×B(s+2)/2ν−(s+4)/2

∫

x−(s+1)/2F (x)dx

(9.26)

The x-integral, again, can be evaluated as a function

of s; note, s also appears in the exponents of other pa-

rameters in (9.27). If we pick s = 2.5 as typical, we

can evaluate the constants in κsy(ν) (using cgs units,

still!):

κsy(ν) ≃ 8× 10−40foB
(s+2)/2

(

ν

c1

)−(s+4)/2

(9.27)

9.6 Total synchrotron spectrum

Finally, we want to consider overall shape of the pho-

ton spectrum seen from a synchrotron source. When

we asked this question for a thermal source (such as

bremmstrahlung), we only had to deal with the radia-

tive transfer. Here, we must also deal with the underly-

ing electron spectrum – as we cannot assume it’s ther-

mal.

First, consider the effect of self-absorption on the

emergent spectrum from a synchrotron source. We re-

call the solution to the transfer equation:

Iν = Sν

(

1− e−τν
)

(9.28)

where Sν = jν/κν and τν =
∫

κνdx, integrated

through the source. This has the limiting solutions,

Iν → jνx for τν ≪ 1 (corresponding to high frequen-

cies for the synchrotron case), and Iν → Sν (corre-

sponding to low frequencies). Further, we note that

Sν ∝ ν5/2 from (9.17) and (9.27); since we have

assumed a non-Maxwellian electron distribution, we

should expect our source function not to be the low-

frequency limit of the black body spectrum.

The total spectrum from a source which has τν = 1
at some observed frequency will thus have a low-

frequency range,

Iν ∝ ν5/2 (9.29)

and a high frequency range,

Iν ∝ ν−(s−1)/2 (9.30)

(this is the optically thin range).

This is not the full answer, however. We pointed out

earlier that the electron distribution must have a low-

energy cutoff, Emin (with critical frequency νmin =
νc(Emin); and that it may also have a high-energy cut-

off, Emax (with critical frequency νmax = νc(Emax).
If we consider these limits, but ignore transfer, then we

expect three frequency ranges. Thus, a purely optically

thin spectrum will have a low-frequency range,

Iν ∝ ν1/3 (9.31)

(why? compare the single-particle spectrum, 9.10 and

9.11). The source will have a mid-frequency range,

Iν ∝ ν−(s−1)/2 (9.32)

This source will also have a turnover at high frequen-

cies, due to a cutoff in the electron energy distribution

(say at γmax). The most likely spectral form is

Iν ∝ e−ν/νmax (9.33)

A variant of this can be obtained if the high-energy

electron distribution does not cut off abruptly, but more

slowly, as is the case in some models of electron aging.

Finally: what might be the cause of low-energy and

high-energy cutoffs? The high-energy cutoff is com-

monly assumed to be due to what’s called “spectral ag-

ing”. That is: from (9.4) or (9.5), recall that the single

particle power goes as P ∝ E2. Thus, if we start with

a power law electron distribution (as in 9.13), the high-

est energy particles will lose energy the fastest. This
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leads to a truncation of the electron spectrum, at ener-

gies whose synchrotron lifetime equals the age of the

source. The low-energy cutoff is harder to specify. It

is likely to be due to the fundamental particle acceler-

ation mechanism. We discussed this in Chapter 8; it

may be that the low-γ limit of the resonance between

Alfven waves and accelerated particles produces this

Emin.
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Key points

• Single particle synchrotron power and spectrum;

• Synchrotron emission from a power-law particle DF;

• Synchrotron self-absorption;

• Total synchrotron spectrum: high and low ν cutoffs.

Appendix: Einstein coefficients

I’m taking this directly from Rybicki & Lightman. Re-

member Kirchoff’s law, jν = κνBν (which we saw

back in radiative transfer). This relates emission to ab-

sorption for a thermal emitter; clearly there must be

some relation between emission and absorption at the

microscopic level (described by quantum mechanics).

To find it, consider transitions between two discrete en-

ergy levels of an atom, the first with energy E and sta-

tistical weight g1, the second with energy E+hνo and

statistical weight g2. There are three possible radiative

transitions between them:

• Spontaneous emission occurs when the upper level

spontaneously emits a photon; this occurs whether or

not the atom sits in an external radiation field. We

define A21 as the probability per unit time (sec−1) of

this happening (in principle A21 could be calculated

from quantum physics if we knew all the details of the

atom).

• Absorption occurs in the presence of photons of en-

ergy hνo. We define another coefficient, B12, such that

B12J is the probability per time for absorption. An im-

portant detail here: the spectral line associated with the

transition has some finite width, δν, about νo (due to

energy level uncertainty, doppler and collisional broad-

ening, etc). If φ(ν) is the shape of this spectral line,

we define J =
∫

Jνφ(ν)dν as the weighted-mean in-

tensity over the line. Note that, if Jν varies slowly over

the line, φ(ν) acts like a delta function.

• Stimulated emission also occurs if there are photons

of energy hνo around. This wasn’t expected classi-

cally. Einstein found that it was needed in order to de-

rive Planck’s law; we now know it’s why masers mase

and lasers lase. We define a third coefficient, B21, so

that JB21 is the probability per time of a stimulated

emission event.

The game, then, is to use thermodynamic equilibrium

results to find relations between A21, B21 and B12. We

know three such results:

(i). In TE, the number of radiative transitions into state

1 must equal the number of transitions out of state 1.

If n1 and n2 are the number of atoms in the two states,

we know n1B12J = n2A21 + n2B21J .

(ii). In TE the ratio of level populations is given by

n2/n1 = (g2/g1)e
−hνo/KT .

(iii). In TE the photon field is given by the Planck func-

tion: J = Bν (for ν = νo).

These three facts are enough: we can solve the equa-

tions to show that the Einstein coefficients must satisfy

g1B12 = g2B21 ; A21 =
2hν3

c2
B21 (9.34)

That’s the main result. We can – in principle – use

quantum physics to determine A21 for any given tran-

sition; then (9.34) tells us what the B’s must be.

The Einstein coefficients can also be used to determine

the emission and absorption coefficients. Going back

to the definitions (chapter 3), we can build

jν =
hνo
4π

n2A21φ(ν) (9.35)

and

κν =
hνo
4π

(n1B12 − n2B21)φ(ν). (9.36)
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10 Pair plasmas in Astrophysics

Electron-positron pairs can also be important in the

physics of high energy plasmas and their interaction

with radiation. To set the stage: recall that the elec-

tron rest mass energy is 511 keV (or a temperature of

6× 109 K).

NOTATION: in this chapter, ǫ = hν/mec
2 is the nor-

malized photon energy (relative to the electron rest

mass). The normalized lepton energy is γ = E/mec
2,

as usual. Watch out: γ is also the “reaction notation”

for a photon (as in eqn. 10.1).

10.1 Pair annihilation

Free positrons will, of course, annihilate on electrons

(or any other form of “regular” matter). The most com-

mon decay is

e+ + e− → γ + γ (10.1)

The annihilation cross section, measured in the center

of momentum (CM) frame, is

σe+e− =
πr2o
γ + 1

[

γ2 + 4γ + 1

γ2 − 1
ln
(

γ +
√

γ2 − 1
)

− γ + 3
√

γ2 − 1

]

(10.2)

Here, γ is the lepton energy (in the CM frame), and

ro is the classical electron radius, defined as ro =
e2/mec

2 (in cgs). The Thomson cross section can be

written σT = 8πr2o/3.

The cross section has two useful limits. In the low-

energy case, β ≪ 1, the cross section becomes

σe+e− ≃ 1

β
πr2o (10.3)

This shows that the annihilation probability is very

high for electrons nearly at rest. The decay produces

two photons very close to the rest energy of the lep-

tons: hν ∼ mec
2, or ǫ = hν/mec

2 ≃ 1. This is the

annihilation line. In the high-energy case, γ ≫ 1, the

cross section becomes

σe+e− ≃ πr2o
γ

(ln 2γ − 1) (10.4)

The decay at high energies still produces two photons,

but the photons have a much broader energy spread.

The annihilation line becomes a broad annihilation

spectrum.

It is worth remembering that the electrons and

positrons will undergo all of the usual plasma interac-

tions and radiation, during the time that they exist (be-

fore they annihilate). They can support plasma waves,

emit synchrotron radiation, and all of the other pro-

cesses we have studied.

10.2 Pair creation

Electron-positron pairs can be created in a wide variety

of nuclear and electromagnetic interactions. I summa-

rize the three mechanisms that seem most important

astrophysically.

10.2.1 Two-photon pair production

Classical physics says that EM radiation is linear; su-

perposition is allowed, without affecting either incom-

ing signal. This is not always true, however. We learn

from quantum physics that two photons can interact to

produce pairs, or other particles, if their energy is high

enough. The process of interest here is

γ + γ → e+ + e− (10.5)

It can occur if the total incoming photon energy, in

the rest frame, is at least as large as two electron rest

masses. In the lab frame, this translates to ǫ1ǫ2 ≥ 1
(I’m keeping photon energies normalized to mec

2, to

shorten the notation. If you don’t accept this limit, do

the Lorentz transform for yourself, to check!). The

kinematics are simple in the CM frame: the two in-

coming photons must each have the same energy, and

likewise for the two created leptons. In the CM frame,

let β be the lepton velocity, and γ = (1 − β2)−1/2 be

its energy. Energetics require β2 = 1 − 1/ǫ1ǫ2. The

cross section for this process is

σγγ =
πr2o
2γ2

[

β(β2 − 2) + (3− β4) ln

(

1 + β

1− β

)]

(10.6)

This process can have an important impact on a lumi-

nous high-energy photon source (such as a gamma-ray

burster, or a very hot accretion disk). Consider the op-

tical depth of a gamma ray, at energy ǫ. It can react

with any photon that has energy above 1/ǫ. If L is the

luminosity of the source above this energy cutoff, then

the optical depth of the γ ray photon1 is

τγγ =
Lσγγ

4πRǫmec3
(10.7)

1Can you derive this?
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This shows that the source can be opaque to its own

radiation, if it has high luminosity and small size. Such

a source is called “compact”.

It is also possible for pairs to be produced in photon-

proton or photon-electron interactions: γ + p → p +
e++e−, and γ+e → e+e++e−. These reactions have

smaller cross sections than γγ pair production (smaller

by about the fine structure constant), and seem to be

less important astrophysically.

10.2.2 Pair production in pion decay

Another source of pair production is from pion decay.

Pi and mu mesons are unstable particles; once created,

they decay rapidly. The common decay chains are

π± → µ± + νµ/ν̄µ

πo → γ + γ

µ± → e± + νe/ν̄e + ν̄µ/νµ

(10.8)

Thus, neutral pions decay simply to γ-ray photons.

Charged pions, however, decay to muons which in turn

decay to leptons.

So: how are pions made astrophysically? We have seen

one mechanism, the interation of cosmic-ray protons

with the microwave background:

γ + p → p+ π + · · · (10.9)

This predicts that there should be some free pions, de-

caying to muons and leptons, everywhere in space.

In addition, particle-particle reactons can make pions.

The most common (there are many more I’m not list-

ing. . .) are proton-proton collisions:

p+ p → p+ n+ π+

→ p+ p+ πo

→ d+ π+

(10.10)

The velocity-weighted cross section for π production

in a thermal pp reaction is

〈σppv〉 ≃ 4× 10−16 (lnT12) cm
3s−1 (10.11)

if T12 is the proton temperature in units of 1012 K.

This form is good for temperatures above ∼ 100 MeV;

at lower temperatures the cross section drops rapidly.

One application of this process is to hot accretion

disks. Some models predict that the inner part of the

disks will be hot enough for pion production to take

place.

10.3 Magnetic pair production

Relativistic kinematics tells us that a free photon, in

vacuum, cannot create a massive particle (or particles);

the process cannot conserve energy and momentum.

