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The goal of this course is to explore the “physics of as-

trophysics”. What physics governs the behavior of the

astrophysical objects we observe? How can we inter-

pret our observations, in light of the relevant physics,

to understand what’s going on inside a particular star,

nebula or galaxy? To reach this goal we need to bring

together a diverse range of physics – some of which

you will have seen in other courses, some of which will

be new. These ideas cover a broad range of material,

not all of which is in a single textbook. Thus, we’ve

got the course notes for our text.

You should note units and dimensions. These notes

are in cgs, as is most of the astrophysical literature.

That makes very little difference for “rocks” (analyses

that involve mass, length, time); but it makes a big dif-

ference for electrodynamics. The E and B fields, as

well as the fundamental charge, have different dimen-

sions in cgs than in SI; and the coupling constants in

Maxwell’s equations are different.
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1 Astrophysical plasmas we’ll meet

We will be using several different astrophysical sys-

tems as examples of plasma astrophysics. While

you’ve probably run into all of these before, it may

be worth collecting a brief description of them in one

place. For some objects I’ll put in “typical” parameters

(size, density, temperature, etc); for others, such num-

bers are hard to pin down, & we’ll introduce them as

needed later on.

The terrestrial ionosphere and magnetosphere

Start at the surface of the earth: the atmosphere you’re

breathing, as you read this, is very close to charge neu-

tral. The density of electrons is only ∼ 10− 100 cm−3

(how does this compare to the total number density of

the low-altitude atmosphere?). But this changes when

you get to altitudes & 100 km. The ionized fraction,

and total ionized number density, grows suddenly (due

to what? what ionizes the upper atmosphere?), until at

a few hundred km you reach the highly ionized iono-

sphere. The number density here ∼ 106 cm−3 (but

remember this changes rapidly with height, due to the

exponential density of the atmosphere); the tempera-

ture ∼ 103 K. This is our nearest-by example of an as-

trophysical plasma; we see its signature in the propaga-

tion, bending (refraction) or non-transmission or radio

waves.

Continuing upwards, the ionospheric density drops

off more rapidly than does the earth’s magnetic field

(which is a dipole field, ∼ 1 G at the earth’s surface).

Thus you reach the magnetosphere, a region where the

plasma density is small and the plasma is dominated

dynamically by MHD and plasma effects. On the sun-

ward side of the planet, the magnetopause extends to

several earth radii, and is bounded by the bow shock

where the solar wind runs into the earth’s B field. On

the “downstream” (antisunward) side of the planet, the

magnetotail extends to several tens of RE .

The solar corona and solar wind Now, start at the

sun’s surface and move outward ... the photosphere is

the visible “surface” of the sun, with T ≃ 5800 K. It’s

about 500 km thick, mostly neutral. We know a good

bit about magnetic fields here, because we can observe

sunspots & related phenomena. The mean field B ∼ 1
G; sunspot fields are ∼ 1 kG. The chromosphere is

a region 2000-3000 km thick, just above the photo-

sphere. Going upwards, the temperature first drops to

∼ 4000K, then rises to ∼ 104 K; the density drops

rapidly, from & 1015 cm−3 at the base to ∼ 109 cm−3

at the top. Above this is the corona, in which the tem-

perature rises abruptly to & 106 K, and the density

continues to drop (but more gently). Magnetic fields

are “outlined” by the beautiful filaments and promi-

nences which extend from the chromosphere up into

the corona. These structures have typical thicknesses

∼ 6000 km, lengths ∼ 100, 000 km, and extend to

∼ 50, 000 km above the surface. The plasma in a

quiescent prominence is about 300 times colder and

denser than the surrounding coronal gas; B ∼ 10 G is

usually quoted as typical.

The corona is also the source of the solar wind. The

outflow starts in coronal holes, large open regions (vis-

ible in X-ray images) that are associated with “open”

B field lines and high-speed solar wind streams. Solar

wind numbers are of course a function of radius. At

the earth, the wind density ∼ 10 cm−3, T ∼ 105 K,

B ∼ 10−4 G, and the wind is very supersonic, with

v ∼ 500 km/s. Elsewhere in the wind, the velocity

changes only slowly, v2 ∝ ln r, and we think the tem-

perature doesn’t change by much; the behavior of the

other parameters (density, field, pressure) is set by con-

servation laws.

Stars You know stars are held together by gravity,

and supported against collapse by their internal pres-

sure. They are the classic example of hydrostatic equi-

librium, which we’ll work with later in the course. In

addition, stars are almost totally ionized (how do you

know? What’s the temperature, interior and surface, of

your favorite mass of star?), and thus are plasmas. We

also know that stars are magnetized; we measure the

sun’s surface B field directly, and that of other stars in-

directly (through X-ray and radio observations of stel-

lar flares, for instance). That means that magnetohy-

drodynamic (MHD) effects – the forces exerted by the

B fields and the currents which support them – must be

considered. We won’t talk a lot about “normal” stars

in this course, but you should remember that MHD ef-

fects are important to many aspects of their formation

and evolution.

HII regions Put a hot young star down in a region of

neutral ISM. If the star is hot enough – if it produces

a substantial amount of UV photons (with hν > 13.6
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eV) – it will photoionize the nearby ISM, making an

HII region. These vary a lot across the galaxy in their

density and size. The spectrum ranges from young,

ultra-compact ones, with diameter < 0.03 pc and den-

sity > 104 cm−3 (which are hidden behind thick dust

clouds, so that you can only see them with radio or

IR); to the older, big, bright, famous ones, which have

blown off their dust shrouds and are beautiful optical

sources (such as the Orion nebula; diameter ∼ 1 pc,

very inhomogeneous, but maybe it has a typical den-

sity ∼ 103 cm−3). The temperature of a photoionized

region is regulated by the microphysics: T <∼ 104K al-

ways (see Physics 426 for the proof).

Supernova remnants The physical picture is easy to

describe: a star goes bang, and ejects a rapidly moving

shell of matter. This shell moves out into the local in-

terstellar medium (or the wind ejected by the pre-SN

star), pushing the ambient matter ahead of it and de-

celerating as it goes. We’ll talk about SNR in more

detail next term; for now, typical sizes are a few pc

(with older ones being bigger, of course). Typical den-

sities and temperatures are harder ... the outer shell is

defined by a shock, and the conditions therein are com-

plex. Inside of the shell, the shocked gas is hot, ∼ 107

K – we see it in X-rays.

Another type of SNR, about 10% of the population, is

a filled remnant, also called a plerion or pulsar wind

nebula. These are the remnants with active pulsars in-

side; the relativistic-plasma wind from the pulsar fills

the SNR. The Crab nebula is a well-known example of

this.

Our galaxy & the interstellar medium Our galaxy

is a typical big spiral. It is rotation supported in the

plane (stars + gas in circular orbits) and supported by

“heat” (i.e., random motions) transverse to the plane.

The stellar disk extends ∼ 15 kpc from the center, with

the sun at 8.5 kpc out; the gas disk in a typical spiral

extends much further, out to ∼ 30 − 50 kpc. The disk

thickness depends a bit on which species you measure

(stars, hot gas, cool gas ..); typically it’s ∼ 1/2 kpc

thick.

The diffuse interstellar medium (ISM) is multiphase:

there is a cold, neutral component; a “warm”, mostly

ionized component; and a hot (“coronal gas”) compo-

nent. As everywhere in diffuse astrophysical plasmas,

the chemical composition is almost all hydrogen; all

heavier elements contribute no more than a few per

cent. Each of these phases has a range of tempera-

tures and densities. For “typical” numbers, let’s say

the cold, neutral HI is at n ∼ 1 cm−3 and T ∼ 100 K;

the warm, partly ionized HII is at n ∼ 0.2 cm−3 and

T ∼ 6000 K; and the coronal gas is at n ∼ 10−2cm−3

and T ∼ 106 K. Note that each of these phases are

in approximate pressure balance: p = nkBT is about

the same for each. Measured as an energy density each

phase is at ∼ 1 eV/cm3. The ISM is of course mag-

netized, and also contains an energetically important

relativistic plasma (the cosmic rays); each of these is

also at ∼ 1 eV/cm3.

The galaxy also has a hot, extended halo. We de-

tect it mostly through its synchrotron emission (from

relativistic particles undergoing gyromotion in the lo-

cal magnetic field). Based on other galaxies, our halo

probably extends a few kpc above and below the plane;

information on its composition (thermal gas, B field,

energy density, etc) is harder to come by.

Cosmic rays These are worth their own paragraph.

Most of the ISM is “thermal” – that is it has a well-

defined temperature (subrelativistic: kT ≪ mc2) and

a Maxwellian distribution of the particle velocities.

However it also contains a component of highly ener-

getic (E = γmc2; the Lorentz factor γ ≫ 1) charged

particles. These particles are accelerated “somewhere”

in or out of the galaxy and remain tied to B field lines

as they move through the ISM. They are “nonthermal”:

their energy/velocity distribution is not a Maxwellian,

rather a power law (which means they haven’t had time

to thermalize via collisions with the ISM. Their lowest

energy ∼ 1011 eV (at least the lowest that we detect);

their highest energy ∼ 1020 − 1021eV.

Elliptical galaxies These are the big round ones.

Sizes: they typically have an inner core, radius ∼ 1−2
kpc, and an extended, power-law outer halo (in which

the stellar density ∝ 1/rx, where x ∼ 2 − 3. They

are supported by the random motions of their stars;

they show little or no organized rotation. It used to

be thought that they had no ISM, because you couldn’t

see it in optical pictures, and because they show little

ongoing star formation; we now know that’s wrong.

Their ISM is mostly hot, T ∼ 107 K (we see it with

X-ray telescopes) – so it’s less inclined to star forma-

tion than the cooler, denser ISM in a spiral galaxy. Its
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density distribution is roughly similar to that of the

stars; the density ∼ 0.1 cm−3 in the core, and falls

off roughly as a power law outside the core.

Ellipticals do, however, contain a smaller amount of

cooler ISM, which can be detected with radio and

millimeter-wave telescopes. It stands to reason – by

analogy with spiral galaxies and clusters of galaxies –

that the ISM in an elliptical should also be magnetized

and contain a relativistic plasma component. There has

been very little observational work on this question, so

I can’t offer any numbers for the field or the cosmic

rays here.

Radio jets and radio galaxies Let matter accrete

onto a compact object (which could be the core of a

protostar, or a neutron star, or a black hole). Some

part of the accreted matter and energy is driven away,

into an outflow – which in some (many) cases can be

highly collimated. The outflowing plasma is very often

(probably always) magnetized, and it often contains a

relativistic particle component which we see in radio

frequencies through its synchrotron radiation. These

are thus called radio jets. Their size varies from AU

(protostellar jets) to a few pc (jets from galactic ac-

cretion sources) to 100’s of kpc (jets from supermas-

sive black holes in active galaxies). Their internal state

(density, temperature, composition) also varies a lot

between these different objects. What they have in

common is that they all involve energetic, relativistic

plasma which is controlled dynamically by MHD ef-

fects.

Clusters of galaxies These are the largest self-

gravitating structures in the universe. Their structure

is sort of like a big elliptical galaxy, with an inner core,

radius ∼ 300− 500 kpc, and an outer halo where den-

sity (of gas or galaxies) decays roughly as a power law.

The outer halo can be traced to a radius of more than

a Mpc in big clusters. The cluster has a plasma at-

mosphere – the intracluster medium, ICM. It is com-

posed partly of primordial material which accumulated

as the cluster formed, and partly of processed material

that has been through star formation in the galaxies and

then ejected back into the ICM. Typical temperatures,

∼ 108 K; typical densities ∼ 10−3 cm−3 in the core

(and again decaying outwards).

We are beginning to learn that the ICM is magnetized,

and that it also contains a relativistic (“cosmic ray”)

component. Numbers here are not yet well determined.

A “typical” field seems to be B <∼µG, but B can reach

tens of µG in high field regions. The mean cosmic ray

energy density might be ∼ 1 − 10% of the thermal

plasma pressure.

What’s left? Here’s a question for the student: what

astrophysical objects have I not mentioned? How

many objects can you think of that are neither plasmas

nor affected somehow by MHD affects?

Key points

After each chapter I’ll try to highlight the most impor-

tant issues in that chapter. Here, it’s just the objects

themselves: you should be familiar with the range of

astrophysical plasmas we’ll encounter, including typi-

cal sizes, densities, etc for each one.



4 Physics 425 Notes Fall 2014

2 Some basic plasma tools

In these notes I’m storing the ideas and important ex-

pressions for some basic plasma tools.

2.1 Distribution functions

This is an important tool for understanding the micro-

physics of a plasma: what is the distribution function

(DF) of plasma particles (free charges) with momen-

tum, or energy? In terms of momentum, this is defined

so that f(p)dp is “the number of particles at p; the

total number of particles (usually per volume) is

n =

∫

f(p)dp (2.1)

If the particle distribution in momentum space is

isotropic, the dp can be expanded out to give

isotropic : n =

∫

f(p)4πp2dp (2.2)

You’ve probably seen the Maxwell-Boltzmann distri-

bution, for a thermal, subrelativistic plasma:

f(p) = Ae−p2/2mkT (2.3)

where the constant A is written in terms of the total

number density n by plugging (2.3) into (2.2). We can

also take suitable moments of the DF to get other use-

ful things. For instance, the mean kinetic energy per

particle, averaged over the MB distribution, is

〈KE〉 = 1

n

∫

A
p2

2m
e−p2/2mkT 4πp2dp

=
1

2
mv2th =

3

2
kT

(2.4)

Note, the 1/n term is part of the definition of the mean

energy (do you understand why?). This expression

(2.4) also defines the thermal speed, vth =
√

3kT/m
(this holds for monatomic particles; more complex

molecules have more degrees of freedom & a differ-

ent numerical factor).

We can also work with relativsitic plasmas.

• You recall that the total energy of a relativistic parti-

cle is given by

E2 = p2c2 +m2c4 (2.5)

we also have the definition

E = γmc2 (2.6)

where

β = v/c and γ2 = 1/(1 − β2) (2.7)

In the limit E ≫ mc2, we also have E ≃ pc; thus

the integrals in (2.1) or (2.2) can be written in terms

of particle energy E (or just the Lorentz factor γ). An

alternative DF, motivated by observations (for instance

of cosmic rays) is often used with relativistic plasmas:

the power law distribution,

f(E) = foE
−s , E1 ≤ E ≤ E2 (2.8)

or

n(γ) = noγ
−s , γ1 ≤ γ ≤ γ2 (2.9)

The exponent s depends on the system; the scaling

constant fo or no connects to the total number (or num-

ber density) of particles.

• NOTE the way these DF’s are normalized: we want

the total number of particles to be, say,

N =

∫

f(E)dE =

∫

n(γ)dγ (2.10)

This means that f(E)dE = n(γ)dγ .. so that f(E)
and n(γ) have different units.1

2.2 Collective effects

Two important pieces of physics appear when we think

about a “clump” of plasma.

2.2.1 Plasma waves

These will be treated more formally later on, but we

can see the basics with a simple cartoon. Start with

a layer of charge-neutral plasma, with number density

n+ = n− = n. Now displace the electrons, relative

to the (heavier) positive charges, by some distance ξ
in the x-direction, as in the figure. The excess charge

surface density is neξ; this generates an E field, E =
4πneξx̂.2 Each charge layer feels a net force equal to

its charge times the E field. Thus, we can write an

equation of motion for the electrons,

menξ
d2ξ

dt2
= (neξ)(4πneξ) (2.11)

1To the student: what are those units?? Work out the dimen-

sions – they will look funny, but that’s the way it is.
2To the student: why?? think about Gauss’s law and capacitors.
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But this is clearly an equation for simple harmonic mo-

tion: ξ(t) = ξoe
−iωpt, where ξo is the amplitude of the

displacement, and

ω2
p = 4πne2/me (2.12)

is the (square of the) electron plasma frequency. This

is a fundamental mode of oscillation of the plasma; it’s

very easy to excite such waves, and in fact we expect

any plasma to have some level, albeit low, of plasma

wave turbulence.

We’ll see later that ωp is a cutoff frequency for EM

wave propagation: only waves with ω > ωp can prop-

agate in an unmagnetized plasma. We’ll also see later

that νp = ωp/2π is the frequency at which some

plasmas emit coherent radiation (for instance in solar

flares, or pulsar radio emission).

(t)

+

+
+

+

+

+

++
+

+
+

++
+

+
− −

−−

−

−
−

− − −

−−−
− −

−−
−

−

ξ
Figure 2.1 A simple cartoon illustrating plasma waves.

The positive charges are displaced by ξ(t) from the neg-

atives; the attractive force turns this system into a simple

harmonic oscillator with frequency ωp.

2.2.2 Debye shielding

An important feature of plasmas is that their charges

are very mobile; they can easily shield out any external

E field we try to apply. Say we put a postive charge

Q down somewhere in the plasma. Plasma particles

of the opposite sign will scoot over to Q and form a

charge cloud of the opposite sign around Q, thus neu-

tralizing its effect on the rest of the system. If the

plasma were cold (if thermal motions didn’t matter),

the charge cloud would be very thin around Q, and the

shielding outside would be perfect. On the other hand,

if the temperature is finite, particles on the edge of the

cloud, where the E field is weak, have enough energy

to escape from the potential well. Thus the nearby

shielding is only partial – there is a region of finite size

within which Q causes a finite E field. The size of this

region is the Debye length; it is given by

λ2
D = kT/4πne2 (2.13)

This is one of the important length scales in plasma

physics.

One immediate use for λD is to turn it into ND =
(4π/3)nλ3

D – which measures the number of particles

in a “Debye sphere”. If ND ≫ 1, then Debye shielding

is indeed a valid statistical concept, and we can treat

the plasma as macroscopically charge neutral (that’s

what we’ll do in this course). On the other hand, at

high temperatures and/or low densities, it may be that

ND
<∼ 1, and we need to worry about single-particle

motion as well as macroscopic effects.

2.3 Single particle motions

We also need to understand how individual particles

move within the plasma.

2.3.1 Gyromotion

You have seen this before (right?). Just recall the ba-

sic analysis: the equation of motion for a particle with

charge q, in a B field, is (in cgs!)

dp

dt
= q

v

c
×B (2.14)

For a subrelativistic particle, with p = mv, and

putting the ẑ axis along B, the solution to (2.14) de-

scribes gyromotion:

vx,y = v⊥e
iΩteiφ

vz = vzo
(2.15)

where v⊥ is the (constant) amplitude of the motion

across B; vzo is the (constant) velocity along B; φ is

the phase of the x or y motions; and the gyrofrequency

is

Ω =
qB

mc
(2.16)

From this we can also get the gyroradius (also called

Larmor radius),

rL =
mv⊥c

qB
(2.17)

Or, in words: the general motion of a charged parti-

cle in a B field can be described as gyromotion about
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a guiding center, plus motion of the guiding center

through space. In this simple case, the guiding cen-

ter just moves along B; but that will change in the next

section.

• How does this change for a relativistic particle? In

the homework, you will show that the gyrofrequency

and gyroradius depend on the particle’s energy, as

Ω =
qB

γmc
; rL =

γmv⊥c

qB
(2.18)

2.3.2 Particle drifts, external forces

Now let’s expand the example above, by adding an E

field. The equation of motion is now

dp

dt
= q

v

c
×B+ qE. (2.19)

If E has components (0, Ey, Ez) (Fig. 2.2) the solution

for a subrelativistic particle is

vx = v⊥e
iΩt − Ey

B

vy = iv⊥e
iΩt

vz = vzo +
qEz

m
t

(2.20)

Thus, we see (i) simple acceleration along B, if E has

a component in that direction; and (ii) sideways drift,

across B, at a rate

vE = c
E×B

B2
(2.21)

This is called “E×B drift”. Comments:

• What causes the drift? Think about energetics: the

particle alternately gains and loses energy, every half of

its orbit. Thus, its Larmor radius gets alternately larger,

then smaller. This leads to a net drift, as illustrated in

the figure.

• We can also look at this particular drift in terms of

Lorentz transforms. You may remember that E and B

fields are not “relativistically pristine”; changing refer-

ence frames can turn E into B, and vice versa. This

connects directly to E × B drift. What direction do

the particles go? Note, here, both positive and negative

charges drift in the same direction. You can understand

this from the cartoon; also note, vE is independent of

charge.

• We can generalize this. The key ingredient in what

we just did, was the presence of a non-magnetic force

Figure 2.2 Illustrating E×B drift.

(call it F) in the equation of motion. Repeating the

above analysis for this F , we find a generalized drift

velocity,

vF = c
F×B

eB2
(2.22)

F can be anything relevant: gravity is the most com-

mon application.

2.3.3 Particle drifts, non-uniform B field

We also find drifts when a charge moves in a non-

uniform B field. I’m not going to derive these for-

mally (the algebra gets really tedious); rather we can

do it by cartoon. One case is illustrated in Figure 2.3

– let B vary in space, and let ∇B have a component

perpendicular to B. Once again, the Larmor radius of

the particle will change during its gyro-orbit; and once

again, this will cause a net drift across B. One simple

way to find the drift speed is to remember that a mag-

netic moment, µµµ, feels a force F = −µµµ∇B when it sits

in a nonuniform B field. You remember (of course....)

that the gyromotion creates a magnetic moment (de-

fined for a nonrelativistic particle),3

µ =
mv2⊥
2B

(2.23)

With this definition, the µµµ∇B force gives us the rate of

“∇B drift”:

v∇B =
v2⊥
2Ω

B×∇B

B2
(2.24)

3why does this definition make sense? To derive this, you’ll

need to know that the definition of magnetic moment, in cgs, is

µ = Ia/c, for a current I going in a circle of area a.
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Figure 2.3 Illustrating ∇B drift. In this cartoon, B is out

of the paper again; and it is stronger at the top of the drawing

(∇B ‖ ŷ).

Another effect comes from a particle moving along a

curved B line. Let R be radius of curvature of the

field line, and define κκκ = R̂/R.4 The curved path

creates a centrifugal force, and again causes a sideways

curvature drift, at a rate

vcurv = −
v2‖

RΩ

κκκ×B

B
= −

v2‖

Ω

R×B

R2B
(2.25)

2.4 Adiabatic invariants

Let’s continue with our particle in a nonuniform B

field. It turns out that several useful constants of the

motion can be found. We’ll just look at one, the mag-

netic moment. Here’s the result:

• If B is constant, or varies only slowly

(compared to the gyroperiod), then µ is a

constant of the motion.

Here’s the outline of the proof. We’re interested in non-

uniform B fields. First, remember that if B changes

with time (this is as seen by the particle in its gyro-

orbit), it generates an EMF:
∮

E · dl = −1

c

∫

∂B

∂t
· dS

so the rate of work done (current times EMF, right?) is

d

dt

(

1

2
mv2⊥

)

=
qΩ

2π

πr2L
c

dB

dt
→ µ

dB

dt
(2.26)

But also, from (2.23), the definition of µ:

d

dt
(µB) =

d

dt

(

1

2
mv2⊥

)

(2.27)

4Both R and κκκ are defined pointing inward relative to the arc

of the circle (i.e. the curved field line).

Now, compare (2.26) and (2.27): clearly these two are

consistent only if dµ/dt = 0; thus we’ve proved that µ
is constant.

• I did this for a nonrelativistic particle. It can be gen-

eralized to the relativistic case: if we define

µrel =
γmv2⊥
2B

=
p⊥v⊥
2B

(2.28)

it can be shown that µrel is also a constant of the mo-

tion. So we can apply this analysis to cosmic rays –

that’s good.

2.5 Applications

Two applications are particularly interesing.

2.5.1 magnetic mirrors

This is a straightforward consequence of the invariance

of µ. Think about a particle moving into a region of

higher B (i.e., converging field lines, in the usual car-

toon). Because µ is constant, v2⊥ ∝ B must increase.

But, the particle’s energy is constant – so the gain in

v⊥ must come at the expense of v‖. This clearly has a

limit: when all of the particle’s initial energy has been

turned into v2⊥, there is no more v‖, and the particle

can’t go any further along that field line. This point is

called a magnetic mirror.

Mirrors are important for particle trapping .... if you

want to keep a plasma confined magnetically, you

might create it in a region of low B, which is bounded

(at least along the field lines) by a region of high B.

That’s a “magnetic bottle”. If each end of the confin-

ing field has a high-B region, particles are in princi-

ple trapped forever ... they can move back and forth

along a field line (while undergoing gyromotion), but

they can never escape the region (unless you add more

physics ... as we’ll talk about).

2.5.2 Particle acceleration

Magnetic mirror geometries can be used to accelerate

the charged particles trapped therein.

For one method, think about a closed magnetic bot-

tle, and now contrive to have the high-B regions ap-

proach each other. The trapped particles will gain a

little bit of energy each time they collide with the mir-

ror point (e.g., think about a particle bouncing off a

moving brick wall – go back to basic physics). This is

called Fermi acceleration; it was the first mechanism

proposed to accelerate cosmic rays.
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For another method, let the magnetic bottle’s geometry

stay fixed (no moving end mirrors), but now let the B
field go up and down with time, in some cyclic fashion.

In the dB/dt > 0 phase, particles will gain perpendic-

ular energy. If nothing else happens to the particles,

their perpendicular energy will go up and down with

the field (not very interesting). But what if the parti-

cles collide with each other before the field starts its

downwards cycle? A collision between two particles

will, statistically, redistribute energy between v⊥ and

v‖. The parallel part of the velocity will not decrease

when B goes back down – so the particle will have a

net gain of energy on each cycle. This is betatron ac-

celeration or magnetic pumping.

2.5.3 Earth’s radiation belts

The region above the (mostly neutral) atmosphere,

out to about 10 Earth radii, is more properly called

the “inner magnetosphere” – but I’m using the older

name, here, to differentiate from the full magneto-

sphere, which we’ll visit later. The motion of parti-

cles in this region is mainly governed by single parti-

cle effects – gyromotion, E×B drifts, ∇B drifts, and

adiabatic invariants, such as we’ve seen in this chapter.

Some authors talk about three particle populations in

this region. (1) The cool, thermal plasma, at particle

energies below 100 eV, is mostly the magnetospheric

extension of the ionosphere (i.e. terrestrial in origin).

(2) The ring current plasma, particle energies from

100 eV up to several hundred keV, is “injected” into

the radiation belts from magnetic storms in the Earth’s

magnetotail. Their drift motions result in a net cur-

rent around the Earth, hence the name. (3) Trapped

radiation belt or van Allen belt particles are even more

energetic, at and above 1 MeV per particle. These are

the ones whose radiation was detected in the 1950’s

(and thought to be a sign of nefarious, warlike activ-

ities on the part of other terrestrial nations); we now

know these particles come from the solar wind, via the

magnetotail.

Key points

• Relativistic particles: if you don’t remember p =
γβmc, E = γmc2, etc., you should go back and re-

view this material.

• Distribution functions: how they’re defined; thermal

vs. non-thermal.

• Plasma waves: what they are, what is ωp?

• Debye shielding: what it is, what is λD?

• gyromotion: Ω, rL, in cgs; for subrelativistic and

relativstic.

• particle drifts: E×B, ∇B, curvature drift.

• adiabatic invariants: µ is constant; magnetic mirrors.
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3 Collisions in Plasmas

We want to understand the behavior of a collection of

charges: that is, a plasma. We start with what a “col-

lision” means for a set of charges. To begin, we recall

the basics of hard-sphere collisions. If a “gas” of bil-

liard balls, say, has a number density n and each parti-

cle has a random velocity v and a radius a, we define

the collision cross section,

σc = πa2 (3.1)

From this we find the mean free path (the average dis-

tance between collisions),

λ ≃ 1

nσc
(3.2)

and the mean time between collisions,

τcoll ≃
1

nσcv
. (3.3)

This last can be inverted to describe the collision rate

per particle, τ−1
coll ≃ nσcv.

For hard spheres this analysis is straightforward, of

course; they will not interact unless there is a direct

“hit”, and the geometrical cross section is the rele-

vant one to describe energy exchange. Neutral atoms

and molecules behave similarly, in that they need a

very close hit; their cross sections can be calcalated

from basic physics. Typical atomic cross sections

∼ 10−14 cm2. Another “hard-sphere” type of calcu-

lation would describe direct hits between stars. Two

stars must pass within a couple of stellar radii of each

other for either of them to be strongly disturbed by the

encounter; the cross section could be estimated from

eq. (1), with a ∼ 2− 3×R∗.

3.1 The Spitzer collision cross section

There is, however, another type of encounter which is

important in astrophysics: a long-range encounter be-

tween two objects which feel a 1/r2 force. This will

describe collisions between charges in a plasma (an

ionized gas), and will also describe distant collisions

between stars (or any gravitating bodies). In addition it

is the physical mechanism underlying bremsstrahlung

radiation. I’m following the discussion in Longair,

High Energy Astrophysics, Vol. I, chapter 2.

3.1.1 the basics

Start with a single encounter, in which particle A (an

electron, say) scatters on particle B (a proton, say; with

mp ≫ me, we can assume the proton stays at rest. Let

the incoming particle have velocity v and mass me, and

let in come in at impact parameter b.

b

v

Figure 3.1 A ‘soft collision’ at impact parameter b.

We can solve this problem exactly, from classical me-

chanics, and find the deflection angle, θ, and the resul-

tant velocity and momentum changes, ∆p = m∆v.

Here, we will approximate this analysis, following

Longair.

The net impulse on the electron will be ∆p =
∫

F(t)dt, integrated over the collision. Now, the force

is strong only when the two particles are close. Since

they are close for a period of time ∆t ≃ 2b/v, we can

approximate F ≃ e2/b2 and ∆p ≃ 2Fb/v. (Since we

know the net deflection is perpendicular to the initial

direction of motion, we can also drop the vector nota-

tion). This gives us the net energy gain per collision,

∆E =
(∆p)2

2me
≃ 2e4

meb2v2

We want to extend this analysis, to find the net rate

of energy exchange with the plasma. But the collision

rate of our electron, with particles at impact parameter

b is, (collisions/second) = 2πnbv db, we find the net

energy exchange rate by integrating over all allowed b:

dE

dt
=

∫ bmax

bmin

2e4

meb2v2
2πbnvdb =

4πe4n

mev
ln

(

bmax

bmin

)

(3.4)

Now, we want to express this in terms of a cross sec-

tion:
dE

dt
=

E

τcoll
= nvσcE (3.5)

This defines the Coulomb cross section, σc:

σc = 8π

(

e2

mev2

)2

ln Λ (3.6)

if ln Λ = ln (bmax/bmin) is defined as the Coulomb

logarithm.
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The Coulomb logarithm depends on the largest and

smallest impact parameters that are important (clearly,

we cannnot integrate from bmin = 0 to bmax = ∞,

since the integral in (3.4) would diverge). bmin is usu-

ally taken to be the distance corresponding to maxi-

mum energy transfer,

bmin ∼ e2/mev
2

bmax is less straightforward. Longair describes

Coulomb scattering for an energetic particle hitting an

electron bound in an atom, and for this case he likes

bmax ≃ v/νo, if νo = h3/(2π)2mee
4 is the electron’s

orbital frequency. (He argues that collisions slower

than 1/νo will violate the free-electron model assumed

in the derivation). For unbound electrons, a more com-

mon choice is the Debye shielding length (the scale

over which an extra charge causes charge separation in

a plasma):

bmax ≃ λD =
(

kBT/4πne
2
)1/2

(kB is the Boltzmann constant, and T is the tempera-

ture). Thus, the best choice of ln Λ clearly depends on

the exact situation one is considering. Luckily, for our

purposes, this is only a logarithmic uncertainty, and

will not be critical for most of our calculations. The

choices above, with typical astrophysical parameters,

give ln Λ ≃ 10− 20, in almost any diffuse-matter set-

ting.

Numerically, for a thermal plasma with 1
2mev

2 =
kBT , the Coulomb cross section becomes,

σc ≃ 7× 10−13 ln Λ

T 2
4

cm2 (3.7)

where T4 = T/104K; so that

τcoll ≃ 4× 104
T
3/2
4

n ln Λ
sec (3.8)

and

λ ≃ 1× 1012
T 2
4

n ln Λ
cm . (3.9)

3.1.2 mnemonics and extensions

A useful short way to remember the Coulomb cross

section is as follows. Similarly to the bmin estimate

above, we can define an effective “radius”, aeff , by

equating potential and kinetic energies:

e2

aeff
=

1

2
mev

2 (3.10)

and then, estimating σc = 2πa2eff ln Λ. This re-

covers the form of equaiton (3.6), and resembles the

hard-sphere cross section, (3.1), “with a factor of ln Λ
tacked on”. The factor of 2 is retained in this estimate

of σc, to match (3.6). In extending this to other ex-

amples, as we will do just below, the exact numerical

factor that scales πa2eff ln Λ cannot be recovered by

this method of guessing; one would have to do a more

formal analysis to get the correct order-unity numerical

factor for each cross section.

Two other inverse-square-law cross sections can be

immediately written down from this guesstimation.

First, extend the Coulomb cross section to a relativis-

tic plasma. If the particle energy is γmec
2, where

γ = (1− β2)−1/2 and β = v/c, we get

σc ≃ 2π

(

e2

γmec2

)2

lnΛ (3.11)

so that σc ∝ 1/E2 for this limit as well.

The other extension is to the cross section for energy

exchange in a gravitating system (such as a star clus-

ter). Here, we estimate aeff from

Gm2
∗

aeff
≃ 1

2
m∗v

2

(we have assumed all of the stars have the same mass,

m∗), and the gravitational cross section is

σgrav ≃ 2π

(

2Gm∗

v2

)2

lnΛ (3.12)

3.2 Anomalous effects

In the preceding section, we worked through a spe-

cific, well-formulated, very concrete example of par-

ticle collisions. That is, a free charge feels the elec-

tric field of an adjacent charge, or of all the nearby

charges in the plasma, and changes its momentum and

energy accordingly. This is attractive because we can

write it down explictly. Unfortunately, it isn’t always

the whole answer. We know of several astrophysical

situations where the predictions (for timescale, for in-

stance) of Spitzer collisions disagree strongly with the

observations.

• Plasmas in which the Spitzer collision time (or mean

free path) is much longer than the characteristic age

(or size) of the system are called collisionless. This is

maybe an unfortunate terminology, because...
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• ... “collisionless” doesn’t really mean “no particle

ever changes its energy or momentum due to collec-

tive effects”. Rather, collisionless plasmas often “act

collisional” (for instance they support shocks, which

require dissipation). For a while this was not under-

stood; now we believe that plasma turbulence is in-

volved. That means that a random background of

plasma waves (such as those discussed in §2.2.1) ex-

ists. A charged paraticle will scatter on the randomly

fluctuating E fields associated with the turbulence; this

will have the same effect as physical collisions, but

(often) much faster than actual Spitzer/Coulomb col-

lisions. Any such effect associated with plasma turbu-

lence is called anomalous (resistivity, conductivity, etc.

The collective effect of the turbulence is very hard to

calculate from first principles; in these notes, we’ll just

assume that τcoll refers either to Coulomb collisions, or

anomalous effects, as needed.

3.3 Apply this: conductivity.

As an example of this, consider the conductivity in an

ionized plasma. You recall that, in the simple case, the

conductivity σ relates the current density to the local

E field: j = σE.

Notation alert. Yes, I know, the Greek let-

ter σ is doing double duty here. We attempt

to keep them straight by reserving σc for a

Coulomb cross section and σ for the conduc-

tivity.

3.3.1 isotropic conductivity

Let’s start simply, ignoring the effects of any B field.

We can then find σ simply, in terms of the mean time

between collisions, τcoll (or the collision frequency,

νcoll = 1/τcoll), as follows. Consider a free electron,

in a plasma, subjected to an external electric field E.

The net force on the particle can be estimated,

Fnet ≃ eE − ∆p

∆t
(3.13)

where ∆p/∆t is the mean rate of momentum change

per collision. But if the charges have a net drift velocity

vD, we can estimate ∆p/∆t ∼ mevD/τcoll; then, in a

steady state we have Fnet ≃ 0, and the drift velocity

must be vD = eEτcoll/me. Next, we can use this in

the (static) Ohm’s law, to relate the conductivity to the

drift velocity:

j = neevD = σE (3.14)

where the second equality defines σ. Collecting every-

thing, we end up with

σ =
nee

2

me

1

νcoll
=

ω2
p

4π
τcoll (3.15)

(In the last expression, ωp is the electron plasma fre-

quency, which we’ve already seen). For our purposes

here, the important fact is that σ ∝ τcoll. Thus, in an

ionized, low density plasma, collisions are infrequent,

and the conductivity is very high.

3.3.2 anisotropic conductivity

Now, include a B field; in a general situation in which

E and B exist. We expect single particle motion to

have components along B (regulated by collisions, just

as in the nonmagnetized case); across B (driven totally

by collisions); and also E×B drift, in the third direc-

tion.

To start here, let’s work out the single particle motion.

We have

e
(

E+
v

c
×B

)

−mvνcoll = 0 (3.16)

Put B along ẑ, and write this in components:

eEx +
e

c
vyB −mνcollvx = 0

eEy −+
e

c
vxB −mνcollvy = 0

eEz −mνcollvz = 0

(3.17)

Now do some algebra, and solve for each component

of v:

vx

(

1 +
Ω2

ν2coll

)

=
e

mνcoll
Ex +

Ω2

ν2coll

cEy

B

vy

(

1 +
Ω2

ν2coll

)

=
e

mνcoll
Ey − Ω2

ν2coll

cEx

B

vz =
e

mνcoll
Ez

(3.18)

Or, this can be written in terms of the vectors v‖,v⊥,

and E‖,E⊥ (relative to B:

v⊥

(

1 + Ω2τ2coll
)

=
eτcoll
m

E⊥ − Ω2τ2collc
E ×B

B2

v‖ =
eτcoll
m

E‖

(3.19)

Thus, single particle motion is a mix of direct flow

along E‖, E × B drift, and a new effect, cross-field

flow due to the collisions.
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These three effects each contribute to a current. Re-

membering that in general, j = nev (for each charge

species), the net current can be written,

j = σoE‖ + σ⊥E⊥ + σH b̂×E (3.20)

where b̂ is a unit vector along B. We have three sepa-

rate conductivities:

σo =
ne2

mνcoll
; σ⊥ = σo

ν2coll
ν2coll +Ω2

σH = σo
νcollΩ

ν2coll +Ω2

(3.21)

where Ω = eB/mc is the gyrofrequency, as usual.

These three terms are called the collisional, Pederson

and Hall conductivities. Comparing the two cross-field

terms, we see that the Hall current dominates if Ω is

large (so that gyromotion is much faster than colli-

sions); or that the Pederson current wins if collisions

dominate.

3.4 Apply this: diffusion

Another example is diffusion of one species into an-

other (for instance, think about diffusion of cosmic

rays into a thermal, subrelativistic part of the ISM).