Single-photon pair production is possible, however, in

the presence of a strong magnetic field. This process

requires high photon energies (in order to create the

lepton rest masses), and also high magnetic fields. The

field must be close to the so-called critical field, given

by

h̄
eBcrit

mec
= mec

2 ; Bcrit ≃ 4.4 × 1013 G (10.12)

Energetics require that the photon satisfy

ǫ sin θ ≥ 2 (10.13)

if θ is the angle between the photon’s wavevector and

the magnetic field. The probability of this process oc-

curing is given in terms of an attenuation coefficient,

κ(χ) ≃ 1.5
α

λc

B

Bcrit
e−4/3χ ; χ =

ǫ

2

B

Bcrit
sin θ

(10.14)

Here, α = e2/h̄c is the fine structure constant, and

λc = h/mec is the Compton wavelength of the elec-

tron. This quantity κ is essentially an absorption coef-

ficient: the “opacity” the photon sees is τ =
∫

κ(χ)dx.

Magnetic pair production is thought to be important in

pulsars. You recall that these are strongly magnetized

neutron stars. The high electric fields induced by the

rapid rotation and strong B field pull charges off the

star’s surface and accelerate them to very high ener-

gies. These charges then emit γ rays, either by curva-

ture radiation (related to synchrotron emission) or by

inverse Compton scattering of thermal X-rays emitted

by the star. These γ rays can then pair produce. The

pairs themselves emit more γ rays, probably through

synchrotron radiation. These secondary γ rays then

make more pairs, which emit more photons . . . and

a pair cascade develops. The resultant dense pair at-

mosphere is thought to be the source of the coherent

pulsar radiation.

A very similar process may occur close to a massive

black hole in the center of an active galaxy. While

these models have not been as extensively developed

as pulsar models, the basic ingredients are the same.

The black hole, or the accretion disk feeding it, are al-

most certainly magnetized. Rotation will induce strong
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electric fields, which can accelerate charges to high en-

ergies. In addition, the accretion flow is probably a

strong γ ray source itself. Thus, both two-photon and

single-photon pair cascades are possible in this setting.

Such a pair plasma may be the initial content of the

directed, relativistic radio jets created by the nuclear

black holes.

Key points

• Pair annihiliation: what it is, the magnitude of the

cross section.

• “Particle” pair production, two types, what it is.

• Magnetic pair production, what it is, its “probabil-

ity”.
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11 (Inverse) Compton scattering

We have one more radiation mechanism to cover,

which is particularly relevant to compact objects and

relativistic (synchrotron) plasmas.

NOTATION: in this chapter ǫ = hν is the photon en-

ergy (in physical units, such as erg) ... sorry for the

switch, folks, it’s the standard notation.

11.1 Basic Tools

We need to use several different things here.

11.1.1 One event seen in the ERF

To start, go back to simple Compton scattering, as you

saw it in modern physics. Work in a frame where the

electron is at rest,1 and hit it with an incoming photon,

of energy ǫ′. The photon scatters through an angle θ′1,

and to an energy ǫ′1, with

ǫ′1 =
ǫ′

1 + (ǫ′/mc2)(1− cos θ′1)
(11.1)

Clearly, the electron gains momentum and energy after

the scattering, and the photon loses energy, ǫ′1 < ǫ′.

’ε

ε

θ

p

1
= h ν ’’

’

’

1

Figure 11.1 The geometry of compton scattering, in the

electron rest frame (ERF). The photon comes in with ǫ′ =
hν′, and leaves at angle θ′

1
with ǫ′

1
; the electron gains mo-

mentum p.

11.1.2 Cross sections

In order to get the Compton-scattered spectrum, we’ll

need to know the probability that the electron scatters

into angle θ′1 in the ERF, then average over all angles.

The probability comes from quantum electrodynamics,

and is called the Klein-Nishina formula:

dσ

dΩ
=

r2o
2

(

ǫ′1
ǫ′

)2( ǫ′

ǫ′1
+

ǫ′1
ǫ′

− sin2 θ′1

)

(11.2)

where ro = e2/mec
2 is the classical electron radius,

and dΩ is the differential solid angle for the scattering.

1This observing frame is called the Electron Rest Frame, ERF.

If we want the total scattering cross section, still in the

ERF, we integrate (11.2) over dΩ:

σ =

∫

dσ

dΩ
dΩ

The general result is a long expression, and the limits

are more useful. For x = ǫ/mc2:

x ≪ 1 : σ ≃ σT ;

x ≫ 1 : σ ≃ 3

8
σT

1

x

(

ln 2x+
1

2

)

(11.3)

(recalling that σT = 8πr2o/3). Thus, for low photon

energies, the scattering cross section is just σT ; for

high photon energies, it’s more complicated. Note,

finally, that these relations hold in the ERF. If we’re

looking at a scattering event in the lab frame, we know

that the photon energy is ǫ′ ≃ γǫ; thus the transition

energy in (11.3), namely x = 1, becomes γǫ = mc2.

11.1.3 Remember your relativity

Here’s a review if you need it.

• Lorentz transforms. Because our next step will be

transforming between the ERF and the lab frame, we’ll

need to remember some Lorentz transforms. Figure

11.2 has the geometry. You remember that x position

(along the motions) and time transform as

x′ = γ(x− βct) ; t′ = γ(t− βx/c) (11.4)

and, of course, the inverse transforms are just

x = γ(x′ + βct′) ; t = γ(t′ + βx′/c) (11.5)

(Think about which way the “frame” is moving, and

you can tell what to do about the + and − signs). You

also probably remember that the coordinates y and z
transverse to the motion don’t change.

But now: several other important physical quantities

transform just the same as position x and time do –

these are called 4-vectors. For a particle (massive or

massless), momentum p and energy E are a 4-vector;

so are wavenumber k and frequency ω if we’re work-

ing with a wave. We therefore have (keeping track of

units)

p′x = γ(px − βE/c) ; E′ = γ(E − βpxc) (11.6)

and

k′x = γ(kx − βω/c) ; ω′ = γ(ω − βkxc) (11.7)
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c

x

y

z

x’

y’

z’

v= β

Figure 11.2 The geometry of our Lorentz transforms.

The primed frame is moving at v = βc along the x-axis;

the unprimed frame is the “lab”.

(and their respective inverses). Note that angle trans-

forms can be found from the components of p or k,

as needed. If we apply these results to photons, which

have E = pc and ω = ck, they collapse to one trans-

form,

ω′ = ωγ(1− β cos θ) (11.8)

where cos θ = kx/k selects out the k component along

the direction of motion. We’ll use this in a few min-

utes.

• Invariants. Some important quantities can be shown

to be invariant – that is, to have the same value mea-

sured in either the lab frame or the moving frame. I’m

not going to prove these here – you can look at Ry-

bicki & Lightmann if you’re curious. We’ll need two

important facts:

• We’re interested in the power radiated (say by an ac-

celerated particle). This is one invariant:

dE

dt
=

dE′

dt′
(11.9)

• We’ll want to work with the photon spectrum; let

n(ǫ)dǫ be the number of photons “at ǫ”. It turns out

that the ratio

n(ǫ)dǫ

ǫ
=

n′(ǫ′)dǫ′

ǫ′
(11.10)

is also an invariant.

11.2 Scattering as seen in the lab

What then is “inverse” compton scattering? If the elec-

tron is moving, and has more (kinetic) energy than the

photon, the photon will tend to gain energy in the col-

lision (at the expense of the electron). The only dif-

ference between this and the simple version in (11.1)

is the frame from which one views the collision ... but

the moving-electron case is traditionally called Inverse

Compton Scattering (ICS).

Thus, think of a situation where the photon has energy

ǫ = hν and the electron has energy γmec
2 before the

scattering. We can analyze this by doing a Lorentz

transform to a frame moving with the (γ, β) of the

electron – the electron rest frame (ERF), and let it be

the primed frame – in that frame (11.1) applies. In the

ERF, we know the electron has β′ = 0 (by definition!),

and from (11.8), the photon has ǫ′ = γǫ(1 − β cos θ),
where θ is the angle between the photon and electron

momenta in the lab. Let the scattering take place, then

transform back to the lab; the new photon energy in the

lab is

ǫ1 = ǫ′1γ(1 + β cos θ′1) (11.11)

(remember that ǫ′, ǫ′1 are related by 11.1). Thus, for a

given electron and photon energy before the scattering,

ǫ′ depends only on the scattering angle in the ERF.

11.2.1 Single particle radiation

The simplest application of this is to find the power

emitted by an electron exposed to some photon field.

By far the easiest way is to work in the ERF – where

the scattering is simple – and transform to and from the

lab as needed. We’ll use basic Lorentz transforms, and

the invariants (described above, in 11.9 and 11.10).

With this approach, it’s not hard to find the total power

scattered by our electron sitting in the radiation field

n(ǫ). In the ERF, that power is

dE′

dt′
= cσT

∫

n(ǫ′)ǫ′1(ǫ
′, θ′1)dǫ

′ (11.12)

where we’re assuming ǫ′1 from (11.1). The integrals

here are over the photon spectrum. Because of the in-

variants, it’s easy to write this in the lab frame:

dE

dt
= cσT

∫

(ǫ′)2
n′dǫ′

ǫ′

= cσTγ
2

∫

(1− β cos θ)2ǫn(ǫ)dǫ

(11.13)

where we’ve used the basic Doppler shift, ǫ′ = γǫ(1−
β cos θ) in the last step.

Now: let the photon field be isotropic. The angle

average of (1 − β cos θ)2 is just 1 + β2/3; so the

Compton-scattered power, angle-averaged and assum-

ing an isotropic photon field, is

dE

dt
= cσTγ

2

(

1 +
1

3
β2

)

urad (11.14)
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because urad =
∫

ǫn(ǫ)dǫ is the radiation density that

the electron sees. Finally, then, we want the energy lost

by the electron – its Inverse Compton power. That’s

just the scattered power minus the incoming power:

PIC =
dE

dt
− cσTurad =

4

3
cσTγ

2β2urad (11.15)

(Does this form look familiar? Compare the relativistic

limit, β ≃ 1, to the expression for synchrotron power,

equation 9.5).

11.2.2 Single particle spectrum

Next, we want the spectrum of the scattered radia-

tion. Unlike our previous applications (synchrotron

and bremsstrahlung), we’re not talking about Fourier

analysis here. Rather, we know that a single scattering

event leads to a photon energy ǫ1, given by (11.11).

But ǫ1 depends only on the angles θ, θ′1. One of these

is the input condition (the angle between the incom-

ing photons and the electron’s motion). For the other,

we know the probability of scattering into that angle –

from dσ/dΩ, (11.2). Thus, to get the photon spectrum

– the probability of scattering giving an output ǫ′ – we

just can carry out the angle average of (11.11), using

(11.2).

Because the power radiated depends on the photon

field as well as the electron energy, we need to as-

sume something about the radiation field. If the radi-

ation is isotropic and monoenergetic, at photon energy

ǫo = hνo, we can call its intensity I(ǫ) = Foδ(ǫ− ǫo).
The angle averaging then gives (after much algebra),

Pic(ǫ1) = 3σTFoFic(x) (11.16)

where we’ve defined

x =
ǫ1

4γ2ǫo
(11.17)

and the kernel function is

Fic(x) = x
(

2x ln x+ x+ 1− 2x2
)

(11.18)

Compare the single-particle synchrotron spectrum,

from (9.9) and (9.11): it is a narrow function which

peaks at ν ≃ νc. Similarly, the function Fic is a nar-

row function which peaks at ν ≃ 2γ2νo. Thus we have

a “characteristic” frequency for inverse Compton scat-

tering, just as we had for synchrotron.

11.3 Composite spectra

In our previous derivations, we integrated the single-

particle spectrum over the distribution of particle en-

ergies, to find the volume emissivity (we did this be-

fore, for bremsstrahlung and synchrotron). It’s more

complicated than the previous derivations, because (i)

we have to assume an input photon spectrum, and (ii)

we really have to worry about whether a photon scat-

ters once, or many times. Instead of doing the general

problem, I’ll just look at two simple limits.