3.4.1 isotropic diffusivity

We can pull the same trick as above, to estimate the

diffusion rate for the isotropic case. Here, forget about

any applied E field, but put a number of particles in a

density gradient, ∇n. Keep the temperature constant,

so that the density gradient connects to a pressure gra-

dient, ∇p = kT∇n. If the particles have number den-

sity n, and undergo collisions just as they did in the

previous section, the net force per unit volume is

Fnet ≃ −∇p− mnvdiff
τcoll

(3.22)

Note I’ve relabeled the drift velocity here, trying to

clarify the notation.

Why does equation (3.22) hold?? This can

be proved in two ways. One way is to use

macroscopic conservation laws – you know

that pressure is a force per area, so a pressure

gradient exerts a net force on a unit volume

of stuff. We’ll do this formally in the next

chapter. Alternatively, one can connect the

micro to the macro by starting with a conser-

vation law in phase space (called the Boltz-

mann equation) for all of the particles, mul-

tiply by v twice, and integrate over dv ... to

get to the same point. We won’t go through

this second approach, but it does make clear

the microscopic, statistical effect of a density

gradient.

So, in this case the net force goes away for a diffusion-

drift velocity, which we express in terms of the flux

(particles/cm2-s), as

nvdiff ≃ −kT

m
τcoll∇n (3.23)

We have, thus, a diffusion velocity that depends on the

local density gradient – also note the sign (particles

move towards lower density regions). This result is

usually incorporated into the continuity equation:1

∂n

∂t
= −∇ · (nv) = ∇ · (D∇n) (3.24)

where

D =
kT

m
τcoll (3.25)

is the diffusion coefficient. Note, D has dimensions of

cm2/s, and is often written D ≃ v2charτcoll ∼ vcharλ,

where vchar is the “characteristic” speed (for instance

thermal speed) of the particle distribution, and λ =
vcharτcoll is the mean free path of a particle. Thus,

simple diffusion can be thought of as a random walk

with step length λ.

3.4.2 anisotropic diffusivity

How does the presence of a B field change these re-

sults? About as you’d expect – particles have a much

harder time diffusing across a field than along it. Refer

back to the discussion around equations (3.16) through

(3.18). We proceed similarly here, ignoring E but

including a pressure gradient. Motion along B isn’t

changed; the equations of motion across B become

mnvxνcoll = −kT
∂n

∂x
+ en

vy
c
B

mnvyνcoll = −kT
∂n

∂y
− en

vx
c
B

(3.26)

1You’ve probably seen this before, most likely in E&M (re-

member conservation of charge). If not, trust me for a little bit,

we’ll derive in in the next chapter.
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and after more algebra, we get to2

vy

(

1 +
Ω2

ν2coll

)

≃ −D

n

∂n

∂y

vx

(

1 +
Ω2

ν2coll

)

≃ −D

n

∂n

∂x

(3.27)

(with the parallel motion unchanged). Similarly to the

conductivity study, we thus have parallel and perpen-

dicular diffusion coefficients:

D‖ = D =
kT

m
τcoll ; D⊥ =

Dν2coll
ν2coll +Ω2

(3.28)

Thus – as with electrical conductivity – collisions slow

down diffusion across B. In the limit Ω ≫ νcoll,
the perpendicular diffusion coefficient becomes D⊥ ≃
kTνcoll/mΩ2 = r2Lνcoll. Thus, cross-field diffusion

can be thought of as a random walk with step length rl
(instead of λ).

Key points

• Collisions: mean free path, collision time, etc. – if

you haven’t used these before, make sure you under-

stand them.

• “Spitzer” or “Coulomb” collisions: what they are,

how to estimate the cross section.

• Anomalous effects: what they are, what we think

they are due to.

• Electrical conductivity: how to build isotropic σ from

basics; qualitative effects of B.

• Diffusion coefficients: how to build isotropic D from

basics; qualitative effects of B.

2Doing the full analysis finds a third term, analogous to the

E ×B term in the anisotropic conductivity. It leads to a “density

gradient drift”, a.k.a. “diamagnetic drift”, vD ∝ ∇p × B. It’s

usually slow compared to our diffusion, so I’m omitting it from

these notes.
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4 Basic fluid dynamics

Thus far in the course we’ve used a microscopic ap-

proach, emphasizing the effects of individual charges

and single particle trajectories in the behavior of a

plasma. Now, we move to a macroscopic approach.

We want to describe the collective dynamical behavior

of the system in terms of a few macroscopic variables

– density, pressure, temperature, velocity, and (later

on) currents and fields. This approach will be valid

on scales large enough that we can ignore the discrete

nature of the fluid (the fact that the gas, or plasma, or

fluid, is composed of point-like particles). Thus, we

must be working on scales large compared to the in-

terparticle distance. In addition, some of our results

will depend on collisions between the particles being

important – this allows a shock to form, for instance.

In these applications, we have the additional condition

that the effective collision length must be small com-

pared to the system size. This effective length can be

(i) the Coulomb or hard-sphere mean free path; or (ii)

the mean free path of a particle to “collisions” with

microturbulence in the plasma (small-scale, small am-

plitude waves involving electric and/or magnetic field

fluctuations); or (iii) the gyroradius of a charged par-

ticle, if the plasma contains a tangled magnetic field

(in which case the particle motion across the field is

severely restricted, and the effective “collision length”

is somewhere between the gyroradius and the charac-

teristic “tangling length” of the field).

Comments to the Reader.

In this chapter and the next I present the fundamen-

tal laws of astrophysical fluid mechanics: conservation

of mass, momentum and (nearly) magnetic flux.1 The

fundamental relations are expressed as partial differen-

tial equations, and I have chosen (for the sake of having

a thorough reference) to present them semi-formally.

The down side of this is that they may look slightly in-

timidating to a student who does not often solve PDE’s

for fun and relaxation. I therefore offer a summary

table – giving the most useful forms of the basic con-

servation laws, and some other critical results. These

1We’ll defer energy conservation to next term,after we’ve de-

veloped more tools.

are the forms with which said student should be par-

ticularly familiar. There are also some simple, and im-

portant, applications coming. These important formal

results can be found at:

Key (math) points

Mass conservation eq. (4.2)

Momentum conservation eq. (4.4)

Induction eq. (5.11)

Key applications

Hydrostatic equilibrium eq. (4.7)

Sound waves and sound speed eq. (4.13)

Bernoulli’s fact eq. (4.18,19)

Flux freezing eq. (5.14)

Alfven waves eq. (5.9)

You might also note that the formal equations, while

(of course!) necessary, are not the heart of the mate-

rial at this level. Rather, the focus in class and in the

homework will be on physical insight and simple ap-

plications of these basic laws.

4.1 Fluids: basics

Hydrodynamics starts with three basic equations, de-

scribing mass, energy and momentum conservation in

the fluid.2 We will consider the first two in this chap-

ter. To extend to magnetohydrodynamics (MHD), we

need a fourth basic equation, connecting the field to the

fluid, and vice versa. That will come in chapter 5.

4.1.1 mass conservation

Consider an arbtrary volume of fluid, V , bounded by

a closed surface, A; let the surface have an outward

normal, n̂. The mass within this volume is
∫

V ρdV , if

ρ is the mass density. The net rate of change of this

mass is
d

dt

∫

V
ρdV ;

if there are no sources or sinks of matter, this quantity

must equal zero. Now, there are two ways this integral

can change with time. (i) there can be intrinsic varia-

tion of ρ, ∂ρ/∂t 6= 0; or (ii) there can be flow into or

2Terminology warning: hydrodynamics normally talks about

“fluids”; but “gases” obey the same macroscopic laws, as do “plas-

mas”.
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out of the volume, at a rate ρv · n̂ per surface area. The

sum of (i) and (ii) must balance out to zero:

d

dt

∫

V
ρdV =

∫

V

∂ρ

∂t
dV +

∫

A
ρv · n̂dA = 0 (4.1)

But the surface integral can be written as
∫

A ρv·n̂dA =
∫

V ∇ · (ρv)dV . Since V is arbitrary, we can set the

integrand to zero, and we get the differential form of

this basic equation:

∂ρ

∂t
+∇ · (ρv) = 0 (4.2)

This is, of course, the continuity equation, applied to

mass conservation.

4.1.2 momentum conservation

Consider again our surface A, enclosing volume V .

The momentum within this surface is
∫

V ρvdV . The

net rate of change of this quantity again must reflect in-

trinsic (∂/∂t 6= 0) variation and advection (flow across

the surface). Thus, we write the net rate of change of

momentum as
∫

V

∂

∂t
(ρv)dV +

∫

A
(ρv)v · n̂dA

=

∫

V

∂

∂t
(ρv)dV +

∫

V
∇ · (ρvv)dV

(4.3)

In the second expression, we have used Gauss’s law for

tensors (noting that ρvv is a second-rank tensor).3

Now, the net rate of change of momentum in the vol-

ume must be equal to the net force exerted on the vol-

ume. We consider external forces which act throughout

the volume (“body” forces, such as gravity, electomag-

netism, buoyancy, radiation pressure if the fluid is opti-

cally thin; we let f be the net force per mass), and also

the force exerted on the surface by the fluid outside V .

The net force on the volume V is, then,

∫

V
ρfdV −

∫

A
pn̂dA =

∫

V
ρfdV −

∫

V
∇pdV

3Shriek! you’re probably saying... what the heck does the no-

tation ab mean? In Cartesian coordinates, it’s a 3x3 matrix, where

the ijth component is constructed from the ith component of a and

the jth component of b:

[ab]ij = aibj

I’ve added a page on “vector identities” to the class web page

which has a bit more detail (in fact more than you’ll need in this

course).

where we have again used vector identities in the last

step. If we take its differential form, expand the deriva-

tives in the LHS and use (4.2) to simplify, we get

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p+ ρf (4.4)

This is our basic force equation (also known some-

times as Euler’s equation, or the Navier-Stokes equa-

tion).4

4.1.3 Lagrangian derivative

Look at the LHS of (4.2) or (4.4): both terms describe

the “intrinsic” ways in which the mass, or momentum,

in the elemental volume can change. It can be useful

to collect them as

D

Dt
=

∂

∂t
+ v · ∇ (4.5)

which is called the “Lagrangian derivative”. It de-

scribes the rate of change of whatever (mass, in 4.2;

v, in 4.4; etc) along the trajectory of the particle/fluid

element. With this, the continuity equation becomes

Dρ

Dt
+ ρ∇ · v = 0 (4.6)

and the momentum/Euler equation can be written sim-

ilarly (simplifying to Cartesian geometry);

ρ
Dv

Dt
= −∇p+ ρf (4.7)

4.2 Apply: hydrostatic equilibrium

After all that math, a couple of simple examples are

in order. The first is a familiar one: consider Euler’s

equation, for force balance, in a fluid at rest (so that

v = 0). The most common application of this is in a

gravitational field, f = g. This gives us just the condi-

tion for hydrostatic equilibrium:

∇p = ρg (4.8)

4You should note that one important additional force term has

not been included: the force between two adjacent fluid elements,

due to the friction of their relative motion. This is the viscous term,

and involves second derivatives of v in the space coordinates. We

won’t use this term in our examples, but it is often included in

terrestrial applications.
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4.2.1 planar atmosphere

For instance, if g is uniform, we can use the ideal gas

law,

p = ρ
kB
m

T (4.9)

to write (4.8) as a DE in ρ. If g = −gẑ, so that gravity

is in the z direction, and if the gas is isothermal,5 we

can show this leads to the usual solution for the expo-

nential atmosphere:

ρ(z) = ρoe
−z/H (4.10)

where H = kBT/gm. This is familiar as a description

of the earth’s atmosphere; it also applies to the ISM

in the disk of the galaxy. Around our location in the

plane, g is nearly vertical, so this describes the thick-

ness of the ISM disk.

4.2.2 stellar equilibrium

Change the geometry to spherical: think about a star.

The HSEq equation (4.8) becomes

dp

dr
= −ρ

GM(r)

r2
(4.11)

where M(r), the mass inside radius r, is of course

M(r) = 4π

∫ r

0
r2ρ(r)dr (4.12)

So far so good. However, solving (4.11) is far from

simple, because we can’t assume the interior of the

star is isothermal – so we have to introduce some fur-

ther physics. That physics gets complicated: we must

account for the energy sources within the star (from

nuclear fusion), and how that energy is transported out

from where it’s generated (mostly by radiation, but also

by convection). The details of the transport, combined

with overall energy balance, determine the temperature

structure inside the star ... folding that back into (4.11)

eventually gives us the star’s density structure.

Doing all that is very complicated, requires numerical

solutions, and is far too much to go into in this course.

However one simple scaling argument is useful. Look

back at (4.11). We can approximate the LHS by

dp

dr
∼ ∆p

∆r
∼ po

R
(4.13)

5BIG simplification here!!

if R is the star’s radius and po is the gas pressure near

the star’s core. The RHS, evaluated at the star’s sur-

face, is M/R. Thus, remembering ρ = nm (if m is the

mean mass per particle), (4.11) can be approximated as

nkT

R
∼ ρGM

R2
;

kT

m
∼ GM

R
(4.14)

By this point, we’re interpreting n, ρ, T as “typical”

values in the core of the star. Cute result: the sec-

ond expression is just energy balance. When the star

is in hydrostatic equilibrium, its internal energy (per

mass) is approximately equal to its potential energy

(per mass).

That’s a nice result; now let’s consider what happens

when HSEq is not satisfied.

4.2.3 star formation: gravitational instability

A star is a gravitationally bound system. Thus, the

most fundamental idea is that a piece of the ISM can

form a star when it is gravitationally unstable – as (Sir

James) Jeans first pointed out. You have probably al-

ready seen an informal approach to this problem: if

the (magnitude of the) gravitational potential energy

exceeds the internal energy, the gas cloud (protostar)

will collapse. For a cloud of radius R and fixed mass

M , one way to express this is for a single particle of

mass m:

GMm

R
& kBT : or

GM2

R
& M

kB
m

T (4.15)

(if m is the mean mass per particle). This is clearly

an upper limit on the size of a gravitationally unstable

cloud. Alternatively, if we consider a piece of the ISM,

we might want to hold the density fixed: the same cri-

teria now becomes

4π

3
GR2ρ &

kBT

m
; R & RJ =

(

3

4π

kBT

Gmρ

)1/2

(4.16)

and

M & MJ =

(

kBT

mG

)3/2 ( 3

4πρ

)1/2

(4.17)

which is now a lower limit for the radius of an unstable

region. This latter is usually identified with the original

Jeans analysis: the length and mass scales in (4.16 and

4.17) are called the Jeans’ length and Jeans’ mass.6

6Comment from the author...please note where the apostrophe

goes!
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Free-fall time. What happens if the proto-

star is gravitationally unstable? How long

does it take to collapse? If life is simple, this

time is close to the free-fall time. Consider

a piece of star at radius r, which suddenly

loses gravitational support. Through “poten-

tial = kinetic” energy, its collapse speed will

be v2ff ∼ 4πGρR2; so the time it takes to

fall a distance R is

tff ∼ 1/
√

Gρ (4.18)

You should also note that two important effects are not

included in this simple approach: rotation and mag-

netic fields. Both will fight against gravitational col-

lapse. We’ll return to this in chapter 5.

4.3 Apply: Sound waves

This is an important concept: if you “hit” a fluid, how

fast does the information (that the fluid has been hit)

travel? Here’s a physical approach, similar to the way

we derived plasma waves.

Let some perturbation (δρ, δp, δT ) be moving at some

cs. Ahead of the wave the fluid has v = 0; behind

the wave the fluid has δv, in the same direction as the

wave motion. Mass conservation at the wave front, in

a frame moving with the wave front, gives

ρcs = (ρ+ δρ)(cs − δv)

and to lowest order small, this gives

δv ≃ cs
δρ

ρ
(4.19)

Thus, δv > 0 if δρ > 0; the passage of a compres-

sion wave leaves behind a fluid moving in the direction

of the wave. Now, apply momentum balance: the net

force on some control volume, from the pressure dif-

ference, equals the rate of change of momentum in that

volume. That is,

p− (p+ δp) = ρcs [(cs − δv)− cs] (4.20)

so that, again to first order small, we have

δp ≃ ρcsδv (4.21)

Combining (4.19) and (4.21), we get a condition on the

wave speed (to allow mass and momentum balancs):

c2s =
δp

δρ
(4.22)

This is a big result: the fundamental signal speed in

an unmagnetized fluid. Referring back to the ideal gas

law, we also see that c2s ≃ kT/m (the “≃′′ describes

the uncertainty in how T varies when ρ does).

4.4 Apply: the Bernoulli effect

You may have seen this before. It is basically an ex-

pression of energy conservation, for a moving fluid el-

ement. But you remember that one can derive energy

conservation from momentum conservation.7 Here, I

go through the rather formal derivation for the hydro-

dynamic equivalent.

Start with Euler’s equation, in the form (4.4). But now,

note two useful facts. The first is that if the fluid is

barotropic – that is if p = p(ρ) only (as in an adiabatic

gas), we have
1

ρ
∇p = ∇

∫

dp

ρ
(4.23)

(this can be verified using the chain rule; take p =
F (ρ), F being some function, and go from there).

Thus, this term is a perfect differential. The second

useful fact is that

v · ∇v = −v×ωωω +∇
(

1

2
v2
)

(4.24)

(this is easiest to verify by expanding out in Cartesian

coordinates). Thus, this term is also a perfect differ-

ential. The first term on the right hand side is written

in terms of ωωω = ∇ × v, the local vorticity (which is

useful in advanced applications). Specify the force to

gravity, which can be expressed in terms of a potential:

g = ∇Φg. If we then consider steady flow, we can

rewrite (4.4) as

∇
[

1

2
v2 +

∫

dp

ρ
+Φg

]

= v ×ωωω (4.25)

But now: the right hand side of (4.25) is normal to both

the local flow field (that is normal to streamlines) and

to the local vorticity ωωω. Thus, we have one form of

Bernoulli’s relation: in inviscid, steady flow, the term

in brackets has zero gradient in the direction of the lo-

cal velocity field. We therefore have one version of

Bernoulli’s law:

1

2
v2 +

∫

dp

ρ
+Φg = constant along streamline

(4.26)

7Don’t believe me? Start with “F = ma”, let F come from the

gradient of some potential, and integrate once; you’ll get (kinetic

energy) + (potential energy) = constant. Try it!
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Further, in an adiabatic gas, p ∝ ργ if γ is the adiatabic

index (the ratio of specific heats). The second term

simplifies, so that Bernoulli’s relation for an inviscid

adiabatic gas is

1

2
v2 +

γ

γ − 1

p

ρ
+Φg = constant along streamline

(4.27)

Alternatively, in an incompressible fluid, ρ is constant,

and the second term in (4.27) becomes simply p/ρ.

Thus, for an incompressible fluid, Bernoulli’s relation

is

1

2
v2 +

p

ρ
+Φg = constant along streamline (4.28)

4.4.1 example: free expansion

Now, we can apply this to the case of a piece of fluid

expanding into a low-pressure environment. (For in-

stance, this might describe a newly created HII region,

which has suddenly been heated to T ≃ 104K, and has

an internal pressure ≫ that of its surroundings). If we

are describing a cloud in the ISM, we can probably ig-

nore gravity. First, we note that (4.27) can be written,

c2s
γ − 1

+
1

2
v2 = constant (4.29)

Now, consider a spherical gas cloud, with finite den-

sity and pressure at its center, which is expanding into

vacuum. This is clearly a time-dependent problem; but

for times between its initial “violent” expansion, and

its eventual final dispersion, we might get away with

a nearly steady-state description. (That is, for these

intermediate times, the rate at which the spatial depen-

dence of the flow field changes is small compared to

the rate at which an individual piece of fluid moves

from the center to the outer edge). We can then re-

late conditions at the center of the cloud to conditions

at the edge, by applying (4.29) at these two regions.