11.3.1 Nonrelativistic electrons

In this case, each scattering leads to only a

very small change in the photon energy: ǫ′1 ≃
ǫ1
[

1− (ǫ′/mc2)(1 − cos θ′)
]

. If we use (11.2), and

do angle averaging, we find that the average energy

gain per photon, scattering on electrons at temperature

T , is
δǫ

ǫ
≃
(

4kT − ǫ

mc2

)

(11.19)

Thus, one scattering can be significant to the radiation

source (for instance the microwave background, scat-

tering as it passes through a cluster of galaxies); but it

makes little difference to the photon spectrum, as long

as kT ≪ mc2.

11.3.2 Relativistic electrons, single scattering

The ICS kernel in (11.16, 11.18) peaks at ǫ1 ≃ 2γ2ǫo
– that comes from the mean scattered photon energy.

(It’s easy to show that 4γ2ǫo is the maximum possi-

ble scattered energy; the mean will be somewhat less

than this). In most astrophysical applications, the ICS

opacity through a source is low, so the photons only

scatter once (if at all). Thus IC scattering on electrons

at energy γ boosts low-frequency radiation by ∼ γ2.

The low frequency photons might be synchrotron pho-

tons from the electrons themselves (in which case this

is called “synchrotron self-compton” radiation, SSC);

or they might be microwave background photons.

11.3.3 Scattering from power-law electrons

Put a distribution of relativisitic electrons, n(γ) again,

in a photon field with spectrum F (ν ′).2 If the photons

are monoenergetic at νo, we have F (ν ′) = Foδ(ν
′ −

2Notation alert: in this section I’m letting ν′ be the incoming

photon energy – so that ν can refer to the scattered photon energy,

which is our desired final result.
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νo) (from above). Looking back to (11.16, 11.18), it

will be useful to rewrite the ICS power from a single

scattering by a relativistic electron as

P (ν; νo, γ) =
3

4

σT
γ2

Fo
ν

νo
fic(x) (11.20)

where fic(x) = 2x ln x+x+1−2x2. If we replace the

monoenergetic photon field by a spectrum F (ν ′), we

can find the emergent (singly) scattered ICS spectrum

by integrating over the photon spectrum and the energy

distribution:

4πjic(ν) = 3πσT

∫ ∫

n(γ)
1

γ2
ν

ν ′
F (ν ′)fic(x)dγdν

′

(11.21)

where x = ν/(4γ2ν ′), as before. Because this is simi-

lar to the integrand we encountered in our synchrotron

analysis, we can use a similar variable transform. Let x
and ν be the integration variables now; for our power-

law electron distribution take

n(γ) = noγ
−s

as usual. With this, the integral in (11.21) becomes

jic(ν) =
3

4
2sσTnoν

−(s−1)/2

∫

F (ν ′)(ν ′)(s−1)/2dν ′

×
∫

x(s−1)/2fic(x)dx

(11.22)

This looks horrible, yes; but we’re almost there. The

last integral, over x, is just a number, because fic(x)
is a simple function. In addition, the first integral, over

ν ′, depends only on the photon spectrum. If we specify

F (ν ′) (for instance the black body spectrum of the mi-

crowave background; or maybe the synchrotron spec-

trum of the electrons themselves), this first integral can

be worked out. Thus, we have the important result: the

ICS spectrum from a power-law electron distribution,

for single scattering, obeys

jic(ν) ∝ noν
−(s−1)/2 (11.23)

That is: if the electrons are a power law, the ICS spec-

trum is also a power law, with spectral index (s−1)/2.

This is, of course, the same spectral index as that for

synchrotron emission from the same electrons – only

we must remember that the ICS photons come out at

much higher energies.

References

Once again, this is mostly from my own notes; but you

can find more details in

• Rybicki & Lightmann.

Key points

• Compton scattering: what it is, physically, and what

“inverse” is.

• Single particle ICS, power and spectrum.

• ICS from thermal (nonrelativistic) electrons.

• ICS from relativistic, power-law electrons.
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12 Pulsars: overview and some physics

Carroll & Ostlie present the basic picture in some de-

tail; another good reference is Longair’s High Energy

Astrophysics. In these notes I’ll be brief about the ba-

sics, and emphasize the physics inside the basic model,

as well as newer work on high-energy emission and

pulsar winds.

12.1 The basic picture

What can cause a star’s brightness to pulse as quickly

as 100 times a second? That was the immediate ques-

tion when pulsars were discovered. Stars with longer-

period variability are “beating” – that is undergoing

body-mode oscillations. But we know a fair bit about

normal modes in stars, and none can have so high a

frequency. So we must consider rotation; perhaps a

hot spot on the star rotates past our line of sight? This

was more promising ... but the most compact star then

known, a white dwarf, is too big. Remember the rota-

tion rate is limited by lightspeed at the star’s surface, as

well as by the stability (gravitational binding energy)

of the star. Only neutron stars – which were predicted

by theory but not yet proved to exist – could explain

such a short period.

12.1.1 The cartoon

Thus the basic picture was born: an isolated pulsar is

a rapidly rotating neutron star with a small, radio-loud

“hot spot”. But why is there a “hot spot”? Why does

the star’s rotation slow down? We think the star is

strongly magnetized. We expect this to follow if the

NS is made in the core collapse of a supernova; flux

freezing will lead to a very strong magnetc field in the

NS. But this can, in principle, answer both questions.

Two things cause the star to slow down. A rotating

magnetic field emits magnetic dipole radiation; by en-

ergy conservation this must lead to spindown. If the

star sits in vacuum this is the only energy loss. If it sits

in the ISM, however, there will also be some torque be-

tween the star and the ISM, probably mediated by the

magnetic field and/or the plasma outflow from the star

(as discussed below).

If the star is strongly magnetized and if the magnetic

dipole is set at an angle to the rotation axis, we also

have a ready cartoon for why it pulses, as follows.

Close to the star the magnetic field will be dipolar and

will rotate with the star, as will any plasma which is

tied to these dipolar field lines. However, at the light

cylinder radius, that is rLC = c/Ω if Ω is the rotation

rate, the plasma cannot corotate with the star. Magnetic

field lines which start close to the magnetic pole will

not be able to turn around (“close”) before they reach

rLC ; rather they must connect to the B field of the local

ISM. Plasma can therefore flow out along these open

field lines. If the B field is dipolar, field lines within an-

gle ∼ (R∗/rLC)
1/2 of the magnetic axis will be open.

If this outflowing plasma can – somehow – make in-

tense radio emission, which is strongly beamed for-

ward along the open field lines, then we will see strong

radio pulses only for the fraction of the rotation period

when the beamed radiation intersects our line of sight.

Figure 2.1.1 Cartoon of the standard picture of a pulsar.

From Ransom & Condon, NRAO.

12.1.2 And some details

• Typical numbers for single pulsars. The star’s ra-

dius R∗ ∼ 10 km (from NS models). The light cylin-

der is typically at ∼ 1000R∗ (but this of course de-

pends on the rotation rate Ω). The open field line

region is a few degrees across at the star’s surface.

From the duty cycle of the radio pulses, and the as-

sumption that the radio-loud plasma fills the open field

line region, we infer the radio emission comes from

∼ 3− 30R∗ above the surface.

• Energetics. An isolated pulsar (one not in a binary

system) is living off its rotational energy, In terms of its

rotation rate Ω and the associated period P = 2π/Ω,
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this is

Erot =
1

2
IΩ2 =

2π2I

P 2
;

Ėrot = IΩΩ̇ = −4π2I
Ṗ

P 3

(12.1)

As you remember (yes?) from basic mechanics, I is

the moment of inertia; if the NS were a homogeneous

sphere, we would have I = 2MR2/5. Pulsar people

generaly take M >∼ 1M⊙, and R ∼ 10 km. These are

probably pretty good guesses, although details of the

as-yet-unknown equation of state in the star’s core can

matter here. The 2/5 factor in I is much less certain,

due to our ignorance of the internal state of the star

and the importance of general relativity in the star’s

structure. Many authors choose I ≃ 1045 (cgs) as a

“typical” value, and scale to I45. Collecting these es-

timates, we find a large range for the power source,

Ėrot ∼ 1032 − 1038 erg/s, for old to young pulsars.

• How strong is the B field? Remember we have

no direct measure; and that very few NS sit in vac-

uum. Everyone in the field ignores this latter, and

assumes that magnetic dipole radiation dominates the

spindown. To remind you: magnetic dipole radiation

comes from the time-dependence of the star’s magnetic

moment, m. If this time dependence comes from the

star’s rotation, we get for a star rotating at Ω and a mag-

netic axis oriented at α relative to the rotation axis,

Pmag dip =
2|m̈|2
3c3

=
2

3

(Ω2m)2

c3
sin2 α (12.2)

Now, the magnetic moment is connected to the mag-

netic field at the star’s surface and magnetic pole by

m = B∗R
3
∗/2. But P and Ṗ can be carefully mea-

sured; so, by equating Ėrot (from 12.1) to Pmag dip

(12.2), we can “derive” the B field: B∗ ≃ 3.2 ×
1019(PṖ )1/2. Putting in typical P ’s and Ṗ ’s for sin-

gle pulsars, we find B∗ ∼ 1011 − 1013 G is the ex-

pected range. Finally, note that things get interesting

when the field is close to the quantum field, defined by

h̄eBcr/mec ∼ mec
2: Bcr ∼ 4.4× 1013G.

12.2 Spin a magnetic field

If the basic picture – a rapidly rotating, strongly mag-

netized neutron star – is correct, then some striking

physics follows. If you spin a B field, you generate

an E field. Think about ∂B/∂t, let ẑ be the rota-

tion axis,1 and remember that the rotation velocity is

1I can’t do bold Greek; so please pretend Ω is a vector, Ωẑ.

vrot = Ω × r. The E field generated, measured in the

inertial (“lab”) frame, is

Eco = −vrot ×B/c = −(Ω× r)×B/c (12.3)

(I’m calling this the “corotation field”, for reasons

explained below). The important issue for the local

physics is whether this E field is felt, at full strength,

by the plasma around the star, and how that plasma re-

sponds.

To think about the impact of this on the NS, consider

two scenarios. Both are still current in the field, and

both lead to strong E fields, and high particle energies,

in the open field line region.

12.2.1 Star in vacuum

Inside the star, we assume the matter and field corotate.

The free charge must arrange itself into regions of pos-

itive and negative charge, so that the resulting E field

just balances the v × B force. Thus, there must exist

a physical E field, equal to that in (12.3), so that the

net force measured in the corotating frame is zero. But

this physical field has a non-zero divergence, so must

be supported by a local charge density:

ρco =
1

4π
∇ · Eco ≃ −Ω ·B

2πc
(12.4)

(the ≃ means I’m dropping terms ∼ vrot/c; thus this

is valid only well inside the light cylinder). Thus: the

matter inside the star must have a net charge density,

which is quadropolar: one sign towards the two poles,

the opposite sign towards the equator.

Outside of the star, the E field will be a vacuum so-

lution (by assumption, there are no charges outside),

determined by the charge distribution of the star. But

we know that from basic E&M, we can just solve

Laplace’s equation (∇2Φ = 0, if E = −∇Φ) in the

vacuum region, matching the potential and tangen-

tial field at the star’s surface. Those solutions can be

worked out, but I won’t bore you with the details. The

interesting part of the solution is strength of the field,

E ∼ BΩR∗/c, and the fact that the E field in the polar

cap region has a strong component parallel to B (call

it E‖). From this, we can infer that any free charges

in the region will be accelerated to high energies – at

least in the open field line region. It may be that these

strong fields can even pull charges from the surface of

the star (which is mostly but not totally neutrons) ... so

that the external vacuum may not last for long.
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12.2.2 Filled magnetosphere

Consider the other alternative, that the region above

the star’s surface is filled with plasma. We know the

charge density needed if this plasma is to corotate with

the star; it’s just (12.4). Most authors assume that

the plasma within the closed field line region has just

this charge density, so that the free charge shields the

rotation-induced E field, giving the net E = 0 (mea-

sured in the corotating frame). With no net force, the

plasma in the region will be static, again relative to the

corotating frame. In fact, consider the consequences

if the local plasma differed from ρco: there would be

a finite unshielded E field, and the free charges in the

plasma would move so as to cancel the field. Such a

situation would not be stable, nor likely to last for very

long. Thus corotating plasma is likely on closed field

lines.