Now, at the center, v ≃ 0 (since this is a spherical

expansion, with a center at rest); and the cloud must

have some finite central temperature, so that the cen-

tral sound speed is cso. Thus, the constant in (4.29) is

c2so/(γ − 1). Now, as r → ∞, p → 0, by assumption,

so that cs → 0. (There can be conditions in which this

last does not follow, if the external environment is very

low-density but has a high internal energy per parti-

cle. However, such conditions probably do not hold in

the ISM.) Thus, the constant from (4.29), evaluated at

r → ∞, must be 1
2v

2
∞. Finally, we can equate the con-

stant evaluted at the center of the cloud, to the constant

evaluated far away from the cloud, and infer

v2∞ =
2

γ − 1
c2so (4.30)

Thus, a cloud having finite pressure, in a near-zero-

pressure environment, will expand at its internal sound

speed. (This makes sense; in the absence of driving

forces, the best the cloud can do is to use its internal

energy to drive the expansion; and cso is a measure of

this internal energy).

Key (physical) points

• mass conservation: how does the basic idea relate to

the ways we use it mathematically?

• momentum conservation: ditto?

• hydrostatic equilibrium and gravitational (in)stability

• sound waves and the sound speed

• the Bernoulli effect, and how it applies to free expan-

sion
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5 Basic MHD

In this chapter we carry on with our approach of the

previous chapter, but now include what’s special to

plasmas: their ability to carry currents, and to support

and react to magnetic fields.

5.1 The Lorentz force

The effect of the B field on the force equation, (2.4),

is straightforward. We simply add the Lorentz force to

the momentum equation:

ρ
Dv

Dt
= −∇p+

j

c
×B+ F (5.1)

(where F is any other external force such as gravity,

and I have ignored viscosity here). Now: expand out

the Lorentz force as

j

c
×B =

1

4π
(∇×B)×B

= − 1

8π
∇B2 +

1

4π
(B · ∇)B

(5.2)

This is an important breakdown of the Lorentz force;

it demonstrates that the field exerts a magnetic ten-

sion and a magnetic pressure on the fluid. The first

term in (5.2) represents the gradient of a scalar pres-

sure, pB = B2/8π. It appears in the momentum

equation parallel to the fluid pressure....you can think

of trying to compress a magnetic field, by pushing at

right angles to the field lines, with the field resisting

the compression (“fighting back”). The second term

is non-zero only if the field varies parallel to itself. A

simple illustration is a curved field line. The curva-

ture means there is a current flowing along the field

line; the j×B force points inwards (relative to the cur-

vature). Thus, curved field lines “want to straighten

out”...Some authors combine both effects by describ-

ing magnetic field lines as “elastic bands within the

fluid”, which resist being stretched: either pushed to-

gether, or pulled transverse to their length.

5.2 Apply: plasma confinement

I don’t know of any stars that are held together by mag-

netic fields1 (think: can you come up with a spherically

symmetric magnetic field that can confine a plasma?

I bet not..) However, magnetic confinement is quite

1although there does exist strong evidence that some molecular

clouds, which are the sites of stellar birth in our galaxy, are held

up by magnetic pressure ... that’s for a later discussion.

possible in other geometries. In fact, plasma confine-

ment is the fundamental problem for laboratory plas-

mas, and may well be relevant to some astrophysical

applications as well.

The issue is, can the plasma pressure can just balance

the Lorentz forces from the fields? Most commonly,

flows are ignored, as are resistivity and gravity. The

general condition for equilibrium is, then,

j

c
×B = ∇p (5.3)

This is subject, of course, to the constraints

∇ ·B = 0 ; ∇ · j = 0 ; j =
c

4π
∇×B (5.4)

(The second relation holds in steady state, right?). A

system which satisfies (5.3) also obeys

j · ∇p = 0 ; B · ∇p = 0 (5.5)

That is, constant-pressure surfaces are also “magnetic

surfaces” and “current surfaces”: B and j lines lie in

constant-p surfaces.

Now... (5.3), with its auxilliaries (5.4) and (5.5), is

“all” that is needed for laboratory confinement. We

just have to solve it (and then test for stability). In

these notes I confine myself to infinitely long plas-

mas in cylindrical geometry, which involve the sim-

plest math, and may well be relevant to astrophysical

jets. The basic equation, (5.3), becomes

dp

dr
+

d

dr

(

B2
φ +B2

z

8π

)

+
B2

φ

4πr
= 0 (5.6)

Perhaps the most interesting application of this, for

us, is the possibility that a current-carrying plasma can

confine itself.

Example: linear pinch or z pinch Consider a

purely azimuthal field: B = (0, Bφ, 0), so that mag-

netic tension confines the plasma. The plasma can con-

tribute to its own confinement by carrying just the right

net current. The basic relation is

d

dr

(

p+
B2

φ

8π

)

= −
B2

φ

4πr
(5.7)

One possible equilibrium (illustrated in the figure)

is Bφ(r) = Bor/(1 + r2/a2) (exercise for the stu-

dent: what are the corresponding pressure and cur-

rent density profiles?) This type of pinch can be self-

confining. Note that the current within radius r is
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I(r) =
∫ r
0 2πjzrdr, and from Maxwell the B field is

Bφ(r) = 2I(r)/rc. Using these and the pressure bal-

ance condition (5.7),

∫ a

0
prdr =

1

4πc2
I2a (5.8)

where Ia is the current in the entire pinch (out to radius

a), and we’ve assumed p(a) = 0. (To the student: can

you derive this?). Thus, the plasma can self-confine if

it carries the right current. This type of pinch is attrac-

tive, in that particles don’t escape out the ends, and the

current is carried by the plasma itself. However, this

configuration turns out to be seriously unstable, thus is

also of little practical interest in the lab.2

z

B

j

Figure 5.1a The geometry of a linear pinch: the field is

azimuthal and the current is axial.
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Figure 5.1b Qualitative solutions for magnetic field, pres-

sure and current within a linear pinch.

Example: theta pinch We can switch the geometry

above, and consider a “plasma solenoid”. That is, run a

2It might, however, be a useful model for radio jets – giving the

plasma an axial velocity doesn’t change the confinement physics.

One must, however, think about how and where the circuit closes:

how does the current return to the “origin” (the compact object that

creates the radio jet)?

current azimuthally around a cylinder of plasma – you

will of course generate a B field parallel to the axis of

the cylinder (as in Figure 5.2). This is not particularly

interesting for astrophysics,3 but it’s common in labo-

ratory plasmas (which live in tin cans). I’m including

it here because I want to point to the figure later, when

I discuss flux freezing.

z

B

j

Figure 5.2 The geometry of a theta pinch: an azimuthal

current supports an axial magnetic field.

5.3 Apply: Alfven waves

We saw above that any small disturbance in a non-

magnetized gas will create sound waves. In a mag-

netized gas, one of the analogous waves (and probably

the most important in astrophysical applications) is an

Alfven wave. These waves also carry information, and

(if the plasma is cold) are the signal-carrying waves.

What is an Alfven wave? These are waves in which the

magnetic field dominates. It exerts the restoring force;

fluctuations in the plasma density and pressure are ei-

ther exactly zero, or unimportant. More specifically, an

Alfven wave is a transverse wave, which is not com-

pressive, and which propagates (in the simplest case)

along the magnetic field. Thus, they can be thought

of as propagating wiggles in the field lines, as in the

figure.

B

mag tension

mag tension mag tension

B

Bv
1

1

0

Figure 5.3 Schematic of simple Alfven waves; the per-

turbed B1 and v1 terms are perpendicular to the background

field Bo. Following Cravens Figure 4.16.

Deriving the full details of the wave is long, but we can

guesstimate the likely wave speed. Recall that waves in

3Why? Can this geometry be self-confining, or does it need

some external pressure to hold it together?
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an elastic wire propagate due to the tension; as the field

lines in a plasma exert a tension B2
o/4π, one might

expect a wave speed

vA =
Bo

(4πρo)
1/2

(5.9)

This is the Alfven speed, and it is, indeed, a useful scal-

ing speed for waves in a magnetized plasma. We can

also note directly that ∇ · B = 0 ⇒ k · B1 = 0; so

that the magnetic field perturbation must be normal to

the wavevector.

5.4 The induction equation

Now we turn to the magnetic field in the fluid (which

must be ionized, and thus a plasma, in order to interact

with the field, right??)

Consider an arbitrary surface, S, within a fluid,

bounded by some curve C . The magnetic flux within

this surface is ΦB =
∫

S B · n̂dA. We want to find

an expression for dΦB/dt. To get this, we start with

Maxwell’s equations; in particular the ∇×B and ∇×E

ones. Also, we need Ohm’s law for a moving fluid:

j = σ

[

E+
1

c
v×B

]

(5.10)

where σ is the conductivity of the fluid or plasma.

Now, if we take the curl of (5.10), and also note that

∇× (∇×B) = −∇2B =
4π

c
∇× j

(since ∇ ·B = 0), we find

∂B

∂t
= ∇× (v ×B) + η∇2B (5.11)

where we’ve defined the magnetic diffusivity, η =
c2/4πσ. This describes the behavior of the magnetic

field in a moving fluid with a specified conductivity.

The first term describes induction due to the motion of

the fluid, while the second (noting the second deriva-

tive) acts as a “diffusion” term, allowing field lines to

“leak out”of high-field areas, for instance.

What happened to displacement current?

Those of you who are fans of E&M will have

noticed that there is no ∂E/∂t term in the

derivation of (5.11). This is a standard ap-

proximation in MHD; the reasoning goes as

follows.

(1) Our fluids are very good conductors

(why’s that? Remember how ineffective

Coulomb collisions are at dissipating cur-

rents), so we don’t expect any free-charge E

to stay around.

(2) Therefore the only E fields we ex-

pect are induced ones, which are O(vB/c);
thus ∂E/∂t ∼ O[(v/l)(vB/c)] →
O[(cB/l)(v2/c2)]. But v ≪ c for sub-

relativistic flows (almost always our limit

here), so the displacement current is of order

(small)2, and we can ignore it.

5.4.1 Ideal limit: flux freezing

This is an important application; we’ll use it a lot.

(a) Derivation. From the definition of ΦB, we have

dΦB

dt
=

∫

S

∂B

∂t
· n̂dA+

∮

C
B · (v × dl) (5.12)

where the second term, a line integral around the

boundary of the surface, accounts for changes in the

enclosed flux due to the motion of the surface. This

line integral can be made a surface integral, and we

find

dΦB

dt
=

∫

S

[

∂B

∂t
−∇× (v ×B)

]

· n̂dA (5.13)

From this, and using (5.11), we find our desired result:

dΦB

dt
=

∫

S
η∇2B · n̂dA (5.14)

Thus, the rate of change of the magnetic flux depends

on the inverse of the conductivity. In particular, as-

trophysical fluids are often highly conductive, so that

σ → ∞ and η → 0. In that limit, we have ΦB ≃
constant: the magnetic flux through some loop which

is “tied to the plasma” is a constant.

(b) Do magnetic field fines exist? The concept of a

magnetic line of force is an abstraction. In general no

identity can be attached to these lines (they cannot be

labelled in a varying field), nor can we speak of “mo-

tion” of field lines. In a perfect conductor, however,

the concept of field lines becomes meaningful, due to

flux freezing – and turns out to be a very useful way to

envision what’s going on.
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Consider a material line in the fluid (say a chain of la-

belled droplets, or particles painted pink), defined by

intersecting material surfaaces. Choose these surfaces

everywhere tangential to B at t = 0. The flux through

both surfaces is therefore zero to start, and their inter-

section defines a field line at that point. Flux freez-

ing guarantees that these surfaces continue to satisfy

ΦB = 0 at any later time. Thus, their intersection

continues to define a field line, in fact the same field

line – it has become identifiable; labelling the mate-

rial (painting it pink) has labelled the field line, and the

local fluid velocity v(x, t) is also the velocity of that

section of the field line. The field line is attached to –

“frozen into” – the fluid.

(c) Flux freezing in practice. If we think of field lines

as real entities, that move with the plasma, we can eas-

ily predict the effects of Lens’ law on B fields in a mov-

ing plasma. Note, the easiest way to understand the

physics, is to evaluate ΦB over some imaginary sur-

face that is parallel to the field lines.

For one example, think about a plasma cylinder with

the B field along the axis, as in Figure 5.2. This might,

for instance, be an astrophysical jet (never mind, right

now, how the B field is maintained). The useful sur-

face is just a cross-section through the cylinder. Now

let the cylinder radius, R, increase – maybe the jet ex-

pands as it its source. Flux freezing means the product

BπR2 is constant; thus B ∝ 1/R2.

For another example, think about a plasma cylinder (or

astrophysical jet) with azimuthal B – as in Figure 5.1a.

The useful surface here might be a square, oriented

with one edge along the jet axis, and the other edge

along the outer surface of the jet. Now let the cylinder

expand, R increase, but without any compression or

stretching parallel to the axis. Exercise for the student:

how does B vary with R now?

We’ll see quite a few other examples as we go along

– star formation, solar wind, the earth’s magnetotail,

neutron star formation in a supernova, accretion flows

onto a black hole – all lean heavily on flux freezing.

5.4.2 resistive limit: flux annihilation

In a fluid with finite conductivity, flux freezing no

longer holds. We can explore this by going to the other

limiting case, when σ is small so that η becomes large.

This is diffusive limit. If we simply ignore the advec-

tion term, equation (5.11) becomes

∂B

∂t
= η∇2B (5.15)

This describes the effect of Ohmic dissipation on the

magnetic field; note that it is a standard diffusion equa-

tion.

Do magnetic field lines diffuse? We know

how solutions to (5.15) behave: an initial

field will decay on a timescale ∼ L2/η.

Some authors discuss this in terms of field

line “diffusion” or “slippage” out of the

fluid. Remember that the density of field

lines is related to the strength of the field;

so a lower density of field lines, with time,

should correspond to field lines “diffusing”

out of the field. In particular, when η is fi-

nite, field lines are no longer tied to parcels

of the plasma; some authors talk of field lines

“moving through” the plasma in dissipative

regions.

5.5 Protostellar collapse, revisited

OK, now let’s return to our collapsing molecular cloud

(MC). Assume that the MC somehow fragments into

star-sized pieces. Next, consider the collapse of one

such piece. The simplest physics will be when the ini-

tial cloud/protostar is nonrotating and unmagnetized.

Let’s pretend for now that this is the case.

A self-gravitating isothermal sphere is a useful

model for this idealized collapse of the protostar. Be-

cause this is a simple HSEq solution, we might expect

the collapsing cloud to want to find such a structure, as

long as it can cool (and stay isothermal). The density

structure of an isothermal sphere must obey

kBT

m

dρ

dr
= −ρ∇Φg (5.16)

where M(r) =
∫ r
0 4πr2ρ(r)dr and Φg is the gravi-

tational potential (related to the gravitational field by

g = −∇Φg). We must solve this in conjunction with

Poisson’s equation for gravity:

∇2Φg = 4πGρ (5.17)
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(Look familiar? Think about the analogous equation

for the electric potential). When this is done, it turns

out that one simple solution for the density is

ρ(r) ∝ 1

r2

everywhere. Now, this clearly has two problems:

ρ(r) → ∞ as r → 0, and M(r) → ∞ as r → ∞.

Thus, real and finite clouds cannot satisfy this every-

where. This is not the only possible solution, how-

ever. A more satisfying physical solution has a core:

the density is nearly constant (at ρo, say) for r < ro,

where r2o ∝ T/ρo. In addition, a satisfying physical

solution must be truncated at large radii:
∫

ρ(r)r2dr
must converge.

Now, clouds collapsing under their own self-gravity

can be modelled numerically. Such solutions of

the collapse do find that the collapsing cloud moves

through a series of nearly isothermal solutions – mod-

ified by a central density plateau, and by an outer edge

(naturally; any simulation must be finite). Such a cloud

will collapse “from the inside out” – since the higher

central density will result in a shorter free-fall time (cf.

4.13). We would expect, then, that the core of the cloud

would at some point become opaque to its own radia-

tion, so that it can no longer cool; further collapse will

heat the core. When the temperature reaches ∼ 107K,

nuclear burning will start and a star is born.

In the real world, however, we cannot neglect either the

angular momentum or the magnetic field of the proto-

star.

Angular momentum If the collapsing cloud con-

serves its angular momentum, its angular velocity must

increase as

Ω(r) ∝ 1

r2

Thus, a cloud which starts with only a slow rotation

(for instance the differential galactic rotation,

∆Ωcloud ≃
dΩ

dR
∆R ∼ Ω(R)

R
rcloud

if R is the galactic radial coordinate and rcloud is the

cloud radius), will quickly speed up as it collapses.

Without any loss of angular momentum, this spin-up

will quickly provide centrifugal force which can bal-

ance the self-gravity: we would expect a large, rotat-

ing disk rather than a star. Clearly the initial angular

momentum must be lost somehow in the collapse pro-

cess. (Also, we note that the current angular momen-

tum of the sun, for instance, ≪ ∆Ωcloud(rcloud/R⊙)
2;

in agreement with this.)

Magnetic fields and flux freezing A simple picture

also predicts that the contracting cloud will conserve

magnetic flux. Referring back to (5.14), we recall that

the magnetic flux, ΦB, is nearly constant. This meanss

the mean magnetic field in the cloud will increase, as

B ∝ 1

r2

as the cloud colapses. As with angular momentum,

the enhanced field will stop the collapse long before a

star is reached; we can verify, again, that for the sun

B⊙ ≪ BISM(rcloud/R⊙)
2.

How are these problems resolved? We do not

know the answer here, in detail. It is likely that a cou-

ple of processes are important. The first is the possibil-

ity of the conductivity being smaller than the discus-

sion above suggests – which will happen if the cloud

is mostly neutral. This will shorten tcoll and reduce

σ – which will allow the flux inside the cloud to de-

crease, and the collapse to continue. One can picture

the charged particles in the gas, to which the field is

tied, “slipping past” the neutral gas as it collapses. This

is called ambipolar diffusion. In order to estimate the

time for the flux to change, tflux, one must know the

ion-neutral cross section; specific calculations suggest

tflux ∼ 10 − 100× tff for MC conditions.

This will reduce the magnetic flux within the cloud,

and allow slow collapse. However, it does nothing for

the angular momentum problem. The resolution of this

is probably brought about by the torque exerted on the

collapsing cloud by the magnetic field which threads

the cloud. The magnetic field lines are very likely to

connect to the ISM outside of the cloud (rather than

to be contained wholly within the cloud); flux freez-

ing in the ISM will tend to tie the “ends” of the field

lines down, and they will thus exert a torque on the

rotating, collapsing cloud. This will tend to slow the

cloud down, and to transfer its angular momentum to

the surroundings.



24 Physics 425 Notes Fall 2014

Key points

• Magnetic pressure and tension (when the field coex-

ists with a plasma!)

• Self-confinement of a current-carrying plasma

• Flux freezing (when resistivity isn’t important) and

how it’s applied.

• Magnetic “diffusion” or dissipation; when resistivity

is important

• How do B fields affect protostellar collapse?



Physics 425 Notes Fall 2014 25

6 One-dimensional flows

In this chapter we’ll continue exploring simple (well,

fairly simple) examples of steady fluid/plasma flows.