The situation in the open field line region can be more

interesting, however. Charges leaving the star’s sur-

face must start at low velocity, and go through an ac-

celeration region in which they reach their final energy.

If the flow is steady, the charge density must vary in-

versely with the particle speed. In addition, particles

can leave the star along the open field lines, presum-

ably at high speeds. If the particle outflow carries a net

charge, a current is driven out from the star; as with

any electrical system, current density is sensitive to the

global circuit (return path, driving voltage and net re-

sistance). From these arguments we suspect that the

rotation-induced E is not fully shielded in at least part

of the open field line region. Any unshielded E‖ will

accelerate particles and drive the outflow/current.2

12.3 Radio emission and the pair cascade

Pulsars were discovered by their very intense, pulsed

radio emission. Many, many papers have been gener-

ated about observations and models of this emission.

However, it turns out to be only the small tail of the

dog: the total radio power is a very small fraction of

the spin-down power, Ėrot. In addition, we don’t know

what causes the radio emission. From the observed

very high brightness temperatures (TB ∼ 1035 might

be typical), we know the emission cannot be due to

2The real question is what the net, unshielded, potential drop

is, and thus particle energies are reached. Typical models suggest

Lorentz factors γ ∼ 106−107 are reached; but I wouldn’t suggest

overmuch confidence in this, the situation is complicated and still

not well understood.

any of the incoherent processes which apply elsewhere

in astrophysics. No plasma can be physically so hot

(why?? what would happen to the particles??) so TB

cannot be a physical temperature (as it would if it were

thermal emission); nor can this be synchrotron radia-

tion (remember the TB ∼ 1012K limit for synchrotron,

which we saw earlier). Thus we must be seeing a col-

lective or coherent emission mechanism; and these are

far from understood.

Despite lack of a solid model, a complex scenario has

evolved to describe where and how the radio emis-

sion is likely to occur. To start, let’s stay within the

open field line region, where we have just argued that

charges are accelerated to very high Lorentz factors.

There are two ways in which these particles can emit

very energetic photons.

• One way is curvature radiation. The charges must

follow the magnetic field lines (their gyroradii are tiny;

in fact their gyromotion is quantized). The field line

curvature makes the particles emit curvature radiation.

To understand this, go back to the arguments syn-

chrotron radiation; we can apply them here to curva-

ture emission. The characteristic photon frequency

is ∼ 3γ3c/4πρc, if ρc is the radius of curvature of

the field lines. The radiated power, integrated over

frequency, is ∼ e2cγ4/ρ2c (erg/s per particle). For

ρc ∼ 10 km, and the particle energies above, the cur-

vature emission photons come out in the γ-ray region,

in particular above the electron rest mass energy.

• Another alternative is inverse Compton scattering.

The pulsar itself is warm (we know they are thermal X-

ray sources). The primary charges can Compton scat-

ter the thermal photons to higher energy, again making

γ ray photons above mec
2. [NOTE: in this situation we

cannot simply argue the scattered frequency ∼ γ2νo,

because of the special geometry, with the photons and

charges travelling nearly in the same direction. Do-

ing the calculation carefully does verify that some of

the scattered photons are hard enough to be interest-

ing, however.]

Either one of these mechanisms will generate pho-

tons which are energetically capable of one-photon

pair production, via γ + B → e+ + e− + B.

Recall that this mechanism has a low-B threshold,

hνB >∼ 0.1mec
2Bcrit, which is very likely satisfied

in the high B fields near the pulsar polar cap. Once

created, the leptons probably have enough energy to

make more energetic photons (through synchrotron ra-
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diation, most likely, also possibly further curvature and

IC emission). Thus a pair cascade occurs ... and is

thought to continue until most of the primary beam en-

ergy is converted to a dense pair plasma. Models sug-

gest typical Lorentz factors of the pairs ∼ 102 − 103.

Now what about the radio emission? As noted above,

we need some collective process. The story becomes

less clear at this point, as collective plasma emission is

not well understood. A general guess is that the pair

plasma is a necessary part of the picture. For instance,

plasma turbulence may be involved; the charges in

strong (large-amplitude),turbulent plasma waves can

show collective behavior and emit intense radio pulses.

If there is a residual E‖ in the pair-cascade region, it

will generate relative streaming of the electrons and

positrons; such streaming is known to lead to plasma

turbulence.

12.4 High altitudes and currents

The ideas in the discussion above have been around

for quite awhile, about as long as pulsars have been

known. In recent years, new telescopes (X and γ ray)

have expanded our picture of these stars and their in-

teraction with their immediate environment.

12.4.1 High energy emission

Pulsars are now commonly detected in X-rays and γ-

rays. To date, about 30 pulsars have been detected

in X-rays and similar numbers in γ-rays (out to 100

MeV). These tend to be the young ones, which will

have the largest Ėrot, and thus (possibly) have the

strongest high-energy emission; thus we might guess

that most or all pulsars would show high-energy emis-

sion if we had instruments sensitive enough to see

them.

The high-energy emission is pulsed, but less narrowly

so than is the radio emission. Thus, either the high-

energy emission comes from a different location in the

star, or (if contiguous with the radio emission) it is less

strongly beamed. Many authors suggest this radiation

comes from higher altitudes than the radio emission,

possibly even from the light cylinder region.

For the stars well-measured up to now, we know that

the radio emission is a very small part of the total

power; most of the luminosity comes out at high ener-

gies, above an MeV. While uncertainties about distance

and beaming factor make absolute power estimates dif-

ficult, we think that the bolometric power may be com-

parable to the spindown power. That means that pul-

sars are quite efficient at converting rotation energy to

hard photons; and that the radio emission – the obser-

vation which first detected these stars – is but the small

tail on a much larger dog.

What type of radiation are we seeing? Normal, inco-

herent synchrotron (from highly relativistic particles in

the star’s strong B field) seems to work well for the

Xrays. Leptons in the pair cascade are created with fi-

nite pitch angles, and lose their energy to synchrotron

radiation, much of which comes out as Xrays. The γ-

rays are thought to be the leftovers of the pair cascade

process, hard photons which escape the star without

being turned into pairs.

12.4.2 The pulsar circuit?

Here’s an important piece of unanswered physics in

pulsar models: what does the current do? That is ...

the basic low-altitude model says that free charges are

accelerated away from the star’s surface. This is what

starts the cascade that leads to the radio emission. But

this is a current; the rotating star acts as a unipolar dy-

namo (as we discussed earlier). But the star can’t build

up a net charge (why?) – so the current must close

somehow. How this happens has been the topic of dis-

cussion ever since these stars were discovered.

Your author does not claim to know the answer ... but

here’s a speculation. We know that charges flow most

easily along magnetic field lines – and undergo very

little electrical resistance along the way. But because

the polar current starts out along the open field lines,

which must connect to the ISM, we also know the cur-

rent must move across field lines, in order to connect to

other field lines which return to the star. This is likely

to happen in the outer magnetosphere (rather like the

cross-field charge flow which leads to earth’s aurora).

Further, cross-field motion is likely to be more resis-

tive; this dissipated energy may come out as observable

radiation. Might this be connected to the high-energy

pulsed emission, or even to a high-altitude component

of the radio emission?

12.5 Winds and nebulae

Now, let’s move out to larger scales, past the light

cylinder. The standard pulsar model, above, predicts

a strong Poynting flux radiated out from the star, and

also an outflow of magnetized, relativistic particles.

One might expect this energy outflow to couple to nor-
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mal matter (to mass-load, somehow, when it reaches

the ISM); will it drive a wind out from the star? In

the inner regions, at least, this will be a relativistic,

strongly magnetized outflow, with significant angular

momentum – so we should not expect it to be spher-

ical. Rather, it should come out perpendicular to the

rotation axis, even if it is initially driven by the plasma

outflow from the star’s magnetic poles.3

12.5.1 Pulsar winds

This idea has been around for quite awhile; thanks to

recent technology (mostly X-ray satellites) we are now

seeing evidence of these winds. The data are striking.

For older pulsars (those not currently within SNR),

we sometimes see structures in the nearby ISM which

are clearly bow shocks associated with the star’s high-

speed motion through the ISM. We infer that an unseen

wind from the pulsar creates the pressure balance that

leads to the observed bow shock. From the standoff

distance of the bow shock we can estimate the wind

energy, and compare it to standard models of the pul-

sar.

For young pulsars (those still within their SNR), recent

CHANDRA images directly reveal the outflow from

the pulsars (the Crab and Vela pulsars are the best ex-

amples here). These outflows are complex: they show

jets, which presumably come out along the star’s ro-

tation axis (this is the only symmetry axis in the sys-

tem), and equatorial winds, which probably arise from

the combined effects of the star’s strong magnetic field

and its rapid rotation.

12.5.2 Pulsar wind nebulae

The wind coming out from the pulsar is (we think) still

highly relativistic, with charged particles moving al-

most exactly along the magnetic field lines. Thus it

should be nearly invisible (how would it radiate), ex-

cept for its dynamical effects (such as the bow shocks).

But what happens when it encounters the local ISM? If

that ISM is dense enough, the wind will shock down,

and the particles will be “thermalized” (they will gain a

significant component of energy transverse to the local

magnetic field). Thus, the shocked wind will become

visible, as a synchrotron source. This makes what is

called a pulsar wind nebula, PWN (we’ve already men-

tioned these in Chapter 7).

3Picture holding a rigid water hose at some angle, while you

spin around your vertical axis. Which way will the water go?

To date there are a several good examples of PWNe;

most of them are inside supernova remnants (which

provides the high ambient density/pressure that creates

the thermalizing shock in the wind). The Crab Nebula

is the most striking example of this phenomenon: the

shocked pulsar wind fills the nebula, and pushes a shell

of cooler matter outwards. This shell is made up of the

original SN ejecta and ISM which has been accumu-

lated along the way; it’s what we see as the optical and

radio nebula.

12.6 Magnetars and Anomalous pulsars

Here’s another new area. Based on some recent discov-

eries, of strong X/γ-ray flares, and/or strongly pulsed

X-ray emission, the picture described above is being

pushed in two ways. Two characteristics define these

unusual objects.

• They have extremely strong magnetic fields, B ∼
1014G. This is well above the quantum critical

field, Bcrit ∼ 4×1013G – and in the regime where

all kinds of interesting physics happens (pho-

ton splitting, vacuum birefringence, ...). Such a

strong field may be too large to be due to simple

flux freezing in the SN collapse of the parent star;

various authors discuss dynamos taking place dur-

ing the SN collapse.

• They are not living on their rotational energy:

their strong flares have L ≫ Ėrot. Where, then,

does their energy come from? We think it’s mag-

netic – that the very strong B field inside the

star can occasionally break through the crust, in

a cross between a “starquake” and a very strong

“stellar flare”. Once this flux tube emerges into

the magnetosphere, reconnection will go, releas-

ing the magnetic energy as X-ray and γ-ray radi-

ation.

Because of the way these objects have been found, they

are often called SGRs (Soft Gamma Ray Repeaters)

or AXPs (Anomalous X-ray Pulsars), and appear to

be different objects; but the growing consensus is that

these are both observational variants of the magnetar

phenomenon. Although none of these objects were

initially found in radio, one or two have now been de-

tected to have “normal” radio pulses as well.

Your author doesn’t know just how magnetars fit into

the general pulsar picture, they are too new – but their
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existence points out that the range of extreme condi-

tions which can exist on or around neutron stars seems

to be more diverse than we’ve understood up to now.

Key points

• The basic picture, a pulsar as a rotating magnetized

neutron star;

• Our cartoon of the pulsar magnetosphere: what is the

plasma doing?

• The pair cascade, how it fills the magnetosphere;

• How the pair-filled magnetosphere might make radio

and high-energy emission;

• Pulsar winds and nebulae.