6.1 The sound speed is important

In chapter 4 we introduced the sound speed: c2s =
∂p/∂ρ. There are important differences between sub-

sonic and supersonic flows. Subsonic flows can be

thought of as quasi-hydrostatic. That is, the flow field

is strongly influenced by pressure gradients which are

determined by conditions a long distance away (such

as at boundaries). Supersonic flows, however, are

quasi-ballistic. Pressure gradients have only a limited

range of influence, and conditions far away have little

or no effect on a solution locally.

The reason the sound speed is critical to the dynamics

of a fluid or plasma flow, is that it is the speed at which

information can propagate. We can illustrate this with

1D and 3D cartoons.

c c ss

reverse waves forward waves

perturbation

Undisturbed flow

Figure 6.1 Physical illustration of simple waves. The in-

formation that the flow has been “whacked” at some point,

propagates by simple sound waves, moving at speed cs rela-

tive to the fluid in the pipe. Following Thompson figure 8.6.

vt

c

vt

c ts

s
t

M = 0 M < 1 M > 1

Figure 6.2 Mach’s construction for the propagation of a

disturbance. Consider a point source of sound (Thompson

suggests a bumblebee) in a moving medium. If the source

and flow are stationary, the sound propagates spherically

from the source. If the source/flow are moving subsonically.

the motion only distorts the spherical wavefronts. If, how-

ever, the motion is supersonic, all disturbances are confined

to a Mach cone; an observer located outside of this cone

does not receive any information about the bee.

We can also explore this by checking the magnitude of

the terms in the (steady state) force equation:

ρ (v · ∇)v = − ∇p + ρf

(ρv2/L) (p/L) (ρf)

(v2/c2s) (1) (Uf/c
2
s)

(6.1)

In the first line I’ve written the basic equation, in terms

of some body force f ; in the second line I’ve estimated

the magnitude of each term, for some scale length L;

in the third line I’ve compared the three terms, using

p ∼ c2sρ and defining a “potential energy” or “work”

associated with f , Uf ∼ fL. Thus: we see that the

pressure gradient dominates the inertial (v ·∇v) terms

for subsonic flow, and vice versa for supersonic flow.

While subsonic flows can easily be smooth and contin-

uous (with internal structure driven by a pressure gradi-

ent), it turns out that supersonic flows can (and usually

do) contain discontinuous jumps in the flow properties

(shocks).

6.2 Outflow: 1D channel flow

In general, a flow can’t adjust smoothly from subsonic

to supersonic; one or more shocks are generated by the

transition. However, there are some special cases in

which a smooth transition is possible.

Let’s start with flow in a channel; and let the channel

have cross section A. If A varies only slowly along the

flow, then we can treat this is a 1D problem. If the flow

is steady, mass conservation requires ρvA = constant.

(Why?) Differentiating this, we find

1

ρ

dρ

dx
+

1

v

dv

dx
+

1

A

dA

dx
= 0 (6.2)

For the same flow, momentum conservation gives

ρv
dv

dx
+

dp

dx
= 0. (6.3)

(Why? What terms have we retained or ignored from

4.4?) We need a third equation relating p and ρ: we use

c2s = ∂p/∂ρ. Combining these results gives the basic

equation for channel flow:

(

v2

c2s
− 1

)

1

v

dv

dx
=

1

A

dA

dx
(6.4)

This is an interesting result. Consider the differences

between subsonic (v2 < c2s) and supersonic (v2 > c2s)

flow.
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• Subsonic: a converging channel (dA/dx < 0)

accelerates the flow (leads to dv/dx > 0), and

a diverging channel (dA/dx > 0 decelerates it

(⇒ dv/dx < 0).

• Supersonic: a converging channel (dA/dx < 0)

decelerates the flow (leads to dv/dx < 0), and

a diverging channel (dA/dx > 0 accelerates it

(⇒ dv/dx > 0).

Consider, then, a flow which starts subsonic in a con-

verging channel. It will accelerate as the channel nar-

rows. If things are set up just right, the flow will reach

v = cs just at the narrowest point of the channel. If

the channel broadens again, the flow can accelerate

smoothly to supersonic speeds. Referring to (6.4), we

see that “just right” means the flow must reach v = cs
exactly at the narrowest point of the channel. If this

is not the case, the flow can do one of several things.

It can (i) change from acceleration to deceleration (or

vice versa); (ii) it may not be able to remain steady; or

(iii) it may set up internal shocks to enable it to adjust

to the local conditions in the channel.

Figure 6.3 Transonic flow in a convergent-divergent noz-

zle. If the throat occurs at just the right place, relative to the

flow, then a smooth transition from subsonic to supersonic

is possible. If, however, the flow is not exactly at v = cs
when it reaches the throat, it cannot remain steady: shocks

and/or time-unsteady flow happen. From Thompson figure

6.3.

6.3 Outflow: stellar winds

Spherical stellar winds – taking the solar wind as a

well-studied example – are an interesting extension

of channel flow. We will break the problem into two

parts: first, demonstrate that the extended atmosphere

of the sun can’t be static; and second, the nature of

the solar wind outflow. We’ll return to the interaction

of the flow with a cooler, finite-density ISM at a later

point.

6.3.1 Why must there be a solar wind?

We know, from simple observations, that the sun has

a hot atmosphere (the chromosphere, and the more ex-

tended corona). Are static solutions possible for the

solar atmosphere? These would be solutions of

dp

dr
= −ρ

GM⊙

r2
(6.5)

If the temperature structure of the atmosphere T (r),
is known, then (6.4) can be integrated easily. We can

consider two simple cases:

• First, think about an isothermal atmosphere. In this

case, solutions of (6.5) predict a finite pressure at infin-

ity:

p∞ = p⊙ exp

(

−GM⊙mp

kBT⊙R⊙

)

(6.6)

where T⊙ ≃ 1.5 × 106K and p⊙ ≃ 0.3N/m2 are the

temperature and pressure at the base of the corona.

Evaluating this limit, one finds that p∞ ≫ pISM ≃
10−8N/m2. Thus: a static atmosphere would have a

pressure at infinity that greatly exceeds the surround-

ing pressure of the ISM – and so it can’t be static. The

solution we’ve just derived would have a tendency to

expand outward.

• Can we devise another T (r) profile to alleviate this?

Not easily ... we might expect if the temperature falls

rapidly enough outwards, one might come up with

an acceptible p∞. However, the temperature gradient

can’t be steeper than that allowed by thermal conduc-

tion (heat flow from the hot solar surface). This turns

out to be T (r) ∝ 1/r2/7; which still has an overly

large p∞.

Thus, we need to look at a dynamic solution of the

momentum equation – one which gives an outflow or

“wind”.

6.3.2 The basic wind solution

Next, how does the wind behave (ignoring magnetic

fields for the time being)? The basic solution is due

to Parker. Consider a steady, spherical outflow. Mass

conservation in this case is ρvr2 =constant; or,

1

ρ

dρ

dr
+

1

v

dv

dr
+

2

r
= 0 (6.7)

while the momentum equation becomes in this case

(noting that gravity from the central star is important),

ρv
dv

dr
+

dp

dr
= −ρ

GM

r2
(6.8)
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Writing dp/dr = c2sdρ/dr, these two equations com-

bine to give the basic wind equation,

(

v − c2s
v

)

dv

dr
=

2c2s
r

− GM

r2
(6.9)

This does not have analytic solutions over the whole

range of r. However, we can learn quite a bit about the

nature of the solutions simply by inspection of (6.9), as

follows.

• The left hand side contains a zero, at v2 = c2s . If

we want to consider well-behaved flows, that is to say

those in which the derivative dv/dr does not blow up,

then the right hand side of (6.9) must go to zero at the

same point. This defines the condition that must be met

at the sonic point:

v2 = c2s at r = rs =
GM

2c2s
(6.10)

Whether or not a particular flow satisfies this condition

depends on the starting conditions, such as with what

velocity and temperature it left the stellar surface, and

also what the boundary conditions at large distances

are. If it does not start in such a way to satisfy this

condition, it either stays subsonic (corresponding to fi-

nite pressure at infinity), or cannot establish a steady

flow.

• The solution beyond the sonic point depends on the

temperature structure of the wind. The only solutions

with dv/dr > 0 for r > rs are those for which c2s(r)
drops off more slowly than 1/r; it is only these for

which the right-hand side stays positive. In the case of

an isothermal wind, with c2s = constant, (6.9) can be

solved in the limit r ≫ rs:

v2(r) ≃ 4c2s ln r + constant (6.11)

Thus, the wind will be supersonic, by a factor of a few,

as r → ∞. The question of how the solar wind man-

ages to stay nearly isothermal is not solved; it is prob-

ably due to energy transport by some sort of waves

(MHD or plasma waves, for instance) which are gen-

erated in the photosphere and damped somewhere far

out in the wind.

• Inside the sonic point, the gravity term will domi-

nate the right hand side of (6.9). Thus, solutions with

dv/dr > 0 , and v2 < c2s , will obey

c2s
v

dv

dr
≃ −GM

r2

This equation looks as if gravity is driving the wind

out! This unlikely-looking result comes from the fact

that the flow is nearly subsonic in this region; there-

fore, the dp/dr term in (6.8) – which actually drives

the wind out – is nearly equal to the gravity term.

6.3.3 What about MHD effects?

How can we justify ignoring the magnetic field in this

analysis? To explore this, go back to the basic mo-

mentum equation (5.1), write it for steady flow, and

estimate the magnitude of each term:

ρv · ∇v = − ∇p +
j

c
×B − ρ

GM⊙

r2

(ρv2/L) (p/L) (pB/L) (ρGM/r2)

(v2/v2A) (c2s/v
2
A) (1) (Ugrav/v

2
A)

(6.12)

In the first line of (6.12) I’ve written the real equation.

In the second line I’ve estimated the magnitude of each

term (for some scale length L, and gravitational poten-

tial energy Ugrav), and in the third line I’ve compared

the relative magnitudes of each term to the Lorentz

force term. Thus: we can ignore MHD effects when

the Alfven speed is low – when the B field is low, or

when the density is high.

Looking at numbers we know for the solar wind, this

limit holds (i) very close to the sun, where the den-

sity is high; and (ii) past about 10 solar radii, where

v ∼ vA and Ugrav ≪ v2A. Between these limits, in the

range ∼ 2 − 10R⊙, we find that the j ×B term dom-

inates. It is in this region that the B field controls the

geometry of the flow. This is the region in which the

field is changing between “emerging flux ropes”, fully

connected to the sun’s surface, and open field lines,

connected to the solar wind; the plasma is constrained

to flow along open field lines, and thus the configu-

ration of these open field lines determines the “area

function” that channels the plasma flow. Finally, past

∼ 10R⊙, the flow is strongly superalfvenic as well as

supersonic; the plasma is capable of “pushing the field

around”. We can use flux freezing here, and think of

the field lines as being stretched out by the outflowing,

supersonic plasma.

The outer, intertia-dominated regions of the solar wind

include close to earth, where space probes provide

us with good, detailed information about the nearby

structure of the wind. We know that the equatorial

plane of the solar wind contains four sectors, two
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with outwards-pointing magnetic field, and two with

inwards-pointing field. We also know that the global

field direction reverses direction above and below the

equatorial plane (as you would expect when the basi-

cally dipolar magnetic field of the sun is stretched out

by the solar wind). Thus, the equatorial plane must

contain a current sheet (think: which way must the cur-

rent flow?). It turns out that this current sheet is also

the explanation of the sectors.

6.3.4 What about shocks?

Just a quick note here. The solar wind flow is highly

supersonic, and superalfvenic, by the time it reaches

earth. But here and there it must slow down: when it

is forced to go around a planet, and when it runs into

the local ISM. We expect a shock transition at each

of these sites. We find a bow shock where the solar

wind encounters the earth’s magnetosphere – and sim-

ilar structures around the other planets. We also find

an outer shock – called the heliopause – where the so-

lar wind’s pressure has dropped to approximately that

of the surrounding ISM. We’ll talk more about these,

later on in the course.

6.4 Inflow: Spherical Accretion

Accretion flows are common in many areas of astro-

physics. Galactic binary systems involving accretion

are common. Cataclysmic variables, novae, and Type

I supernovae involve accretion (usually non-steady)

onto white dwarfs. X-ray binaries (which come in

several different flavors) involve accretion (usually

thought to be steady) onto neutron stars or black holes.

In addition, star formation must proceed through ac-

cretion (as the outer regions of the protostar accrete

onto the inner regions). Millisecond pulsars (“recycled

pulsars”) are often found in binary systems, and are be-

lieved to have been spun-up by accretion of mass and

angular momentum from a compansion. Finally, ac-

cretion onto a massive nuclear black hole is the most

likely explanation for active galactic nuclei (quasars,

radio galaxies, Seyfert galaxies, and all related phe-

nomena).

Most astrophysical accretion flows involve angular

momentum, and thus we need to worry about accre-

tion disks. We’ll do that later; for now, let’s consider

simple spherical accretion.

6.4.1 Basic ideas

To start, we first address simple considerations of en-

ergetics and temperature. Following this, we will look

at models of spherical and then disk accrestion.

Energetics. The basic consideration is that gravita-

tional potential energy is released, at a rate Ėg; and can

be turned into radiation with some (as yet unspecified)

efficiency ε:

Ėg ∼
GMṀ

r
⇒ L = ε

GMṀ

r
(6.13)

This simple formulation is the foundation for a wide

range of models (and pure wild speculation) wherever

accretion is happening in astrophysics (neutron stars,

star-sized black holes, supermassive black holes ..);

we’ll come back to it again and again.

Temperatures. What can we say, simply, about the

temperature of the inflowing material? One simple

limit is when the material is optically thick. In this

case, the luminosity from (6.13) is re-radiated as a

black body, for which we know (from thermodynam-

ics) that the luminosity per surface area is σSBT
4,

wher eσSB is the Stefan-Boltzmann constant. Equat-

ing the luminosity in (6.13) to that lost by black

body radiation determines the temperature the gas will

reach. This calculation finds T ∼ 107K for accretion

onto a solar-sized black hole (and thus we have galac-

tic X-ray binaries); and T ∼ 104 − 105K for accretion

onto a massive M ∼ 109M⊙ black hole (as in a galac-

tic nucleus).

6.4.2 Spherical (Bondi) accretion

To continue, consider spherical accretion specifically.

This would describe, for instance, the rate at which a

compact object would accumulate matter from the gen-

eral ISM; or it could describe the growth of a proto-

star inside a dense cloud (until angular momentum and

magnetic fields become important).

We look only at a simple case of spherical accretion,

that of smooth, adiabatic inflow. This simple case will

be describable by the basic wind equation, (6.9), with

dv/dr < 0 solutions. The rate of inflow, then, must be

determined by conditions “at infinity”, that is, in the lo-

cal ISM. Equation (6.9) has smooth, transonic, steady

solutions which start at low velocity at large distances,

pass smoothly through the sonic point (6.10) and be-

come supersonic at small radii. These solutions must

of course shock down somewhere close to the stellar
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surface (unless we have a black hole at the origin) –

but if the sonic point is well outside the surface, we can

assume nearly-steady flow as described by the wind

equation, over most of space.

Here, we will consider adiabatic accretion; assuming

the inflowing gas is tenuous and hot, and does not have

time to cool as it is compresses. Rather than consider

full solutions of the force equation (6.9 in this appli-

cation), we will use a simpler approach to study the

nature of these solutions. In particular, we want to es-

timate the mass inflow rate, Ṁ = 4πr2ρ(r)v(r), eval-

uated at some r where we know ρ and v.

For adiabatic flow, write p = Kργ and c2s = γp/ρ.

From this,
1

ρ

dp

dr
=

γ

γ − 1

d

dr

(

p

ρ

)

Thus, the basic momentum equation,

v
dv

dr
+

1

ρ

dp

dr
= −GM

r2

tells us that

1

2
v2 +

1

γ − 1
c2s −

GM

r
= constant (6.14)

We can now evaluate this constant

• at r → ∞: v = 0 by assumption, so the constant

has the value c2s,∞/(γ − 1).

• at r = rs, the sonic point: v = cs, and GM/r =
2c2s; so the constant is 1

2c
2
s(rs) +

1
γ−1c

2
s(rs) +

2c2s(rs).

Equating these two, we can relate the sound speed (that

is, the internal energy) at rs to that of the ISM:

c2s(rs) =

(

2

5− 3γ

)

c2s,∞ (6.15)

We can also evaluate the density at rs, from c2s =
γp/ρ = Kγργ−1:

ρ(rs) = ρ∞

(

cs(rs)

cs,∞

)2/(γ−1)

(6.16)

Thus, we can evalute Ṁ at rs, and get our desired re-

sult, in terms of ISM quantities:

Ṁ = 4πr2sρ∞cs,∞

(

cs(rs)

cs,∞

)(γ+1)/(γ−1)

(6.17)

where we have used (6.10 and 6.15) to express rs in

terms of the stellar mass, M , and conditions at ∞.

With more algebra we can show

Ṁ = π(GM)2
ρ∞
c3s,∞

(

cs(rs)

cs,∞

)(5−3γ)

(6.18)

Thus, the important dependence is, Ṁ ∝
M2ρ∞/c3s,∞; the cs(rs)/cs,∞ term is just an

order-unity numerical constant (from 6.15).1

Key points

• Why the sound speed is important; why subsonic and

supersonic flows can behave differently.

• Stellar winds: the sonic point; behavior inside and

outside rs.

• What happens with B fields in the solar wind.

• Spherical accretion: basic energetics

• Spherical accretion: Bondi model, how Ṁ relates to

conditions at ∞.

1You might be worried that this constant blows up when γ =
5/3, which is our favorite value for γ. Not so; with l’Hopital’s rule

you can show that

lim
γ→5/3

(

2

5− 3γ

)(5−3γ)/2(γ−1)

→ 1

Try it for yourself .. it’s a nice little exercise.
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7 Wave propagation in plasmas

In this chapter we revisit waves in plasmas, more for-

mally. This can be quite a mathematical topic. I’ll

store some of the math details in these notes, but try

to highlight the physics (especially in class). If you

want more detail, or background, good references are

Clarke & Carswell, Principles of Astrophysical Fluid

Dynamics; Chen, An Introduction to Plasma Physics

and Controlled Fusion; and Choudhuri, The Physics of

Fluids and Plasmas.

7.1 Plasma Oscillations

First, let’s revisit the plasma waves, which we’ve seen

once already. We want a more formal derivation: how

do the particle motions and charge separation connect

to each other?

7.1.1 Cold plasma

Start with a cold plasma – that is, ignore thermal ef-

fects; the only particle motions are those in response

to the electric field. The basic equation of motion for

particles of charge q is1

mn
dv

dt
= mn

[

∂v

∂t
+ v · ∇v

]

= qnE (7.1)

But the charge distribution determines E; thus we need

to add two more equations,

∂n

∂t
+∇ · (nv) = 0 ; ∇ ·E = 4πρ (7.2)

(where ρ is the net charge density). For simple plasma

waves, we will assume the ions don’t move (because

they are so heavy), and just look at the electrons.

Now, we want to look for small-amplitude, wavelike

disturbances. Thus, we first linearize - assume all

dependent variables can be broken down into (unper-

turbed) + (perturbed) parts, with the perturbations be-

ing small. That is:

n → no+n1 ; E → Eo+E1 ; v → vo+v1 (7.3)

We put these into (7.1) and (7.2), and sort terms by

their “order in small”: the zero-th order terms (no, etc)

1We can think of the LHS as the “total” time rate of change, as

seen by the particle moving with velocity v; you can also compare

the LHS of the force equation for a fluid, eqn (4.4).

represent any unperturbed equilibrium state, & should

cancel out; the second-order-small terms (n2
1, etc) are

small & can be dropped; so we keep just the first-order

small terms. That gives us,

∂n1

∂t
+ no∇ · v1 = 0 ; ∇ · E1 = −4πen1 ;

m
∂v1

∂t
= −eE1

(7.4)

These are the equations we want to solve. We make

two simplifying choices here. One, we assume2 each

perturbation f1(r, t) → f̃1e
i(k·r−ωt), and two, we

choose the geometry: pick E1 ‖ v1 ‖ k. Our three

equations (7.4) become

ikẼ1 = −4πeñ1 ; −iωñ1 = −noikṽ1 ;

− iωmṽ1 = −eẼ1

(7.5)

(remember that ñ1, etc, are the amplitudes of the per-

turbations). But now: (7.5) is a linear, homogeneous

system in (n1, E1, v1); it has non-trivial solutions only

if the determinant of the coefficients is zero. This trans-

lates to an important condition on the frequency:

ω2 = ω2
p =

4πnoe
2

m
(7.6)

Thus, we’ve recovered the plasma frequency – the fre-

quency at which charge-separated perturbations oscil-

late. NOTE that these are not propagating waves, be-

cause ω is independent of the wavenumber k (thus the

group velocity vg = dω/dk = 0).

7.1.2 Warm plasma waves

Now, extend this to include the effects of internal en-

ergy in the plasma. That is, add a ∇p term to (7.1):

mn
dv

dt
= mn

[

∂v

∂t
+ v · ∇v

]

= qnE−∇p (7.7)

Here, p = nkT as usual. We’ll assume an adiabatic

perturbation, so that ∇p = (γp/n)∇n; and for one-

dimensional motion, with one degree of freedom, we

have γ = 3. Carry through the same analysis as above,

with the extra pressure term; and you find

ω2 = ω2
p + k2

3kT

m
= ω2

p +
3

2
k2v2th (7.8)

2Why can we do this? Think about Fourier analysis – any per-

turbation can be expressed as the sum of its Fourier components.

We can get away with this because equations (7.4) are linear in the

dependent variables.
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where the (1D) thermal speed is v2th = 2kT/m. These

are now propagating waves; they have a nonzero group

velocity, vg = dω/dk.

7.1.3 Damping: collisional

Plasma waves are subject to two types of damping.

One – which you’d expect – is collisional. If the elec-

trons collide with other charges as they respond to the

wave motion, the wave energy will of course go to

heating. The equation of motion for the electrons gains

a collisional term:

mn
dv

dt
= mn

[

∂v

∂t
+ v · ∇v

]

= qnE− νcollnmv

(7.9)

where νcoll is the collision rate of an individual charge.

(This can be due to Coulomb collisions in a fully ion-

ized plasma, or electron-neutral collisions in a partly

ionized one.) It’s easy to show that the effect of this is

to add an imaginary component to the wave frequency,

ω = ωR + iωI ; and thus our waves are exponentially

damped: E1 ∝ eiωt ∝ e−ωI t (the sign of ωI deter-

mines whether the wave grows or is damped; physi-

cally for simple collisions it must be damped, right?)

7.1.4 Damping: collisionless

Another, less intuitive, process is collisionless damp-

ing, also called Landau damping. The derivations of

this are usually quite mathematical — but we really

need a physical understanding more, so that’s all I’ll

do in these notes. Think about a warm-plasma wave,

which travels at a phase speed vph = ω/k; if a charged

particle has vx exactly equal to vph, it will be in “res-

onance” with the wave – it will see exactly the same

phase of the wave as it moves along. Now, consider

another particle moving at a velocity vx which is very

close to vph. This particle will see almost a constant

phase of the wave; in fact, it will be “captured” by the

wave, and will “ride along” with a crest or trough of the

wave. If the particle is slightly slower – if vx <∼vphω/k
– it will be accelerated up to vph – draining a wee

bit of the wave energy in the process. Conversely, if

vx & vph, the particle will be decelerated as it is “cap-

tured”, thus giving a bit of energy up to the wave.

Think, then, about the net effect of this particle-wave

interaction in a plasma. Two cases are possible (refer

to class notes for a cartoon).

• If the distribution function f(vx) of the plasma is

“normal”, say a Maxwellian as you’d expect from ther-

mal equilibrium, then it has negative slope: df/dvx <
0 at vx ≃ vph. Thus, there will be slightly more par-

ticles at vx < vph then at vx > vph. That means that

more particles will gain energy from the wave than will

lose energy to the wave: the wave is damped, without

needing any particle-particle collisions. This is Lan-

dau damping.

• What if the distribution function has a positive slope

– df/dvx > 0 at vx = vph? Well, the opposite

will occur: the wave will gain energy at the expense

of the plasma. But how do you get such a distribu-

tion function? Think about two plasmas impinging on

one another – or trying to send a “beam” or “stream”

of charges through a thermalized background plasma.

This situation is unstable: the energy of the relative

motion between the plasma streams is fed into waves

of the appropriate phase velocity. This is called the

two-stream instability. Because of this instability, one

plasma trying to penetrate another cannot do so – in-

stead a background of turbulent plasma waves is gen-

erated.

Isn’t this last result curious? You might naively think

that two low-density plasmas could interpenetrate each

other without any problem, as long as Coulomb colli-

sions are unimportant. But that’s not the case: the two-

stream instability, which also arises from long-range

Coulomb interactions, tries to keep the plasmas sepa-

rate.

7.2 EM wave propagation: B = 0

In the last section we considered intrinsic oscillations

in the plasma. Now we change the setup: send in an

EM wave (and let’s stick to cold plasma). This means

we’ll have two important changes in our analysis – (i)

we need to include B effects (at least the B field of the

wave), and (ii) now we take E1,B1 ⊥ k (EM waves

are transverse, after all). We want to know how the

wave propagates and how it affects the plasma; and

– for astrophysics – how to interpret observations in

terms of what’s going on in the plasma.

7.2.1 Basic: the dispersion relation

Start here with the full Maxwell set:

∇ · E = 4πρ ; ∇×E = −1

c

∂B

∂t

∇ ·B = 0 ; ∇×B =
1

c

∂E

∂t
+

4π

c
j

(7.10)
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We are still imposing plane waves, ei(k·r−ωt); putting

these into Maxwell, we get

ik · E = 4πρ ; ik×E = i
ω

c
B

ik ·B = 0 ; ik×B = −i
ω

c
E+

4π

c
j

(7.11)

Now work on the source terms; we know j = −nev
(again, only the electons move). We still have the sim-

ple equation of motion, (7.1), and its linearized/wave

mode form, imωv = eE. Thus, we can write3

j = σE ; σ =
ine2

mω
(7.12)

We need to close the system with conservation of

charge:

∂ρ

∂t
+∇ · j = 0 ⇒ iωρ = ik · j (7.13)

Now, put these back in (7.11) and collect terms:

ik · (ǫE) = 0 ; ik×E = i
ω

c
B

ik ·B = 0 ; ik×B = −i
ω

c
(ǫE)

(7.14)

Here, we’ve identified the dielectric factor

ǫ = 1− 4πσ

iω
= 1−

ω2
p

ω2
(7.15)

(Comment: many books call this the dielectric con-

stant, in analogy with EM propagation in dielectric

materials – but here ǫ is a function of frequency, so

it’s hardly constant). By analogy with what you’ve

seen of EM waves elsewhere, once we have the equa-

tions in the form (7.14), we know the wave solution is

ω2ǫ = c2k2. Thus, our dispersion relation for the wave

propagating in the plasma is

ω2 = k2c2 + ω2
p (7.16)

and we want to look at simple applications of this.

7.2.2 Applications and extensions

Several important phenomena deserve mention here.

• Plasma cutoff. It’s clear from (7.16) that real k’s

are allowed only if ω > ωp: waves below the plasma

3What does an imaginary conductivity, σ, mean? Remember

that e−x = cosx+ i sin x; what does an imaginary σ tell us about

the phase relation between j and E?

frequency do not propagate. Why is this? Mathemat-

ically, think about k being imaginary: the wave form

eikx → e−|k|x, that is the wave damps exponentially.

Physically, think about how the plasma responds to an

incoming EM wave of frequency ω. For ω ≪ ωp, the

plasma charges can easily “move up and down” with

the wave – that is they can easily absorb the wave en-

ergy. But for ω ≫ ωp, the charges can’t move fast

enough (think about driving an oscillator well above

its natural frequency) – so the wave happily propagates

through the plasma.

• Plasma dispersion. Because ω(k) in (7.16) is dis-

persive, waves at different frequencies move at differ-

ent phase speeds. This is important when you’re look-

ing at an astrophysical object – such as a pulsar - which

emits very short pulses. The arrival time of such a

pulse at earth, from a distance D away, depends on the

frequency. Remembering that vg = dω/dk, the arrival

time of a pulse is (switching to ν = ω/2π, to connect

to observations)

tp(ν) =

∫ D

0

ds

vg
≃
∫ D

0

(

1 +
ν2p
ν2

)1/2
ds

c
(7.17)

(You should note that I’ve assumed ν ≫ νp = ωp/2π
here.) The frequency-dependent term in (7.17) is usu-

ally scaled as

∫ D

0

ne2

πmc

1

ν2
ds ≃ 4.15 × 1015

(DM)

ν2
sec (7.18)

where the dispersion measure, DM =
∫ D
0 nds, is mea-

sured in cm−3pc, and the frequency ν is in Hz.

• collisional damping. As with plasma waves, EM

waves also can damp out in a plasma. Equation (7.9)

is still the starting point. Working this through for our

EM wave, we find the dispersion relation is

ω2 =
ω2
pω

ω + iνcoll
+ c2k2 (7.19)

This looks rough; it’s a cubic equation in ω. However

things simplify if the damping rate is small compared

to the wave frequency (or its real part). The solutions to

(7.19) must be complex. To approach them, we can ei-

ther hold ω real and find complex k, or vice versa. The

first approach corresponds to driving a plasma with an

incoming wave of fixed ω; the imaginary part of k cor-

responds to the spatial damping (wave absorption by

the plasma). Alternatively, we can hold k fixed and
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look for the imaginary part of ω – some authors pre-

fer this approach. In either case: (7.19) is a cubic, and

potentially intimidating; but solutions simplify if the

damping is weak, νcoll ≪ ω (or νcoll ≪ ℜ(ω) if you

prefer).

7.3 EM wave propagation: finite B

Well, this has been so much fun, let’s do it again.

Now add a magnetic field B = Bẑ to the back-

ground plasma, and consider waves propagating along

the field: k ‖ B (this is the only simple geometry!).

7.3.1 Basic: the dispersion relation

We’ll only do the outline here, you have the details

above. The equation of motion for the electrons now is

m
dv

dt
= −eE− e

c
v ×B (7.20)

(caution: here E is the wave field, but B is the back-

ground field. I’m assuming the wave B field is small

& ignoring it). Now: for the incoming EM wave we

choose circular polarization:

E = Eei(k·r−ωt) (x̂± iŷ) (7.21)

where the ± signs pick out RH or LH circular polar-

ization. (Why? think about the response of the plasma

charges – the electrons have a preferred sense of gy-

romotion – so we might expect RH and LH circularly

polarized waves to have different phase speeds – as the

electrons might help or hinder them.) Carry out the

same type of analysis – the electron response is

v =
−ie

m(ω ±Ω)
E (7.22)

where Ω = eB/mc is the gyrofrequency. The dielec-

tric factor becomes

ǫR,L = 1−
ω2
p

ω(ω ± Ω)
(7.23)

Thus, RH and LH waves do propagate at different

phase speeds in the medium. The important applica-

tion of this is to the angle of linear polarization of an

incoming wave. We also get the dispersion relation,

directly, from this, from the definition of ǫ:

ω2 = c2k2 +
ω2
p

(1± Ω/ω)
(7.24)

7.3.2 Applications and extensions

Once again we have some important applications.

• “Plasma” cutoffs also occur here, they’re just a

bit more complicated. We again want the frequency,

from (7.23), at which k = 0 – that’s the transition

between real (propagating) and imaginary (damped)

waves. The answer depends on the sign choice in

(7.23) (that is, on whether the waves are RH or LH

polarized). We get the critical frequencies for trans-

mission:

ωR,L =
1

2

[

±Ω+
(

Ω2 + 4ω2
p

)1/2
]

(7.25)

Thus, LH waves only propagate for ω > ωL. However,

RH waves propagate above ωR and also below Ω (you

check the algebra: there are two domains of k2 > 0 for

this polarization).

• Faraday rotation is one of the most important astro-

physical methods for measuring magnetic fields. Re-

member that the phase of a wave, which has travelled a

distance D, is φ =
∫ D
0 kds. Thus the phase difference

between R,L waves is

∆φ =

∫ D

0
(kR − kL)ds ; kR,L =

ω

c

√
ǫR,L (7.26)

Now, because a linearly polarized wave can be written

as the sum of RH and LH circularly polarized waves,

the angle χ by which the polarization is rotated is 1/2

of the phase difference: χ = (∆φ)/2.

+

+ =

=

Figure 7.1 Decomposition of linear polarization into com-

ponents of right and left circular polarization. Top, RC and

LC in phase; bottom, phase shift ∆φ between RC and LC

(as due to Faraday rotation), rotates the plane of polarzation

by χ = ∆φ/2. Following Rybicki & Lightman figure 8.1.

But now, going back to (7.21) and assuming that our

observed wave frequency is well above the plasma and
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cyclotron frequencies of the plasma, we can expand k
as

kR,L ≃ ω

c

[

1−
ω2
p

2ω2

(

1∓ Ω

ω

)

]

(7.27)

Putting this back in (7.22) and doing more algebra, we

get

χ =
λ2

2π

e3

m2c4

∫ D

0
nB · ds (7.28)

(Note that I’ve gone to the more general B · ds in the

integrand; for a general direction of wave propagation

relative to B, it turns out to be the component of B

along the line of sight that matters.) This result, (7.27),

is generally scaled as χ = λ2(RM), where the rotation

measure is

RM =
1

2π

e3

m2c4

∫ D

0
nB · ds (7.29)

A convenient numerical scaling for rotation measure is

(RM) ≃ 810

∫ D

0
nB · ds

for n in cm−3, B in µG, s,D in kpc, and RM in rad/m2.

Key (physical) points

• Wave analyses (e.g. plasma waves): the mathemati-

cal attack (start with basic equations; linearize; assume

ei(kx−ωt) single-frequency solutions; do the math and

see what you get.

• Plasma waves: when do they propagate, how fast,

how do they damp?

• Collisional dissipation (of various types of waves)

• EM waves in plasma: plasma dispersion effects

• EM waves in plasma: B 6= 0 effects, Faraday rota-

tion
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8 MHD: more applications

In this chapter and the next, we’ll work through some

important fluid-type applications in which MHD ef-

fects are important. Our focus here will be MHD in the

galactic setting. We’ll revisit Alfven waves, and look

at how they interact with galactic cosmic rays. We’ll

also look at magnetic effects on buoyant instabilities,

and again apply it to the galactic setting.

8.1 MHD waves, again

First, let’s revisit Alfven waves, which we’ve seen once

already. We again want a more formal derivation:

how do the particle motions and magnetic tension (the

restoring force here) connect to each other?

8.1.1 Alfven waves: gory details

You remember these waves, from chapter 5. They

are transverse waves, which are not compressive, and

which propagate (in the simplest case) along the mag-

netic field. Thus, they can be thought of as propagating

wiggles in the field lines, as in Figure 8.1.

B

mag tension

mag tension mag tension

B

Bv
1

1

0

Figure 8.1 Schematic of (shear) Alfven waves, propagat-

ing along a background field Bo. The perturbed B1 and v1

terms are perpendicular to Bo. Following Cravens Figure

4.16.

In chapter 5 we used simple, restoring-force arguments

to guess their dispersion relation as ω = kvA, with

vA = B/
√
4πρ. Now let’s derive that, more formally,

to understand how the waves work. To do that, we’ll

use the same mathematical techniques as in the last

chapter. Consider a uniform fluid at rest: zero velocity,

uniform B and mass density ρ. Consider the behav-

ior of a small perturbation – B = Bo + B1. Pick Bo

along ẑ, and the wave field B1 = B1ŷ along ŷ. Be-

cause variable B leads to E (from Maxwell, right?),

we also have the wave electric field E1 ‖ x̂.

• Starting points & linearization. We need to follow

both E1 and B1, so we need both Maxwell equations:

∇×E = −1

c

∂B

∂t
; ∇×B =

4π

c
j+

1

c

∂E

∂t
(8.1)

We linearize as usual, picking a perturbation ∝

ei(k·x−ωt). Maxwell then becomes

ik×E1 =
i

c
ωB1 ; ik×B1 =

4π

c
j1−

i

c
ωE1 (8.2)

The current density j = ne(vi − ve), so we need the

equation of motion, for charge q, as usual:

m
dv

dt
= qE+

q

c
v ×B ; ⇒

− imωv = qE1 +
q

c
v ×Bo

(8.3)

In the last, we’ve linearized and implicitly assumed v

is “small” (so we’ve dropped v ×B1).

• Particle motion. We need to follow both electrons

and ions. For ions, we keep all the terms in (8.3), and

write out both components:

−iωmivx = eE1 + e
vy
c
Bo ;

−iωmivy = −e
vx
c
Bo

(8.4)

These solve to give the ion motion:

vix =
ieE1

miω

(

1− Ω2
i

ω2

)−1

;

viy =
eE1

miω

Ωi

ω

(

1− Ω2
i

ω2

)−1
(8.5)

For the electrons, we can simplify by assuming Ωe ≫
ω; this gives us

vex = 0 ; vey = −E1

Bo
c (8.6)

• Cut to the chase. These results are all the necessary

bits. We put (8.6) and (8.5) into the definition for j,

then put this into (8.2) and combine the two equations

there into one (by eliminating B1, say). After a page or

so of algebra, we get the dispersion relation for these

Alfven waves:

ω2

(

1 +
4πnmic

2

B2

)

= c2k2 (8.7)

With some manipulation, this can be written as

ω2 =
v2Ak

2

(

1 + v2A/c
2
) (8.8)

where v2A = B2/4πρ, as we saw before (the mass den-

sity is ρ = nmi, because the electron mass is so small).

Thus, when vA ≪ c (as is usually the case), we have

ω ≃ kvA; or when vA ≫ c (the low-density, high-field

limit), we get ω → ck.
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8.1.2 Magnetosonic waves

Another type of wave is also of interest. Think of a

compressive wave, something like a sound wave, but

propagating across the magnetic field. The magnetic

pressure will modify the restoring force; we might ex-

pect the wave speed to be a mixture of compressive

effects (through cs) and magnetic effects (through vA).

These are called magnetosonic waves.

B o

B
1

k
v 1

Figure 8.2 Schematic of magnetosonic waves, illustrating

a compressive wave propagating at right angles to the back-

ground Bo. Following Cravens figure 4.17.

The full analysis of the wave is messy, and not worth

doing here; but for the simple case of propagation

across B one finds a wave speed which is what we

might well guessed anyway:

v2MS = c2s + v2A (8.9)

Because these waves are compressive, they tend to

damp out more easily than Alfven waves (think of fric-

tional effects in the dense regions). Thus they may be

of less interest in general astrophysical situations, than

Alfven waves (which turn out to be only very weakly

damped).