• Magnetars.
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13 Radio jets and radio galaxies

The idea of astrophysical jets first attracted interest as

a theoretical prediction. Double-lobed radio galaxies

(RGs) were detected in the first radio surveys (in the

1960’s?). The data available then showed two radio-

loud lobes (synchrotron sources, containing magne-

tized plasma and relativistic particles) on either side

of a central, elliptical galaxy. Energetics and lifetime

arguments soon found that the lobes were short-lived.1

Either we were seeing them at a very special time in

the life of the parent galaxy, or they were being re-

supplied with energy by an undetected pipeline: a ra-

dio jet. These jets were detected when the instruments

improved – this was one of the first successes of the

VLA. Models of active galactic nuclei – involving ac-

cretion onto a black hole – had to be amended to in-

clude the production of highly collimated, relativistic

plasma jets, if the AGN happened to live in an ellipti-

cal galaxy.

We’ve learned a lot since then. We now know that jets

are common on both small and large scales. On large

scales, the massive black holes in galactic nuclei can

produce jets while they are “active”. Radio galaxies

and (radio-loud) quasars, which live in elliptical galax-

ies, are the most dramatic examples. In these objects,

the galactic nucleus contains a bright, compact radio

core and a pc-scale, synchrotron-bright jet. The ra-

dio core is thought to be optically thick synchrotron

emission from the base of the jet. On larger scales, the

jets extend to at least several kpc, often farther; they

connect to larger lobes or tails which arise from the

interaction of the radio jet with the local extragalactic

plasma.

On smaller scales, we now know that many star-sized

galactic sources have relativistic jets. The most well-

studied (and well-imaged) are jets from accretion flows

in X-ray binary systems; SS433 is the prototype, and

a few dozen are know known (microquasars). In addi-

tion, a few pulsars/PWNe systems are found to have jet

outflows: the Crab and Vela pulsars are examples here.

Finally, it is now thought that Gamma-Ray Bursters

(GRBs) involve highly relativistic jets, and that core-

collapse supernovae produce short-lived jets during the

explosion. Also on stellar scales, but moving to less

1Equipartition calculations give you the minimum energy in a

radio source; divide this by its radio power, and you get a “lifetime”

– which is short compared to any plausible estimate of the source

age. Thus, you need energy resupply.

relativistic systems, we now know that the collimated

outflows are produced during part of the collapse of

a protostellar cloud to the final star; these are called

(protostellar jets).

While all of these jets are interesting, in these notes

I’ll focus on what I’m most familiar with, namely,

relativistic jets from AGN. My goal is to present an

overview of the observations, some basic physics, and

the current “cartoons” as to how RGs work.

13.1 Jets: the observational constraints

To start, what are the important properties of jets which

theory must accound for? In these notes, the discus-

sion is strongly skewed toward extragalactic jets (radio

galaxies and quasars), and relativistic galactic jets (mi-

croquasars), which is my personal interest and area of

experience. Much of the basic dynamics apply to all

jets, but some of the details and constraints are more

relevant to relativistic jets.

Some critical facts and problems are:

• Internal energy. Radio jets from AGN and micro-

quasars are dominantly synchrotron sources – thus we

know they are magnetized and internally relativistic.

Protostellar jets and some galactic jets are dominated

by cooler, thermal radiation: emission lines from ion-

ized gas, and even molecular emission.

• Collimation. These jets usually have very small

opening angles – no more than a few degrees – and of-

ten retain their direction and collimation for a distance

which is orders of magnitude larger than the scale on

which they were initially produced.

• Knots and bright spots. Jets are rarely smooth when

seen in high-quality images. Bright features are com-

mon. We don’t know just why these features appear,

but a mixture of shocks and strong-amplitude waves in

the flow are likely. Note also that the radiation mech-

anisms are strongly nonlinear amplifiers: a weak den-

sity or B field enhancement, for example, can cause a

strong enhancement of the emissivity.

• Speed. There is indirect evidence that many jets in

RGs are supersonic (relative to themselves): structures

are seen at their outer ends, where they run into the

ambient medium, that can be identified as shock fronts

within the jet. In addition, on pc scales, some jets (or

at least waves in the jets) are moving at relativistic

speeds; this is inferred from the apparent proper mo-

tion of knots in the jets, which can exceed lightspeed.
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There’s no compelling evidence for relativistic motion

in kpc-scale jets; somehow the high-γ pc-scale flow

has slowed down by the time it reaches kpc scales.

• Plasma content. Protostellar jets appear to be nor-

mal ISM; an ion-electron mixture. Compact-object

and extragalactic jets are observed in synchrotron ra-

diation, and therefore contain relativistic electrons and

magnetic fields; we do not know if the electron charge

is balanced by ions or by positrons.

• Energization. In at least some extragalactic jets

there is a clear need for local re-acceleration of the

relativistic particles. The synchrotron lifetime of the

highest energy particles is significantly less that the

shortest possible travel time down the jet (jet length

/ lightspeed). Somehow, local fluid/plasma processes

must transfer energy from the bulk flow to the indi-

vidual particles; a mixture of shocks and turbulence is

probably the answer.

13.2 Some useful relativity

Two relativistic effects are important here.

13.2.1 Superluminal motion

The bright knots in many jets are observed to have ap-

parent proper motion above lightspeed. As you’ve seen

before (for instance in Caroll & Ostlie), this is a simple

consequence of light-travel times. If the jet is oriented

at angle θ to the line of sight, and has physical speed

βc, its apparent speed – as seen by the observer – is

βapp =
β sin θ

1− β cos θ
(13.1)

It’s easy to show that this can lead to βapp > 1 for

θ ≪ 1. Typical observed values are βapp ∼ a few;

you should be able to work out what (γ, θ) values are

needed for this.

13.2.2 Doppler beaming

A source of radiation is moving relativistically, at some

γ, at angle θ to your line of sight. One effect, which

you remember, is a Doppler shift. If the source emits

photons at ν ′, you observe photons at ν, where the

observed and emitted frequencies are related by ν ′ =
γν(1 − β cos θ) (note, the angle θ is measured in the

observer’s frame; and θ → 0 means motion towards

the observer). This can be written,

ν ′ =
ν

D ; D(θ) =
1

γ(1− β cos θ)
(13.2)

θ

ct

vt cos θ

vt
 s

in
 θ

Figure 13.1 Illustrating how a feature in a jet can appear

to be superluminal. The core source (small circle at left)

emits a “blob” (large circle) at time t = 0, at angle θ to the

line of sight; it also emits an EM signal directly towards us.

After time t, the blob has moved a distance vt, and emits

a second signal. The difference in arrival times between

the first and second signals is ct − vt cos θ; the apparent

separation of the core and blob is vt sin θ. Dividing the latter

by the former gives us the apparent velocity of the blob, as

in (13.1).

where D is called the Doppler factor. A second impor-

tant fact is how to connect the spectral intensity you

observe, Iν , to that emitted by the source, I ′ν′ . It turns

out that the two quantities are related by

Iν
ν3

=
Iν′

(ν ′)3
(13.3)

(cf. Rybicki & Lightmann for the derivation of this).

As an example, let our emitting soure have a power-

law synchrotron spectrum, say S′
ν ∝ ν−α in the rest

frame. When you work out the details, an unresolved

blob is Doppler boosted by Sν(θ) = S′
νD3+α; you

get 3 D’s from the frequency ratio in (13.3), and an-

other “α of a D” from the spectrum. Alternatively, a

piece of a resolved jet is boosted by Sν(θ) = S′
νD2+α;

time/space contractions applied to the piece you’re re-

solving account for the change. Either way, because of

the strong dependence of D on θ, this result means that

an observer sees the radiation forward-beamed, into an

angle ∼ 1/γ. This makes a relativistic jet appear much

brighter if you see it end-on.

13.3 Some useful physics

In this section I store a smattering of physical argu-

ments we can make about jets.

13.3.1 Collimation

How to jets stay so well collimated? Why do they

not expand? If the jet were propagating in vacuum, it

would expand at its internal sound speed. But we ob-
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serve jets which remain very collimated over very large

distances, with an opening angle only a small fraction

of a radian. This would require the flows to be very

cold internally, which is inconsistent with other evi-

dence that many of the jets are internally hot. Thus we

believe the jet is confined. The two possibilities are

• Confinement by external pressure. We know jets

propagate through external plasma – the ISM for mi-

croquasars, the extragalactic medium for jets from

AGN. The external plasma may provide enough pres-

sure to confine the jet.

• Self-confiment by magnetic fields. We’ve already

seen that a current generates an azimuthal magnetic

field, which can confine the plasma carrying the cur-

rent. If this applies to jets, the question is then, where

and how does the current return to the source?

Which of these two operates can, in principle, be

learned from observations; and a given jet may change

from being self-confined (close to its origins, say) to

being pressure confined (farther out).

13.3.2 Jet transport

Some simple models of jet/RG evolution are based on

the rate at which mass, momentum, and energy flow

down the jet. Looking back to last term (when we did

mass and momentum conservation .. right?), and ear-

lier this term (for energy conservation) we can use the

basic fluid equations, and/or simple common sense, to

write down the rates. Let the jet have radius rj , speed

vj , density ρj , and enthalpy hj = ej + pj/ρj (this

is a useful way to collect terms involving the internal

energy and pressure of the jet fluid). If everything is

subrelativistic, and the magnetic field can be ignored

for the moment, we have

mass flux : Ṁ = πr2jρjvj (13.4)

momentum flux : Ṗ = πr2jρjv
2
j

(

1 +
hj
c2

)

(13.5)

energy flux : Ė = πr2jρjvj

(

hj +
1

2
v2j

)

(13.6)

If t he flow is relativistic, but still ignoring B, these

become (remember v = βc and γ = (1− β2)−1/2:

mass flux : Ṁ = πr2jρjγjβjc (13.7)

momentum flux : Ṗ = πr2jγ
2
j β

2
j ρj
(

c2 + hj
)

(13.8)

energy flux : Ė = πr2jγ
2
j βjcρj

(

c2 + hj
)

(13.9)

If the flow is strongly magnetized, we need to include

the field energy in the bookkeeping; you remember

that electromagnetic energy is transported in a Poynt-

ing flux. The details of this are complex and more than

we need here; I’ll return to this general idea below.

13.4 Larger Scales: the Radio Galaxy

If a jet propagated into vacuum, we might imagine that

it would remain unchanged, carrying on forever. But

jets don’t live in vacuum; rather they propagate into the

surrounding plasma – which can be relatively dense in-

tracluster medium (ICM: if the parent galaxy lives in a

cluster), or the tenuous intergalactic medium (IGM; if

the parent galaxy lives in the “field”). So: when the jet

interacts with the surrounding medium2 the nature of

this interaction shapes the Radio Galaxies (RGs) that

we see. Observed RGs tend to fall into two morpho-

logical types3, suggesting two different physical situa-

tions.

13.4.1 Classical Double radio galaxies (FR II’s)

Radio galaxies classified as FR II’s – cartooned in Fig-

ure 13.2 – are identified by their symmetric, two-sided

“lobes” which have bright “hot spots” at their outer

edges. Often a narrow, well-collimated jet can be seen

propagating through the lobe and almost to the hot

spot. These tend to be the brightest ones – so that, even

though they are rare by number (only a few per cent of

the population), they have received the most attention.

Here’s the basic scenario for this type of source. Put

a massive black hole down in the center of a galaxy,

and turn it on. The jet propagates out, into the ICM; as

time goes on, the head of the jet will reach farther and

farther from the AGN. We can use simple conserva-

tion laws to estimate how this souce evolves with time.

The mass and energy flowing down the jet carry mo-

mentum; this momentum flux allows the end of the jet

to make its way into the external medium (with den-

sity ρx). Think about a simple ram pressure balance:

if the end of the jet advances at vD = dD/dt, it sees

a head-on ram pressure ρxv
2
D . Balancing this against

the momentum flux in the jet tells us what vD must be.