8.2 The cosmic ray-Alfven wave connection

Alfven waves are particularly interesting because they

have resonant interactions with relativistic particles,

such as galactic cosmic rays (CR).

8.2.1 Cosmic rays: a quick overview of the obser-

vations.

We have already noted that many astrophysical plas-

mas – including the ISM – contain a significant pop-

ulation of highly relativistic particles which are not in

a thermal distribution. We have direct and indirect ev-

idence of these particles, which I review very briefly

here.

Baryons. Here we have direct evidence – these are

the cosmic rays. We can directly measure their flux

(including details of composition, energy, charge, and

isotropy) at earth; and from there work backwards to

model their distribution above the earth’s atmosphere.

(Connecting further back, to their composition outside

the heliopause, is harder). Significant facts about their

distribution include

• Their energy distribution is a power law, N(E) ∝
E−s, with a break at E ∼ 1015eV (the “knee”), and

another at E ∼ 1019eV (the “ankle”). The exponent

s ∼ 2.7 below the ankle, and higher above. Compar-

ison of the gyroradius to the scale of the galaxy sug-

gests that the highest energy CR, above the ankle, are

extragalactic, while the lower energy ones are galactic

in origin.

• Their composition is mostly protons, but there is a

heavy element component, with approximately solar

abundances (so they come from processed material).

• Cosmic rays are very isotropic in arrival direction,

probably at all energies.1 In terms of their origin, this

requires one of three things. (i) The CR are very lo-

cal, from something like the Oort cloud; this seems un-

likely. (ii) If the CR are galactic in origin, they must be

isotropized in propagating from their sources (which

would lie in the plane of the galaxy) to us. (iii) The CR

could be cosmological in origin; this idea has its own

difficulties which arise in interactions between the CR

and photons of the microwave background.

Leptons. Here we have some direct evidence – the

lepton component in the cosmic ray spectrum can be

distinguished from the baryon component. The cosmic

ray lepton distribution falls much more steeply with

energy than that of the baryons, which is probably due

to the stronger radiative losses the leptons suffer. We’ll

return to this topic next term.

8.2.2 Cosmic rays in the galactic setting

We have two big questions: how are cosmic rays accel-

erated to such high energies, and how do they interact

with the ISM? We’ll defer the acceleration question to

next term, but can think here about how they interact

with the ISM.

1NOTE here: this has been an ongoing discussion. Early

work suggested that this was the case only at low energies; above

the ankle, it had been believed that the highest enery CR were

anisotropic, with a tendency to come from the Virgo cluster (re-

member that’s the cluster that hosts one of the nearest AGN,

namely M87). Since then this has come under debate. Some newer

work however shows that even the highest energy CR show no

strong evidence of anisotropy, but other authors still support an

anisotropy.
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Sources are thought to be two-fold. Supernova rem-

nants have long been thought to be the main source of

CR. This is because of their importance in the over-

all ISM energy budget; because we know they eject

heavy elements and the isotopic composition of CR is

roughly that of processed stellar material; and because

we believe that their outer shocks should be good at

accelerating individual particles in the ejecta, up to the

relativistic energies typical of CR. In addition, it oc-

curs to me that pulsars are probably also an important

source. We will see that most models predict pulsars

should accelerate single charges to very high energies

(γ ∼ 107 for instance) close to the star’s surface. Some

of these particles must go to drive the pulsar wind,

but others may well escape directly into the ISM to

be a secondary CR source. Still another possibility is

that the highest energy CR may have an extragalactic

origin. This is suggested (i) because of the possibile

anisotropy, and (ii) because the highest energy ones

are unlikely to be “trapped” by the ISM. How these

very fast particles are accelerated is one of the major

unsolved puzzles – one possibility is that they are gen-

erated around the massive black holes in nearby active

galactic nuclei.

Propagation. Once generated, CR do not just fly

freely through space. Because they are charged, they

are connected to the ISM by their gyromotion, and by

scattering on turbulent Alfven waves in the ISM (more

details on this, below). Thus the CR distribution we

observe at earth may well have been seriously changed,

relative to their “birth” distribution, by propagation and

scattering through the ISM on their way to us.

Losses. The leptons, being of smaller mass, are sus-

ceptible to radiative losses (synchrotron radiation in

the galactic magnetic field, inverse Compton scattering

on whatever radiation is around) as well as Coulomb

losses (scattering on the plasma component of the

ISM). This also modifies the electron energy distribu-

tion, compared to the source, and of course reduces the

net energy in the electron component of the CR. The

baryons, on the other hand, don’t radiate much – but

there is an interesting argument on their confinement

lifetime in the ISM, as follows.

Lifetimes. To investigate the confinement of CR

baryons, we must look at the evidence on radioactive

isotopes and on spallation rates (that is nuclear interac-

tions with ISM protons). The upshot is, that the time

an average CR has hung around the galaxy (determined

by radioactive decay) is about ten times longer than

thet time it has spent propagating through the ISM (de-

termined by spallation rates). From this we learn that

an average CR spends most of its life in the galaxy, not

in the disk, but rather in the more extended halo; and

that its lifetime to escape from that halo ∼ 20 Myr.

8.2.3 Alfven waves and wave-particle resonance

We have already seen that cosmic rays are “tied to

magnetic field lines”, due to their gyromotion. There is

another important effect: Alfven waves have a strong

resonant interaction with the cosmic rays. This inter-

action can (i) scatter and isotropize the particles; (ii)

slow down an initially anisotropic particle beam from

v ∼ c to v ∼ vA (this is called the “Alfven speed limit”

in the trade); and (iii) possibly accelerate the particles.

Particle-Wave Resonance. Charged particles inter-

act resonantly with Alfven waves. A particle moving

along B at some velocity v sees a Doppler shifted fre-

quency ω′ = ω−kv = ω(1−v/vA). Now, the particle

will interact with the fluctuating E field of the wave; if

the particle “stays in phase” with this fluctuating wave,

it will undergo a strong interaction. This happens if

the Doppler shifted wave frequency is close to the par-

ticle’s natural frequency, its gyrofrequency. That is, the

interaction is strong when

ω − kv = ±Ω (8.10)

For relativistic particles, with v ≫ vA, this condition

solves to an approximate equality between the particles

gyroradius and the wave’s wavelength:

rL(γ) = γ
mc2

eB
≃ λres(γ) (8.11)

Numerically, note that particles with γmc2 ∼ 1 GeV,

in a field B ∼ 1µG, have a gyroradius – and thus a

resonant Alfven wavelength – on the order of an AU.

Wave-particle scattering. Assume, now, that we have

a field of Alfven waves, including waves at the right

wavelength λ to resonate with particles at some mo-

mentum p, and some gyroradius rg(p). Let the waves

at this wavelength have amplitude B1, and energy den-

sity Ures = B2
1/8π. Their energy will be small com-

pared to the mean field energy, UBo = B2
o/8π. Thus

the deviation of the field lines in the wave, from the

mean field direction, is δφ ∼ B1/Bo. We can de-

scribe the effect of the waves on the particles by not-

ing that, when a resonant particle stays in phase with
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a wave over one wave period, its pitch angle will have

changed by ∼ δφ compared to its initial pitch angle.

However, this is a random process; after N encounters

with Alfven waves, the particle’s net change in pitch

angle is φ =
√
Nδφ. Thus, the waves act as scattering

centers. We can define a scattering mean free path as

the distance over which a particle’s pitch angle changes

by φ ∼ 1 rad:

λmfp = Nλ ≃
(

Bo

B1

)2

rg =
UBo

Ures
rg (8.12)

Thus: if we know the energy density of resonant

waves, we can find the mean free path, and thus the

collision time, for the particles to scatter on the waves.

This is the mechanism by which relativistic particles

are tied to the galactic system; and it is probably im-

portant in the acceleration of the particles to these high

energies.

Wave growth. When Alfven waves exist at the right

λres(γ), then, particles with energies satisfying (8.11)

will be strongly tied to the background plasma. We

should note that there are a couple of ways in which

Alfven waves can be generated. First, as mentioned

above, any disturbance to the background plasma will

generate Alfven and sound waves. Wave sources could

include stellar winds, cloud motions, novae and su-

pernovae, stellar random velocities, etc. In addition,

it turns out that the resonant particles themselves can

generate the waves. It turns out that particles with (i) an

anisotropic velocity distribution, such as in a directed

beam, and (ii) streaming speed v ≫ vA will generate

Alfven waves,2 at wavelengths given by (8.11). These

self-generated waves will then scatter and isotropize

the particles, reducing their streaming speed to ∼ vA.

Energy limits for wave-particle interaction. What

are the limits on particle energies that can be scat-

tered and accelerated by Alfven waves? The upper

limit is given by the maximum wavelength that can

exist in the system; this can’t be larger, clearly, than

the scale size of the system. For the lower limit, it

turns out that Alfven waves can only exist for frequen-

cies ω < Ωp = eB/mpc, the subrelativistic proton

gyrofrequency. (At higher frequencies, the proton re-

sponse complicates the wave behavior, and the wave

2Think back to chapter 7 and the two-stream (beam) instabil-

ity, in which a plasma “beam” trying to penetrate another plasma

generates turbulent plasma waves. The detailed physics is different

here and there, but the general picture is the same – a beam/plasma

system and a resonant interaction.

changes nature). Thus, there is a maximum wavenum-

ber kmax = Ωp/vA, and a minimum resonant wave-

length, λmin = 2π/kmax, which can exist for Alfven

waves. From (8.10), we see that there is a minimum

particle energy which can “see” Alfven waves. When

one works out the details of the algebra, it turns out for

protons,

γmin,p = 1 +
2v2A
c2µ2

(8.13)

where µ is the cosine of the particle’s pitch angle. For

electrons, the equation is best solved in limiting cases.

In a high-density plasma, with v2A ≪
(

m2
e/m

2
p

)

c2µ2,

the minimum electron energy that satisfies (8.7) is

γmin,e = 1 +
v2A
c2µ2

mp

me
(8.14)

In the opposite limit, for a low-density plasma, the

minimum energy for resonance becomes

γmin,e =
mp

me

vA
cµ

(8.15)

Thus, the acceleration of low energy (say, thermal)

particles by any mechanism that depends on resonant

Alfven waves is quite different for electrons and pro-

tons. A significant number of thermal protons can res-

onate with Alfven waves, and can (in principle) be

accelerated by them. But thermal electrons have less

chance of acceleration; in a low density plasma, espe-

cially, they must already have γ ≫ 1 to resonate with

the waves.

8.3 Magnetic Buoyancy

Magnetic fields can affect buoyant behavior in vari-

ous ways. Several situations are possible, involving

simple buoyant bubbles, or buoyant flux tubes. Appli-

cations range from solar prominances, to the gaseous

halo of our galaxy, to the structure of some radio galax-

ies. You’ve already worked with the buoyant rise speed

(in previous homework). Here we need to think about

whether or not an equilibrium (such as a hydrostatic at-

mosphere, or the galactic disk) is buoyantly unstable.

8.3.1 Convective stability (unmagnetized)

To set the stage, we first need to look at the problem

without magnetic effects. Following Shore3, let’s think

about a duck.

3An Introduction to Astrophysical Hydrodynamics (Academic

Press) 1992, ch. 9.
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Picture a duck sitting calmly on a pond. . . If we say

that the bird is buoyant, we mean that if we depress

him a bit by pushing from above, he will bob back to

the surface and, ignoring his agitation, bounce up and

down for awhile. This is called neutral buoyancy. If,

on the other hand, our duck is not well preened and

therefore is not waterproof, and we push down on him,

he may sink. Now, think of a blob which is hotter than

its surroundings. It will begin to rise, since we already

know that its density will be lower than that of the sur-

rounding medium, and it will thus be buoyant. If it re-

mains underdense, it will continue to rise – we call this

an instability. It will continue to rise until it reaches

a level at which it is neutrally buoyant again. On the

other hand, if the blob is pushed down, and if it remains

overdense, it will sink until it reaches a point at which

the density again allows for stable balance.

Now, move on to a more relevant example, namely an

unmagnetized, hydrostatic atmosphere. Think about a

blob (“parcel”) in this atmosphere: assume it starts at

some vertical position z, with density and pressure in

balance with its surroundings (as in Figure 3). Thus:

it starts at ρin = ρout = ρ1 and Tin = Tout = T1.

Now, raise it some distance dz, and assume it evolves

adiabatically. Thus, it reaches a new density and tem-

perature,

ρ∗in = ρ1 +

(

dρ

dz

)

ad

; T ∗
in = T1 +

(

dT

dz

)

ad

(8.16)

The surroundings, however, are not necessarily adia-

batic: they have some other dT/dz and dρ/dz val-

ues (specified by the situation – for instance the heat-

ing/cooling balance for the outer layers of a star).

But now: the blob will be unstable if, when it has

risen this δz, it is at a lower density than the sur-

rounding atmosphere – in that case it will keep ris-

ing. Thus, our condition for instability is just a con-

dition on the external density and temperature gradi-

ents. Therefore, the atmosphere is buoyantly unstable

if (dρ/dz)ad < (dρ/dz)atm . Because we usually con-

sider situations with dρ/dz < 0, for instance a hydro-

static atmosphere, the condition for instabilty is often

written in terms of absolute values:

∣
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(8.17)

Thus: if the outside (atmospheric) temperature

changes too rapidly with altitude, the atmosphere is

g

n

n
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in

*

dz

n     

on  (z+dz), T  (z+dz)o

o
(z), T  (z)

o

Figure 8.3 Setting the stage for the buoyant (in)stability.

A blob starts at height z, in a local gravitational field g.

The blob is initially at the same pressure and density as its

surroundings: nin = no, Tin = To. It rises slowly, staying

in pressure balance with outside; it expands adiabatically as

it rises, going to some n∗

in. The question is, how does its

new density compare to the density outside?

convectively unstable. An underdense blob will con-

tinue to rise, and an overdense blob will sink.

8.3.2 Bouyant instability, magnetized

How will a B field change things? To think about it,

let’s replace our blob with a more realistic geometry,

such as a flux tube rising from the surface of the sun

(as in Figure 4). We will find another condition is nec-

essary for instability (in addition to the structure of the

surrounding atmosphere). In this geometry, instabil-

ity requires overcoming magnetic tension (holding the

ends of the flux rope down) as well as simple convec-

tive instability. To see this, consider an isolated flux

tube, such as might give rise to a sunspot. Let the ex-

ternal gas have a density scale height H = kBT/mg
(refer back to earlier work for hydrostatic equilibrium

with no magnetic field). If the magnetic field is con-

fined in the flux tube, (no B field outside), and the

intial state is in pressure balance, we can again write

internal-external pressure balance as pi+B2/8π = pe.

Assuming the gas inside is at the same temperature, it

must be at lower density than the outside. Thus leads

to a buoyancy force, as you found before:

Fbuoy = g (ρe − ρi) = g∆ρ =
B2

8πH
(8.18)

Say, now, that the flux tube is bent upwards, locally,

with a radius of curvature R. If R is short, magnetic

tension will pull the tube back towards its initial posi-

tion, giving a stable system. If, however, R is long, the
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Figure 8.4 The geometry of a sub-surface flux tube before

it erupts from the sun due to buoyancy, and its possible post-

eruption state; from Tajima &Shibata figure 3.17.

buoyancy force will overcome the tension, leading to

instability. Comparing these two forces, we find insta-

bility occurs if

g∆ρ >
B2

4πR
(8.19)

and thus the flux rope is unstable if R > 2H .

8.3.3 Parker instability

Now, let’s apply this to a different geometry, a 1D pla-

nar system (such as the ISM in the galaxy). In this

context magnetic buoyancy is referred to as the Parker

instability. Let the magnetic field be horizontal, and

fully mixed with the gas. Picking ẑ as the vertical

direction, that means we take B = By(z)ŷ; and de-

scribe the gas by density ρ(z), pressure and sound

speed p(z) = c2sρ(z), and gravitational field g.

We need a model for the unperturbed state. The sim-

plest assumption we can make is that the ratio of

gas to magnetic pressure is constant at all altitudes:

B2/8πp = αo = constant. Magnetostatic balance,

then, can be written

(1 + αo)
dp

dz
= − p

c2s
g (8.20)

This again gives us a simple exponential atmosphere.

The difference here is that the scale height involves the

magnetic as well as thermal pressures:

p

po
=

ρ

ρo
=

B2

B2
o

= e−z/Λ (8.21)

where Λ =
(

c2s + v2A/2
)

/g is the new scale height.

(Check: yes this is larger than the unmagnetized H –

which makes sense, due to the extra pressure suport of

the magnetic field).

Now, consider a small perturbation: let a horizontal

layer (or flux tube) be raised some small ∆z. The

plasma in this layer can flow freely along the field

lines – thus it will “slide down to the bottom”, leav-

ing the top part of the perturbation at a lower density

than its surroundings. If the perturbation has horizontal

scale λ, simple geometry gives us its radius of curva-

ture: r ≃ λ2/8∆z. To check the stability of this per-

turbation, we again compare the buoyant forces to the

restoring force, magnetic tension. Let “o” refer to the

altitude of the undisturbed sheet. The density in the gas

at the top of the perturbation does not know about the

B field, because the gas can slide down along the field

lines. So if the perturbation is taken slowly, to reach

a new quasi-hydrostsatic balance “inside”, the density

inside is

ρi(∆z) ≃ ρoe
−∆Z/H ≃ ρo

(

1− ∆z

H

)

(8.22)

The external density does know about magnetic pres-

sure, however:

ρe(∆z) ≃ ρoe
−∆Z/Λ ≃ ρo

(

1− ∆z

Λ

)

(8.23)

Thus, the difference between the two scale heights

drives the instability in this case. If we again compare

buoyancy to the restoring force of magnetic tension,

we find the instability condition for this case:

λ2 >
16Λ2αo

(1 + αo)
2 (8.24)

where αo is still the ratio of gas to magnetic pressure.

Key points

• Alfven waves, magnetosonic waves; what they are,

how they work (reprise);

• Cosmic rays – basic picture, in the galactic setting;

• Resonant interaction between CR and Alfven waves;

• Buoyant instability, non-magnetized;

• Magnetic buoyancy, Parker instability.
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9 Magnetic Topology: Dynamos and Recon-

nection

Magnetic flux freezing is a very good approximation in

most astrophysical environments (and is a very handy

tool). When flux freezing holds, the topology of the

magnetic field lines remains constant.1 We know, how-

ever, that flux freezing can be violated on small scales,

where resitivity becomes important (such as a thin cur-

rent sheet). It follows that the topology of the field is

no longer invariant – the field lines can “break and re-

connect” (well, sort of) in resistive regions.

There are two particularly important applications of re-

sistive MHD: magnetic reconnection and dynamo the-

ory.

9.1 Magnetic Reconnection

In these notes I’m emphasizing the details of simple,

2D reconnection. For context, note that reconnection

provides one method of heating a magnetized plasma.

I just argued that magnetic topology must be preserved

in the absence of resistivity. But is the converse obvi-

ous? To illustrate how resistivity can “break” and “re-

connect” field lines, think about the geometry in Figure

9.1. We know resistivity is important in regions of high

current density - such as the central region (around

OP). If we set up this geometry and waited awhile, the

central magnetic field would decay as the current layer

supporting them is dissipated. This would deplete the

magnetic pressure in this region. The plasma above

and below this region would be pushed inwards by its

own pressure, bringing a in a fresh supply of field (and

plasma).