2I’ll refer to the ambient medium as the “ICM” for short ...

meaning ICM/IGM.
3Jargon: two authors, Fanaroff & Riley, first pointed out this

duality – so RGs today are still usually called “FR I’s” (FR Type

I’s) or “FR II’s” (FR Type II’s).
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D(t)

core

ambient

medium
lobe

jet

Figure 13.2 Cartoon of (half of) an FRII radio galaxy. Let

a jet have constant opening angle, propagating into an ex-

ternal medium (at density ρx, say). Because the length of

the jet does not grow as fast as the plasma speed within the

jet, the plasma must slow down (possibly shock down), and

move “sideways”, creating a larger “lobe” which surrounds

the jet. Because the shock compresses the jet plasma and B

field, and accelerates relativistic particles, we expect it to be

a bright synchrotron source – i.e.the “hot spot” seen in many

such sources.

If the jet is less dense than the external medium, then

vD will be less than the jet speed; if the jet is also su-

personic we expect a shock to form at this transition

point.

Two things should happen at this shock. First, the

jet plasma will be compressed and heated when it

shocks down. The higher plasma density, and higher

B field, will make the post-shock plasma a stronger

synchrotron source; if any particle acceleration takes

place at this shock, that will further enhance the syn-

chrotron power. Thus, the post-shock plasma should be

a localized “hot spot” – matching nicely with what we

observe in classical double RGs. Second, the shocked

plasma must go somewhere – we expect the high post-

shock pressure to “push it off to the side”. As the RG

grows, this shocked jet plasma will expand to fill a

“lobe” or “cocoon” which surrounds the jet. This also

matches what we see – in fact the lobes are the bright-

est, defining, parts of this type of RG.

Recent observational note: if the jet is strong enough,

we expect its advance speed, vD, to still be supersonic

relative to the ICM. If this holds, the advancing jet will

drive a bow shock in the ICM – such shocks have now

been seen in a few cases.

13.4.2 Tailed radio galaxies (FR I’s)

Radio galaxies classified as FR I’s – as cartooned

in Figure 13.3 – are characterized by long, diffuse-

looking “tails”. These tails begin close to the AGN

(sometimes you can see a well-collimated inner jet that

suddenly changes to a broader tail; other times you

can’t), and carry on – broadening gently – for up to

100s of kpc. Unlike FR II’s, which are brightest at their

outer hot spots, FR I tails tend to be brightest close

to the galaxy; the tails gradually become fainter going

away from the core. The physical end of the flow –

where it runs into the ICM – may or may not be visi-

ble.

core

jet

"tail"
Figure 13.3 Cartoon of (half of) an FRI radio galaxy.

When the jet initially leaves the AGN, it is well collimated

(probably relativistic and supersonic as well, at least in some

cases). But it soon destabilizes – sometimes very suddenly,

as in this cartoon. The plasma flow carries on, away from

the AGN, but in a more disorganized way.

FR I’s are much more common than FR II’s; most RG’s

we know are FR I’s. But FR II’s have been better stud-

ied, partly because they are the bright ones (so were

the first ones to be well-observed), and partly because

they seem to involve simpler physics.

So, what is the physical picture for FR I’s? The cartoon

above, for FR II’s, relies on the jet remaining stable,

collimated, and (internally) supersonic.4

The situation will be different if the jet becomes unsta-

ble, uncollimated, or subsonic. In this case, the jet flow

not retain the “jet/lobe” morphology characteristic of

FRII’s. Instead, we expect the jet flow to be much more

sensitive to local conditions in the ICM. The flow can

be affected by local ICM “weather” (flows, turbulence

in the ICM); if the parent galaxy is moving rapidly

through the local ICM, we can see strongly bent radio

tails. If the flow is slow enough, and less dense than its

surroundings (which is almost always the case), it will

also be affected by buoyancy.

Clearly a wide range of radio-tail morphologies is

possible here, depending on local conditions (ICM

weather), and also the details of the jet flow. How-

ever, the range of possible flows should have one thing

in common: they are probably brighter synchrotron

sources closer to the AGN (whereas FRII’s are brighter

closer to their hot spots). We expect this because the

radio tail usually expands as it propagates – leading

4These conditions are related – it turns out that subsonic, or

subalfvenic, jets can easily be destabilized as they pass through a

surrounding plasma. (Think of a firehose flapping side to side if

the pressure gets high enough ...) Supersonic/superalfvenic jets,

on the other hand, tend to be relatively stable in the same situation.
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to lower plasma density and B field – thus lower syn-

chrotron power. Synchrotron aging may also matter –

the ends of the tails can simply fade away as the rela-

tivistic electrons lose their energy.

Simple dynamical models (as we have for FR II’s) have

yet to be developed for FR I’s. While we expect the

basic momentum-conservation picture, from above, to

hold here, the added dynamical effects of the interac-

tion with the ICM make it harder to find simple models

of FR I evolution.

13.5 Unresolved issues

While much of the above picture has remained stable

for quite awhile, some issues and questions are getting

new attention.

13.5.1 What is the life cycle of a RG?

Two questions come to mind here.

First, what is the duty cycle of a radio-loud AGN? If ∼
10% of bright ellipticals host a radio galaxy, does that

mean that the black hole in every such galaxy is active

only 10% of the time? Do AGN, or RG’s, alternate

between “on” and “off” phases?

Second, where are the old radio galaxies? The sim-

ple models described above predict that RG’s should

keep growing, and remain relatively bright synchrotron

sources (i.e., detectable), as long as the jet stays “on”.

If the jet turns off, the same models predict that the

RG’s synchrotron luminosity should slowly fade, as

the relativistic electrons lose their energy. Because the

synchrotron lifetime tends to be long for typical RG

conditions, this fading should be slow – we should ob-

serve a fair number of “old” RG’s (jetless, probably

steep radio spectrum).

But we don’t see what these models predict. We al-

most never see RGs that could be called “old”; they

all have currently-active jets. In addition, dynamical

models (such as you’ll see in the homework) generally

estimate RG ages only ∼ 100 Myr – much younger

than the age of the parent galaxy. So: why don’t we

see either older, jet-on sources, or old, jet-off sources?

13.5.2 How does a jet affect its environment?

This is a very active current area. Clearly the envi-

ronment affects the AGN; accretion from the local en-

vironment is what makes the massive black hole “ac-

tive”, and creates the jet. We know the jet transports

mass, momentum and energy out from the AGN: what

effect does this transport have on the environment?

If the jet/RG is well-coupled to its environment – and

that’s a big “if” – then the jet/RG can have a strong

effect. It carries enough energy to heat the local ICM

significantly. Two applications here:

•Cool cores in clusters of galaxies. In most clusters

(as we’ve seen in the homework), the plasma density

is low enough that the radiative cooling time (from

bremsstrahlung) is longer than the Hubble time. Thus,

most of the plasma in most clusters hasn’t cooled down

by much since the cluster first formed. In some clus-

ters, however, the central plasma is dense enough that

radiative cooling does matter; these “cool cores” must

have an ongoing heating mechanism. All of these

cool cores are observed to be centered on a currently-

active AGN and RG; do these RG heat the cluster core

enough to offset radiative losses?

•Feedback in galaxy formation. We now know that

a massive black hole sits at the heart of every galaxy.

We suspect that black hole formed, and was “active”,

at about the same time as the galaxy originally formed

(we’ll discuss this later, in chapter 15). So: did the

energy released by that actively accreting black hole

play an important feedback role in the galaxy forma-

tion process?

Both of the above questions are getting a lot of atten-

tion these days. In my opinion, the big, unanswered

physics question is, “how effectively does the jet/RG

couple to its environment?” That is: how much of its

energy does the radio jet/RG actually transfer to the

local ICM? The answer depends on the details of how

the RG grows and evolves. Does it simply do “pdV ”

work as it pushes the ICM/ISM out of its way? Does it

drive significant shocks or turbulence in the ICM/ISM

(which then dissipate and heat the ICM/ISM)? Does

the relativistic plasma mix effectively with the ICM

– thus releasing the relativistic plasma directly into

the ICM/ISM? None of these questions have been an-

swered yet.

13.6 How are jets made?

Finally, a few words about how this all starts.

It seems very likely that every accretion flow involves

a jet outflow. And, nearly all jets that we know about

are tied to accretion flows (the one exception might be

jets from single pulsars; we don’t yet know much about

them). However, we don’t yet have a clear and agreed-
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upon picture of how jets get formed. Models out there

can be grouped into two broad categories, fluid-based

and MHD-based. I think the MHD models are most

likely to prove correct; but will include a brief discus-

sion of wind models as well.

13.6.1 Wind (fluid-based) models

These models are probably not the right answer, and

pretty much disregarded in recent work. However they

were the first type of model proposed; and the internal

physics may well still be useful in the more modern

MHD models, below. To think about wind models, re-

member the solar wind: it accelerates from a very slow

start, to supersonic speeds at large distances. It does

this smoothly, by passing through a “gravitational noz-

zle” at the sonic point. The wind is driven by its in-

ternal energy (and thus, ultimately, by whatever heats

it). Linear, one-dimensional flows can also undergo a

smooth transition, if the area of the confining channel

has a minimum at the sonic point. The first models

of astrophysical jets used this analogy – arguing that

the flow is accelerated by its internal energy, and that

some combination of channel geometry (provided per-

haps by the walls of a fat accretion disk?) and gravity

produce a high-speed, somewhat collimated outflow.

13.6.2 MHD models

In this discussion I’m partly following several recent

papers5 and addressing jet formation from magnetized

accretion flows around a black hole.

What might the magnetic field of an accretion flow

look like? Think about a field which threads the disk

plasma, but is also “tied” to the distant ISM, which

is rotating much more slowly than the accretion flow.

The accreting gas will draw the field with it, imparting

a φ component to the field. One might expect dissipa-

tive processes to balance the field growth induced by

the accretion, leading to a field shaped something like

an expanding helix. Plasma ejected from the disk (for

instance in a wind) will be both channeled and accel-

erated by such a field. Magnetic pressure gradients up

the rotation axis will accelerate plasma “up and out”

of the system; magnetic tension (from the helical field

lines) will exert a “hoop stress” and confine the plasma

as it goes.

5e.g. Meier, D. L. 2005, Astrophysics & Space Science, 300,

55; Meier, D. L. & Nakamura, M. 2006, ASP Conference Series,

350, 195

There are also a couple of variants worth mentioning.

• Poynting flux models. These describe the limit in

which the plasma density close to the source is small

compared to the field energy. As we’ve seen, a rapidly

rotating B field generates an E field (just as in pulsars).

There will very likely be a component of the Poynt-

ing flux, S ∝ E × B, along the rotation axis, which

will be a strong source of power lost from the accre-

tion system. In order to produce what we observe as

radio jets, these Poynting-flux jets must “mass-load”;

they must either pick up stray charges from the ambient

medium, or generate their own plasma through magne-

tized pair production. Such a process may well account

for the origin of relativistic jets close to a black hole;

they would then become visible as they gained mass.

• Penrose jets. Another class of models extracts rota-

tion energy from the black hole to power the jets. (I’m

inventing the name; the authors of two similar mod-

els are Blandford & Znajek, and Punsly & Coroniti).

Think back to rotating black holes. You recall that

frame dragging is important near the event horizion –

this is the azimuthal motion induced by the hole’s ro-

tation. Think now about a piece of magnetized accret-

ing matter, with field lines again tied to some slowly-

rotating distant point. As the matter gets close to and

crosses the event horizon, frame dragging will speed it

up, thus generating helical (Alfven) waves which move

out along the field lines. This will again generate an

outwards Poynting flux (which can mass-load and be-

come a visible jet); and the reaction force ends up mak-

ing the plasma counter-rotating as it passes through the

event horizon. Thus some of the black hole’s rotation

is lost, to supply the power carried out by the yet.

13.6.3 Duty cycles?

Accretion flows in galactic X-ray binaries provide a

possibly interesting clue. Think back to our discus-

sion of accretion disks, from last term: they are mostly

thermal (Black body) sources, possibly with an opti-

cally thin corona (could be a bremsstrahlung source).

We found that accretion disks around small (star-sized)

compact objects becomes hot enough to radiate in the

X-ray band. It turns out that X-ray emission from

galactic binaries has two states. It can be “low/hard”,

meaning lower X-ray power and a harder (nonther-

mal?) X-ray spectrum. Or, it can be “high/soft”, mean-

ing higher X-ray power and a softer (thermal) X-ray

spectrum. It turns out that steady radio jets are present



Physics 426 Notes Spring 2016 71

in the low/hard state, but not in the high/soft state.

The difference between the two states is thought to be

the accretion rate – a lower Ṁ leads to lower X-ray

power (which is constent with the simple accretion-

disk models we saw last term). Thus: perhaps a lower

Ṁ somehow changes the accretion mode in galactic

microquasars, and allows a jet to form?

It is not clear whether this scenario also applies to

AGN. There are arguments on both sides, and the ob-

servations don’t (yet?) support the existence of two

such states in AGN. If AGN do turn out to work this

way, we may have a physical origin for AGN duty cy-

cles – but to my mind, this issue isn’t settled yet.

Key points

• Jet phenomenology: what we know from observa-

tions.

• Important relativity: superluminal motion and beam-

ing.

• Basic jet “fluid physics”: collimation, propagation.

• Radio galaxy types & cartoons: FR I’s, IIs

• How does the jet affect its surroundings?

• Current ideas of jet origins – mostly MHD.
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14 Quasars and Active Galactic Nuclei

AGN astronomy started in the 1960’s. Early radio sur-

veys had found bright, compact radio object with no

clear optical identification. Most people thought they

were simply radio-loud stars, but some thought they

were extragalctic ... in 1963 a spectrum was obtained

of the radio source 3C273. The likely optical ID was

a 13th magnitude blue object, apparently stellar (not

extended), with faint linear emission nebulosity. This

turned out to have very unusual spectra for a star, rich

with emission lines. These were thus called “quasi-

stellar objects” (QSOs), or quasars for short.

Identifying the emission lines was hard, until someone

realized the object was at the very high (at the time)

redshift, z = 0.16. After that, people started looking

seriously for these objects. The bright emission lines

and blue continuum were easy to find. By now we

know of several thousand...number counts find about

100 quasars per square degree of sky, with z <∼ 2 and

blue magnitude mB < 22 (with more, of course, at

fainter magnitudes and higher z).

14.1 Basic properties: observations

Although we now know (or think we know) that all the

varieties of AGN are driven by accretion onto a mas-

sive black hole in the core of the galaxy, that was not at

all obvious when the field started. Thus, the literature

is dominated by the unusual observational properties

of bright AGN.

14.1.1 Spectral lines

Strong optical emission lines are characteristic of (al-

most) all AGN. They are more or less the same lines

that we see in galactic nebulae – planetary nebulae and

HII regions. Emission lines from AGN seem to obey

very similar physics – and thus arise in similar con-

ditions. They are probably ionized by the observed

nuclear continuum source (the so-called “central en-

gine”; AGN are strong in the UV/soft Xray region), al-

though shock ionization is also likely in some cases.1

The striking feature of the emission lines is their width.

1Detailed analysis of the emission line strengths can tell us the

likely cause of ionization, as well as the local density and tem-

perature of the emission line gas. One piece of terminology is

necessary. Remember that quantum mechanics gives us the prob-

ability that an atom in an excited (upper) state can make a sponta-

neous transition to a lower state, emitting a photon in the process.

Permitted lines have high transition probabilities; what are called

forbidden lines have lower transition probabilities – but are not

Permitted lines (such as Hα, the n = 3−2 transition of

H) have typical linewidths ∆v = c∆ν/ν ∼ 104 km/s.

The forbidden lines (from heavy elements; OII, OIII,

NII, etc.) can be narrower, more like ∆v ∼ 103 km/s.

These widths are much too high to be due to thermal

broadening;2 these widths must be due to bulk motion

of the emitting gas clouds – either random or orbital

motion.

The difference between broad and narrow emission

lines seems to suggest that the two line types are

formed in different regions – perhaps the permitted

lines come from denser gas, closer to the central en-

gine while the forbidden lines come from less dense

gas, a bit further from the engine. Not all AGN have

this separation, however; some Seyferts have mostly

narrow-line emission, while some quasars have mostly

broad lines.

14.1.2 Continuum emission

AGN radiate in every frequency in which we’ve

looked: from radio, through infrared, to optical and

UV, thence to X-rays and γ-rays. The underlying spec-

trum is broad-band, with 2 or 3 separate features. Re-

member your radiation: telescopes generally measure

intensity, fν say, which is power/Hz. The energy in

the spectrum is better determined by
∫

fνdν ∼ νfν ;

this is often what’s plotted. The total emission νfν is

typically dominated by two (or maybe 3) peaks: one

IR/optical (which itself may be two components), and

a second peak in the hard X-ray to γ-ray region. It

seems likely that the bulk of the energy comes out

in the optical/UV region, say ν ∼ 1014 − 1016 Hz.

(This dominant “bump” in the νfν plot is called the

Big Blue Bump, I kid you not.) However, some radio-

loud sources have been observed out to hard γ-rays;

their broadband spectra are dominated by the hardest

frequencies, ν ∼ 1020 − 1025 Hz (compare: what fre-

quency corresponds to the electron rest mass?)

forbidden in the QM sense. Rather, their radiative transition rates

are low enough that in dense conditions they will be de-excited by

collisions first. Thus, there is a quenching density associated with

each particular transition.
2how hot would the gas be? how could ions such as OII or

OIII ever exist at such temperatures? how low would the hydro-

gen recomination rate be, and how would you ever see hydrogen

permitted lines?
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14.2 The AGN zoo

We now know that quasars are unusual nuclei in oth-

erwise normal galaxies. Other types of nuclear activ-

ity are also possible; for historical reasons (who found

what first, in what observing band), a wide variety of

names and acronyms exist in this field. All of these

objects, as well other subclasses and acronyms I’m not

bothering to put down, are grouped together as Active

Galactic Nuclei (AGN).

14.2.1 The radio-quiet ones

Although quasars were originally detected based on

their radio emission, radio-loud quasars turn out to

be rare, something like 10% of the quasar population.

Radio-quiet quasars (usually “QSO’s”) are domiated

by their bright core, with strong optical emission lines

as well as strong continuous emission (optical/UV, also

X-rays).

Seyfert galaxies and Markarian galaxies3 are spi-

ral galaxies with nuclei which are quasar-like in their

broadband and line emission properties, but not so

bright as the quasars. Seyferts are never radio-loud;

they have weak radio cores and can have small, weak,

poorly collimated radio jets which do not propagate out

of the galaxy (due to the denser ISM? due to different

conditions in the core?) Weaker versions of Seyferts,

also in spiral galaxies, are called LINERS (Low Ion-

ization Nuclear Emission Region) – with emission

lines but less nonthermal continuum than the Seyferts.

14.2.2 The radio-loud ones

As we saw in the previous chapter, The term “radio

galaxy” refers to an elliptical galaxy with a radio jet

and double-lobed (or tailed) radio structure on super-

galactic scales (linear extent, side-to-side, can range

from ∼ 100 kpc to a few Mpc). The term “radio-loud

quasar” (QSR) refers to a quasar with the same sort

of radio jet-lobe structure. The distinction is mainly a

question of how strong the nuclear activity is (as seen

by us, anyway): how strong is the nonthermal con-

tinum and/or the emission lines?

3both named for the person who originally cataloged them –

based on unusually strong nuclear emission lines or UV contin-

uum.

14.2.3 Blazars and friends

These are a subset of the radio-loud ones (about 10%)

with unusually bright, active, variable radio-to-optical

cores. People in this field speak in acronyms:

OVVs (optically violent variables). These are the

highly variable, clearly relativistic ones. They show

a flat radio spectrum (suggestive of a compact, syn-

chrotron self-absorbed core and a pc-scale radio jet

with a few bright knows). They are highly variable,

timescales from days to years.4 These are the ones that

show clear superluminal motion.

BLLs, as described, are named for BL Lacertae (an

object previously thought to be variable star locally).

The emission lines are quite faint compared to the

cointinuum. As with OVVs, the BLL radio emission

is strongly polarized, flat spectrum, & highly variable

(δt >∼ days).

Both of these are often grouped together as blazars.

The general picture – motivated by the observations of

superluminal motion – is that we are looking “down

the pipe” of the jet, close to its axis. In addition to ex-

plaining the superluminal motion, such a geometry will

enhance the variability (by relativistic effects and by

the Doppler-beaming effects on a jet with some slight

inhomogeneities.

14.2.4 Parent galaxies

What are the parent galaxies? We noted above that

radio galaxies are found in elliptical galaxies, while

Seyferts (and related radio-weak AGN) are found in

spirals. What about quasars? There has been a sense

that radio-loud quasars live in E’s, while radio-quiet

live in S’s. This view seems to be changing, however,

at least for the brightest of the population. Quoting

from Dunlop etal (2003): “Virtually all powerful AGN

live in normal, massive ellipticals: the parents agree

with local bright E’s in morphology, luminosity, scale-

length, consistency with fundamental plane, axial-ratio

distribution, and colors (evolved stellar population, age

10-13 Gyr).” “The inevitable conclusions is that these

galaxies, or at least most of their stars, must have

formed at high redshift.” “Spheroidal hosts become

more prevalent with increasing nuclear luminosity; for

bright enough nuclei, the hosts of both radio-loud and

4There is an argument currently going on about variability on

much shorter δt’s, less than a day; these are the Intra-Day Vari-

ables. The variability is probably due to interstellar scintillation,

although some people want it to be intrinsic.
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radio-quiet AGN are massive ellipticals.”

14.3 The usual model: a massive BH

We know the answer of course (or think we do): all of

this comes from accretion onto a massive black hole.

Let’s see how (or if) this model can explain the variety

of observations.

14.3.1 Zoom in: the central kpc and within

The first clues may have come from the emisison lines.

In most objects we need photoionization; with detailed

modelling one can pinpoint the photon density, which

means the distance from the central engine. Applying

this to the broad and narrow lines shows that the NLR

must be at ∼ kpc from the engine, while the BLR is

closer, more like pc to tens of pc away. Both broad and

narrow line emission must be “patchy”, for instance

coming from dense clouds.5 It may not be correct,

however, to picture the clouds as uniformly distributed

over the entire central kpc. We are learning, from HST

imaging, that the emission-line gas in the central kpc is

often confined to emission “cones” – what you would

expect, for instance, if the ionizing radiation escaped

from the central engine only in a moderately narrow

cone.

14.3.2 Zoom in further: the central pc and within

This is, of course, the region of the central engine; the

region we probe indirectly through variabilty, and di-

rectly through milliarcsecond radio imaging (as with

the VLBA). The generic picture is, as we’ve discussed,

accretion onto a massive black hole, probably with a

jet being driven out the rotation axis. Figure 14.1 il-

lustrates the general thinking. The accretion disk is

mostly thermal, that is resembling the models you saw

in P425: spatially thin and optically thick. It emits

as a black body, and is thought to be the origin of the

“big blue bump”. Nonthermal emission – high energy,

X- and γ-rays – comes from an optically thin region

somewhere close to the black hole and the inner region

of the disk; very high gas temperatures, possibly rela-

tivistic plasmas, and electron-positron physics may be

going on here. A two-sided jet is driven out; if this is in

5Why? One, we can see the engine, so the line-emitting gas

doesn’t completely cover it. Two, we know the density of the line

emitting gas, from quenching and line-ratio arguments; comparing

this to the total volume at the clouds’ distance also requires the

volume be incompletely filled.

an elliptical the jet propagates to extragalactic scales.

The gas emitting the broad emission lines is sketched

as discrete clumps, moving at high speed (here guessed

to be random). The intercloud region is probably a hot

wind, driven out from the accretion disk by a combi-

nation of its own temperature and magnetic/centrifugal

effects.
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Figure 14.1 Generic cartoon of the central pc of the AGN.

An accretion disk feeds a massive black hole. Details are in

the text. The scale of this cartoon is a few pc (remember the

event horizon of the black hole is only ∼ 1− 10 AU.

14.3.3 Why radio-loud vs. radio-quiet?

We still don’t have much of an answer to this ques-

tion, or even a standard “toy model”. Radio galaxies,

and maybe all of the brightest quasars, live in ellipti-

cals; Seyfert nuclei, and maybe most of the radio-quiet

quasars, live in spirals. Why? I wish I knew.

14.3.4 Why are only some galaxies “active”?

This one is even harder to answer. We now know that

every galaxy contains a massive black hole at its core

(check back to chapter 1 for discussion). But this black

hole is “active” in only a few per cent of galaxies.

Why? Once again, I wish I knew.

14.4 Unification Models

Can these various disparate categories and acronyms

be explained by one simple, unified picture? Maybe,

maybe not .. this issue has strong adherents, because

simple pictures are pleasing and attractive. But one

can push too much for simplicity, at the expense of ig-

noring some of the physics ... some of the community

belong to “the unification church”, while others (in-

cluding your author) remain agnostic.

There seem to be two important motivations for this

view, as follows.
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14.4.1 Relativistic beaming

We’ve already met this several times. If the jet is driven

out at relativistic speeds, with Lorentz factor γ – and

we know it is, from the observation of superluminal

motion – then a viewing angle within an angle ∼ 1/γ
of the jet axis is special. From this vantage, only, we

will see vapp > c, strong forward beaming, enhanced

variability, and etc – that is we will see a blazar.

14.4.2 Obscuration and tori

We noted above that the optical line emission is

anisotropic in some nearby AGN, being located in an

ionization cone. Such a cone might arise from a fat

torus (think of a donut) surrounding the central engine,

allowing hard photons to escape only in a fairly broad

cone along the axis of the torus. In addition, emis-

sion lines from Seyferts (which are nearby, and bright,

enough to do this measurement) appear different in po-

larized than total light. Some Seyferts that show only a

narrow line region (it’s called a Seyfert 2, if you care)

turn out to have broad line wings when seen in polar-

ized light. Remember that Thompson scattering polar-

izes the light. Thus, if the light from the central en-

gine, which sits at the heart of the donut, is scattered

(by some diffuse ionized gas, above or below the sys-

tem), an observer can detect the broad lines – which

come from very close to the black hole – at angles at

which the direct emission is obscured by the torus.

side view:  see only
       the torus
side view:  see only

       the torus
side view:  see only

tne obscured
   engine

top view:  see the engine

top view:  see the engine

the "dusty torus"

path of scattered (polarized)
     light, revealing inner engine

Figure 14.2 Extremely generic cartoon of the unified

model. The central engine may be surrounded by a fat,

opaque torus (maybe containing dust). Whether or not you

see the central engine depends on your viewing angle. The

scale of this cartoon is a few hundred pc.

14.5 AGN demographics

To summarize: we’ve walked through the general pic-

ture of an AGN: a massive black hole sits in the core

of a galaxy. Galactic material (ISM) accretes onto the

black hole. Side effects of that accretion are the gener-

ation of a strong radiation over all frequency bands (by

a mix of thermal and nonthermal processes), and the

ejection of collimated plasma jets (which may or may

not propagate out of the galactic core).

The remaining questions, then, are demographic. How

common are AGN, and how were they distributed over

the history of the universe? Why does every bulge con-

tain a black hole, and which formed first (the bulge

or the BH)? Does every nuclear black hole make an

AGN? How did the black hole come to exist in the

galactic core (is it the chicken or the egg?) How have

these AGN evolved over the course of the universe? To

answer these questions, we need to go to high redshift

- z ∼ 2− 10, say, to see what happened at early times.

These questions are far from being answered, but we

do have some important clues. In case you’re not fa-

miliar with high-redshift thinking, I’ve put some basic

cosmography in an Appendix to this chapter.

14.5.1 Was there a “quasar era?”

Quasars – like other AGN – are rare in today’s uni-

verse; most galaxies do not contain a currently active

central engine (even if, as we now know, they proba-

bly contain a massive BH). This is not the case at early

epochs, however. Two facts become clear from quasar

surveys.

• At a given epoch – today, for instance – there are

more faint quasars than bright ones. The number

per volume at an absolute (optical, blue) magnitude

MB can be written very approximately as Φ(MB) ∼
ΦoM

−0.7
B .

• The absolute number of quasars – either at a given

magnitude, or integrated over all luminosities – was

greater at early epochs. (This is the same thing as say-

ing that the constant above, Φo, is a function of z.) The

space density of quasars rises out to z ∼ 2, has a broad

peak in the range z ∼ 2−3, then decays again at higher

z. This epoch, which saw a lot of quasar activity, is

called the “quasar era”.

What has changed, with quasars, since the quasar era?

What is this evolution of the number density saying?

Up to a few years ago, there were (at least) two alter-

native possibilities. One is that the fraction of quasars,

per galaxy population, has stayed the same with time,

but the luminosity of a given quasar was much brighter

at z ∼ 2 than it is now. Because all quasar surveys

must be flux limited, we would be detecting more of
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them early on. This is called luminosity evolution. An

alternative theory is that the mean quasar luminosity

has not evolved with time, but that there were simply

more of them back then ... so that the increase in mea-

sured numbers of quasars back to z ∼ 2 is what it

appears to be. The real answer is probably somewhere

inbetween these two extremes...but we must remem-

ber that almost every nearby galaxy (at least) harbors a

black hole. If we define this as a dark quasar, then lu-

minosity evolution must be the preferred model. How-

ever, we are learning more about galaxy formation and

evolution, and the question may be more complex.

14.5.2 What about galaxy formation?

The quasar counts, described above, have been known

for some time. A currently very active research area

tries to understand when (at what z) galaxies formed.

This is much harder than counting quasars (which are

easy to pick out, they are bright and small and blue).

How can we pick out galaxies in the act of formation?

Think about a protogalaxy: picture a self-gravitating

clump of stuff collapsing due to its own gravity, and/or

being enhanced by the accumulation of smaller-sized

clumps (mergers). The baryonic matter will lose en-

ergy (by radiation), fall through the dark matter, and

must eventually form stars. We know ellipticals have

little active star formation today; their stars must have

formed in one great rush, at early times. Spirals today

do have ongoing star formation, but they probably also

had a strong starburst phase when they first formed.

So, the general idea is to look for unique signs pointing

to early bursts of star formation. We know a lot about

local star formation regions. Optically, they are bright

in Hα, and also in the UV (due to all those hot young

stars). Moreover, we know they are dust-enshrouded,

and thus very bright in the IR or sub-mm band. Thus:

we can try to find distant objects that are bright in the

UV, or in Hα, or – the currently most promising – in

the IR/sub-mm.

The tentative result of these surveys (the work is still

ongoing, and the arguments as large as the error bars at

high z) is very interesting. Given the variety of obser-

vational probes, which mix apples and oranges, people

generally turn their data into “the rate of star formation

as a function of z”.6 This is called a “Madau plot”,

6This can be a long daisy chain. For instance: measure an IR

luminosity, say; from that determine how many bright, massive

stars are needed to power the dust; divide by the main sequence

after the person who first did one.

Difficulties in the analysis aside, everyone in this field

agrees on the low-z result. The number of strongly-

starbursting galaxies increases with redshift, out to z ∼
2 – which is just the quasar era. The uncertainties come

at higher redshift: it is not clear if the star formation

rate declines again, at higher z (like the quasars), or

continues more or less steady (out to, say, z ∼ 5, the

current limit of this sort of work).

14.6 Ending with questions

All of this raises some intriguing questions, which

seem as good a way as any to end these notes.

• Did the bulk of galaxy formation take place at the

same time as quasars were most active?

• Is a strong starburst a part of the mass-accretion pro-

cess which kept the AGN powerful at that epoch?

• Are the merger and dissipation events that made the

bulge or E galaxy the same events that made the quasar

shine?

• Are the majority of nuclear BH dark today because

they aren’t being fed? Are galaxy mergers necessary to

transport the gas (i.e. BH food) close to the nucleus?

And ... that’s it, folks! It’s been fun – have a good

summer!

Key points

• The phenomenology: important observational

trends..

• The usual model: what’s there on sub-pc scales?

• “Practical cosmology”: what does “high z” mean

(ages, timescales, etc)?

• The QSO epoch and how it might connect to galaxy

formation.

lifetime of the massive stars; and you have “derived” a “star for-

mation rate”. Or ... measure the radio luminosity; use the fact

that the radio and IR powers are well correlated for nearby spiral

galaxies, to estimate the IR luminosity; and return to top..
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14.7 Appendix: a little practical cosmology

Before we can talk about BH and AGN in the early

universe we need to review the language used. The

context is cosmology: we work with the scale factor,

R(t). This is a quantity which describes (“scales”)

the distance between two fixed points in an expand-

ing universe – say two nearby galaxies. The evolution

of R(t) reflects the fight between gravity (an attrac-

tive force), initial conditions (how much expansion did

the universe start with?), and the effect of any vacuum

energy density (the cosmological constant; “dark en-

ergy”). For our purposes here, let’s assume that R(t)
is a known function (found from the solution of Ein-

stein’s field equations). Everything we can measure

about a distant object – size, luminosity – depend on

how much the universe has expanded between the time

it emitted a light signal (tem) and the time we receive

that signal (today; usually called to).

14.7.1 Just what is the redshift?

The redshift is defined is 1 + z = δλ/λ (the shift in

an emission wavelength, say of a spectral line, relative

to its rest value). The redshift of a cosmological object

is an important quantity. It tells us not just the reces-

sion speed (which isn’t very interesting), but – more

importantly – the distance and age of the object.

There are at least 3 physical causes of a redshift.

• You remember the simple Dopper shift: for low

speeds, 1 + z = v/c; and for relativistic speeds, the

Lorentz transform in simple geometry gives 1 + z =
γ(1 + β).

• There is also a gravitational redshift, which occurs

when light emitted in a potential well (say at the sur-

face of a star) climbs out to the observer. For a

Schwarzchild geometry this becomes 1 + z = 1/(1 −
rs/r)

1/2.

• Finally, there is a cosmological redshift: the fre-

quency of a signal decreases due to the expansion of

the universe while that signal propagates to the ob-

server. This is the one we want here: it becomes

1 + z = R(to)/R(tem).

Because the cosmological redshift is intimately tied to

the expansion of the universe, it becomes a handy way

to describe the distance and age of an object. Two

things are worth noting here.

14.7.2 The Hubble diagram

Think about a source at some distance D. In Euclidean

space its light spreads out over a surface of area 4πD2

before it gets to the observer, so that one sees a flux

∝ L/D2. But, this changes if space is not Euclidean.

The key fact is that the area of the D-sphere is not

4πD2. The details of how the area changes depend on

the cosmological parameters (curvature and cosmolog-

ical constant), but the general trend can be sketched, as

in Figure 15.1. NOTE that for z ≪ 1, curvature effects

don’t matter; dl ∝ z, just as in Euclidean space. The

original Hubble’s law (v = Hoz) applies in this limit.

Also note that the so-called Hubble constant, Ho, is the

slope of this curve as z → 0 (that is, it isn’t a constant,

but a variable).
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Figure 14.3 How the curvature of space affects the lumi-

nosity distance, dl (defined so that the observed luminosity

of a source at redshift z is L/4πdl(z)
2). Note that for small

redshifts, dl ∝ z, and the classical Hubble’s law is recov-

ered. The right hand diagram is often called the Hubble

diagram; its high-z extension can, in principle, be used to

measure cosmological parameters.
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Figure 14.4 How the age of the universe, and of an object

we observe, depend on redshift. Left: the age of the universe

(counted from t = 0, the big bang) when an object had red-

shift z. Right, the lookback time – the difference between

the age of the universe at z and the age of the universe now.

This tells us how long ago an object existed, if we see it at z
today. The “Hubble age” is defined as 1/Ho.

14.7.3 The lookback time

How long ago did an object exist, if we see it now at

redshift z? If space were Euclidean, that would be

simple: (age at emission) = (today’s age) - (distance
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/ lightspeed); and the lookback time would be propor-

tional to the redshift. But as with the Hubble diagram,

space curvature makes this more interesting for z >∼ 1.

Numbers: z = 2 gives a lookback time ∼ 0.5/Ho;

z = 5 gives a time ∼ 0.6/Ho, and for higher z’s the

lookback time doesn’t change by a lot.