Now, look at this in more detail (I’m following Choud-

huri’s discussion here). The field lines ABCD and

A’B’C’D’ move inwards, with velocity vin. Eventu-

ally the BC and B’C’ parts of the field lines decay

away. The AB part of the field line is moved to EO,

and the A’B’ part of that field line is moved to E’O.

Thus, these “fragments” of two original field lines now

make up one new field line, EOE’. And similarly, the

parts CD and C’D’ eventually make up a new field line,

FPF’. Thus, “cutting and pasting” of field lines (other-

wise known as reconnection) takes place in the cen-

1Why is this? You can think about the field lines as being tied to

the fluid; they move and stretch as the fluid moves, but cannot cross

each other (how could they do that without “untying” themselved

from the flow?)

tral region. And, of course, there must be plasma flow

away from the region – sideways in this cartoon – to

conserve mass.
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Figure 9.1 Illustrating a sinple reconneciton geometry;

see text for discussion. Following Choudhuri figure 15.2.

We can be more quantitative about this geometry, and

find simple scaling laws to describe this situation. The

model I’m describing here is Sweet-Parker reconnec-

tion — it’s illustrated in Figure 9.2.
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Figure 9.2 Geometry of Sweet-Parker reconnection. The

current sheet (grey shaded area) has thickness l and lateral

extent L The input velocity is vin and the output velocity is

vout. Quantities far away from the current sheet are labelled

with subscript o. Following Cowley figure 5.5.

First, assume the flow is incompressible – that it stays

at constant density (which turns out to be a good ap-

proximation if vin and vout are both subsonic. Mass

conservation then requires

vinL = voutl (9.1)

Next, consider force balances. In the vertical direction,

we note that B → 0 at the center of the current sheet,

and that p → pmax there (its maximum value). Pres-

sure balance in this direction therefore requires

B2
o

8π
≃ pmax − po (9.2)
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Along and within the current sheet (call that the ŷ di-

rection), there is no v × B force, so only the pressure

gradient accelerates the flow. We have then,

ρvy
∂vy
∂y

≃ −∂p

∂y
; ρ

v2out
2

≃ pmax − po (9.3)

Thus, the outflow speed must be

v2out ≃ v2A =
B2

o

4πρ
(9.4)

Now, what about the inflow speed vin? Clearly, by

mass conservation, it must be vout ≃ vinL/l; but what

sets l? We can try two different arguments here.

1. First, go back to the induction equation (5.11). In a

steady state, it is ∇ × (v × B) + η∇2B = 0, which

gives (by dimensional/scaling analysis)n

vinB

l
≃ ηB

l2
; vin ≃ η

l
(9.5)

This tells us that we can keep the diffusion region

steady if the rate at which flux is brought in is equal

to the rate at which it is annihilated.

2. Alternatively, note that there must be an E field “out

of the page”, as shown in figure 9.2, to maintain the

current sheet. From Maxwell, we get

j = σE ; ∇×B =
4π

c
j ⇔ B

l
≃ 4π

c
σE (9.6)

where σ is the electrical conductivity. But now, the

incoming plasma charges must E × B drift2 into the

region: thus

vin = c
E

B
≃ c2

4πσ

1

l
=

η

l
(9.7)

(in that last step I’ve used the definition of the magnetic

resistivitiy, η = c2/4πσ, from chapter 5). And look:

this agrees with (9.5)!

OK: now, combine our answer (9.5 or 9.7) with (9.1),

and we get our result, the inflow velocity and thickness

of the dissipation layer:

v2in ≃ vAη

L
; l2 ≃ ηL

vA
(9.8)

This gives us, finally, the spontaneous reconnection

rate; the rate of slow inflow that allows things to go

steadily. This is indeed slow – in many situations

2Check back in Chapter 2: vE = c(E×B)/B2, from (2.17).

(for instance solar flares), the plasma conductivity is

high (given by the Coulomb collision value), so that

η is low; and the reconnection timescale (≃ L/vin) is

much to long to explain the observations. People have,

therfore, spent a lot of time trying to invent faster ver-

sions of this model. Some are as follows ..

• Petschek reconnection has gotten a lot of attention

in the literature. The idea was that internal structures in

the flow (shocks toward the edges of the current sheet)

would affect the velocity field and narrow the width of

the sheet, to L ∼ l. This would of course make the

inflow rate nearly independent of η. The last I heard

is that lab experiements (cf.review by Kulsrud, 1998)

were not confirming this model.

• Compressible flow. Another suggestion is that the

plasma in the dissipation region (DR) is compressed.

If this is the case, then (9.1) is replaced by vinρoL ≃
voutρDRvout. This will increase vin relative to vout –

its a plausible idea, but I’m not aware of any lab tests

yet.

• Anomalous diffusion. This is my personal favorite,

and is a good example of how plasma microphysics can

be important in macroscopic situations. That is: is the

usual value of η, based on Coulomb collisions in the

plasma, the right value? The answer is almost surely

that it is not. If the current density is high enough, we

have a “two-stream”-like situation in the current sheet,

and can expect plasma turbulence to be generated.

But can this be quantified? One commonly used es-

timate is as follows. Recall the microscopic origin of

plasma conductivity, from chapter 3:

σ =
j

E
=≃ ne2

m
τcoll

But now, what is τcoll when we’re working with plasma

turbulence? A common guesstimate, which is thought

to be an upper limit to the resistivity (lower limit to

τcoll) is to set τcoll = 2π/ωp, if ωp =
(

4πne2/m
)1/2

is the usual plasma frequency. This gives an estimate

of the anomalous resistivity.

9.2 Reconnection: other approaches

Reconnection is a very active field these days; the sim-

ple 2D models we’ve just seen are probably way too

simple. I’ll just store a few comments here, thinking

about what interests me most.



Physics 425 Notes Fall 2014 43

9.2.1 Non-steady reconnection

Here is my personal impression: who says steady-state

reconnection is relevant to any natural situation? That

is: the arguments above show that steady reconnection

models must be forced, sometimes rather severely, to

connect with what we think is occuring in nature. But

examples of non-steady reconnection events are easy

to find:

• Reconnection in solar flares. Flares are seriously

transient events; the large amount of energy released is

believed to be due to very fast annihilation of magnetic

field, in a reconnection event. Flares have motivated

much of the work on steady-state models; however as

an outsider I suspect time-dependent, patchy, localized

reconnection must be taking place.

• Reconnection at the magnetopause, where the solar

wind hits the earth’s magnetic field. Spacecraft obser-

vations suggest this is very patchy, localized and time-

dependent. Picture, for instance, magnetic flux tubes

being carried along in the solar wind; and let one of

them impact the magnetopause, which also has its field

bunched into ropes. This process can allow solar wind

plasma, and field, to penetrate into the magnetosphere.

9.2.2 Driven reconnection

It’s worth remembering that the 2D models above are

all “spontaneous”: put two misaligned B fields to-

gether and wait to see how quickly they reconnect. But

nature does not always work this way. One can envi-

sion a situation in which the two anti-parallel magnetic

structures are driven together, by large-scale flows in

the system (one example of this is MHD turbulence,

in which different parts of the plasma move in random

directions, at a speed set by the energetics of the turbu-

lence). In this case one (this one at least) expects that

the inflow speed (vin) in our notation above) will be set

by the large-scale flow (say the turbulent speed). How

can the reconnection site adjust to this? Some authors

(e.g. Parker) suggest that the internal structure of the

reconnection layer – its thickness, density or resistivity

(set by microscale turbulence therein) – will adjust as

necessary.

9.2.3 Three-dimensional reconnection

Another observation: only rarely can a reconnection

event be well described by a two-dimensional analy-

sis. My last example in fact assumed this – because

the intersection of two magnetic flux ropes is clearly

a three-dimensional process. Going to 3D is challeng-

ing, and work is only starting here (helped significantly

by numerical simulations).

9.3 MHD Dynamos

Where do magnetic fields come from? In the lab, the

answer is easy: “currents”. In magnetic solids, the cur-

rents are those of well-ordered electrons spins in ferro-

magnetism. More typically, currents in the lab — and

their consequent B fields — come from obvious things

like batteries and wires. The issue is then, what drives

the currents? My dictionary defines a dynamo as

“a device for converting mechanical energy

into electrical energy, usually by expending

the mechanical energy in producing a peri-

odic motion of a conductor and a surround-

ing magnetic field”.

A simple lab version of this is called the unipolar dy-

namo, in Figure 9.3. This involves a conducting disk,

threaded by a B field, which rotates about its axis. This

induces a radial E field, v ×B/c, and thus a potential

drop between the axis and the edge of the disk. If you

hook up wires in the right way you’ll have a current –

and this current will create its own magnetic field.

Figure 9.3 A simple unipolar dynamo (in a less than sim-

ple figure from www.stardrivedevice.com, the best figure I

could find). The conducting disk moves through an (exter-

nally supported) B field as it rotates about its axis. The re-

sultant EMF supports a potential drop between the axis and

edge of the disk — which can drive a current.

What about astrophysical magnetic fields? To be spe-

cific, what is the origin of the earth’s field, or the sun’s

field? It’s easy to think of what doesn’t work. One,

even solid planets like the earth can’t be ferromag-

netic (because the core temperature is well above the

Curie temperature at which permanent magnetism dis-

appears); and clearly stars and galaxies can’t be fer-

romagnetic at all. Two, we can’t assume the fields
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are primordial — were somehow created when the

sun/earth/galaxy formed — because we know the re-

sistivity of the plasmas in question, and thus we know

how long it would take a primordial current to dissi-

pate. Such calculations predict that primordial fields

would long ago have died away; but we know that

stars, planets, and galaxies are still magnetized.3

Thus, we still must ask, “What supports astrophysi-

cal B fields?” The answer is still currents, but what

drives astrophysical currents? We can’t expect a de-

vice such as in Figure 9.3 exists inside a planet, or star,

or whatnot ... so we need to find a way to drive fluid

motions which can maintain the B fields we observe.

This question gets us into what’s called dynamo theory.

To approach this, go back (yet again) to the induction

equation,

∂B

∂t
= ∇× (v ×B) + η∇2B (9.9)

We know the second term describes resistive decay; if

we’re lucky the first term can be a growth term. The

first term describes magnetic induction, when v × B

creates a local E field, and thus an EMF, which can

drive a current. If the geometry is right, this current can

make the initial (seed) magnetic field grow — giving us

a dynamo. But the devil is in the details – how can the

right flow field be created and maintained naturally?

9.3.1 Cowling’s theorem

We can start by seeing what won’t work. That is, most

astrophysical models assume simple, symmetric ge-

ometries; but these can’t support a dynamo.

To be specific, we need to prove Cowling’s theorem: it

is not possible to maintain a steady dynamo in an ax-

isymmetric system. To do this, I follow Cowling’s orig-

inal (1934) argument, as presented by Choudhuri. Start

by assuming we do have an axisymmetric dynamo: one

with ∂/∂t = ∂/∂φ = 0. Consider a plane through the

symmetry axis: the projections of the field lines on this

plane must be closed curves (think of a simple mag-

netic dipole). There will be at least one neutral point in

this plane (a point where the closed field lines center)

– and jφ must be non-zero here, while B has only a φ
component at this point. Take a line integral of Ohm’s

3In addition, we know that the sun’s field reverses pretty regu-

larly, every 11 years or so; and the earth’s field reverses less regu-

larly, every 104 − 105 years. This clearly requires some internal,

self-governing mechanism.

Figure 9.4 Illustration of geometry for Cowling’s theo-

rem. Following Choudhuri Figure 16.3.

law (e.g. equation 5.10) along a closed loop through

these neutral points, enclosing the symmetry axis:

1

σ

∮

jφdl =

∮

E · dl+
∮

v×B · dl (9.10)

But now: the second term vanishes, because B ‖ dl if

this loop goes entirely through neutral points. The first

term vanishes, because

∮

E · dl =
∫

∇×E · dS = −
∫

∂B

∂t
· dS

and this last is zero by our steady-state assumption.

However, the LHS of (9.10) is non-zero, as jφ is finite.

Thus, we have a contradiction; and Cowling’s theorem

is proved.

It follows, then, that we must relax the assumption of

axisymmetry; and yet we want to maintain the large-

scale axisymmetry which we know describes objects

like the sun, the earth, or the galaxy. The answer is to

introduce small-scale asymmetries — best done, astro-

physically, with small-scale disordered fluid motion,

such as convection or turbulence.

9.3.2 Parker’s solar dynamo

The classic dynamo model is due to Parker (1955), and

is meant to describe the solar magnetic field. It is best

presented qualitatively — refer to Figure 9.5 for the

cartoon.

Say the solar field starts mainly dipolar (this is roughly

consistent with observations of the global field, just

above the solar surface). The sun does not rotate as a

solid body; near the surface, the equator rotates faster

than the polar regions. This will stretch our dipolar
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(b) (c)(a)

Figure 9.5 Parker’s model of the solar dynamo, at the

cartoon level. (a) Differential rotation (the sun’s equator ro-

tates faster than the poles) stretches initially dipolar field

in the toroidal direction. (b) Coriolis forces acting on sur-

face convective cells generates local poloidal fields. (c) The

opposite sense of the Coriolis force in the north and south

hemispheres, combined with the opposite sense of the ini-

tially toroidal field, results in a strong net poloidal field,

rather than a randomly directed set of field loops. (These

loops are shown projected in the meridional plane.) Follow-

ing Choudhuri, Figures 16.4.

field, generating toroidal components. Thus, it is no

problem to generate toroidal field if the body has dif-

ferential rotation. But this cannot be all of the story.

Such a stretched toroidal field will have many local

field-line reversals, and if nothing else happens it will

simply decay away due to resistive dissipation.

However, the upper layers of the sun are convectively

unstable. In this region, plasma blobs rise and fall.4

Now, these vertically moving blobs are subject to a

Coriolis force, due to the sun’s overall rotation. The

blobs therefore rotate as they rise; they act like little

cyclones, and formally we say that their their motion

has a net helicity (that means the small-scale motions

do not have mirror symmetry: for instance a flow with

v · (∇ × v) 6= 0 is helical). Look at (b) of Fig-

ure 9.5: this cyclonic motion twists the magnetic field

back into poloidal loops. Remember that both the di-

rection of Bφ and of the Coriolis rotation are opposite

in the north and south hemispheres: this means the di-

rection of the poloidal field component generated is the

same in the two hemispheres. We therefore have a fully

working dynamo: poloidal fields are generated by the

helical convective (turbulent) motions, while toroidal

fields are generated by differential rotation. The whole

system must be stabilized by dissipation – that is resis-

tivity will keep each field component from getting too

large.

4In chapter 8 we talked about (in)stability to buoyancy – an

unstable atmosphere will develop strong convection.

9.3.3 Scale separation and turbulent dynamos

We argued “by cartoon” that helical, convective mo-

tions on the sun (or the earth) can maintain the large-

scale B field. That is, we’re arguing that small-scale

turbulent motions can add up to a net large-scale dy-

namo.

To get a sense of how this works, and what’s needed

to make it work, we need to be a bit formal. Split the

velocity and magnetic fields into mean and fluctuating

parts:

B = B+ b ; v = V + v (9.11)

where we’re assuming that b and v have zero mean,,

and also that they are small-scale – that they vary over

much smaller spatial scales than V and B do. What ef-

fect do they have on the induction equation (5.11, also

9.9)? Let’s split it into large-scale (mean) and small-

scale (fluctuating) parts. For the mean field, we get

∂B

∂t
= ∇× (V ×B)−∇× εεε+ η∇2B (9.12)

where the important new term is

εεε = −〈v × b〉 (9.13)

This describes the net EMF due to the fluctuating v

and b.

But now, we must ask whether εεε has any interesting

large-scale effect. If v and b are rapidly varying, have

zero mean, and uncorrelated, we’d expect the mean of

their product to be zero. It turns out (“can be shown”)

that things are interesting (non-zero) if the turbulence

satisfies two conditions: (i) it must be helical, satisfy-

ing v ·∇×b 6= 0; and (ii) it must be resistive; η 6= 0. If

both of these conditions are met, the turbulent EMF, εεε,

will be non-zero on large scales. In particular, it may

be the case that 〈v × b〉 = αB (i.e., that εεε has a com-

ponent along B). If this is so, then we have an effective

dynamo term:

∂B

∂t
= ∇× (αB) + (other stuff) (9.14)

If this works – if εεε = αB — then we can see two

useful astrophysical consequences. One is balancing

ohmic losses, as in the sun or the earth — and (in prin-

ciple) accounting for the occasional field reversals in

each body. The second is “growing” the B field in

the first place. To see this, note that (9.14) allows
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solutions B ∝ eαt, if α is constant in time. That’s

a growing B field, with growth time ∼ L/α (some

large-scale length scale L). We might expect that a

small seed field would grow exponentially until some

other physics (dissipation? back reaction on the driv-

ing fluid?) comes into play.

9.3.4 Astrophysical dynamos in the lab

Finally, a few words about trying to do this in the lab.

Everything above is still pure theory — it would be

good to verify directly that an αω dynamo (rotation

plus turbulence, as in the sun), or an α2 dynamo (pure

turbulence) can really make a large-scale ordered B

field. Several groups are working on this, including

NMT’s very own Stirling Colgate. The experiments

use liquid metal — usually liquid sodium — in some

sort of rotating system (the ω in an αω dynamo), and

try various ways to induce turbulence (the α) in the

flow. The last I heard, no one had sucessfully made

their dynamo work — but I think the field’s progress-

ing. Check the Feb 2006 issue of Physics Today if

you’d like more details.

Key points

• Reconnection – simple 2D model; “what is a recon-

nection rate?”

• Reconnection – extensions of the 2D model (anoma-

lous effects, non-steady, driven, etc).

• Dynamos – what they are; what they need (helicity).

Parker’s model for the sun.

• Dynamos — why turbulence matters; αω and α2.
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10 Accretion in astrophysics I: star formation

We argued in chapter 6 that accretion flows are com-

mon. They are found in many places – from Young

Stellar Objects (YSO’s), to compact objects (black

holes, neutron stars) in galactic binary systems, to

massive black holes in Active Galactic Nuclei (AGN).

They are potentially important to astrophysics in all

settings. In this chapter we’ll look at star formation

and YSO’s, with an eye to the role of accretion in the

process. In the next two chapters we’ll return to “clas-

sical” accretion, as it applies to compact objects and

standard accretion disks.

10.1 Star formation, recall the basics

The ISM is the source of new stars. We think these

new stars form in some gravitational collapse process

. . . and that star formation should be an ongoing pro-

cess, with each subsequent generation of stars having a

somewhat richer heavy element content, due to nuclear

processing by previous generations of stars.

Think back to our general discussion of gravitational

collapse and star formation (chapters 4, 5). We noted

that a piece of the ISM will be gravitationally unstable

if “gravity wins”; that is, if its gravitational potential

energy exceeds its internal energy. Written in terms of

initial density and temperature, this becomes a condi-

tion on the size, or mass, of the perturbation. If the

initial perturbation has R > RJ (the Jeans length), or

M > MJ , (the Jeans mass), where

4π

3
GR2

Jρ ≃ kBT

m
; MJ ≃

(

kBT

mG

)3/2( 3

4πρ

)1/2

(10.1)

then it is gravitationally unstable.

We also noted, in chapter 5, that two classic prob-

lems – conservation of magnetic flux and of angular

momentum – make the collapse process more compli-

cated than simple “gravity wins”. We suggested that

these two problems are probably interrelated – for in-

stance torques exerted by the B field may contribute

to slowing down the rotation and transferring angular

momentum to the surroundings. Another possibility is

that the collapsing cloud is mostly neutral; because B
field lines are only tied to the ionized fraction of the

cloud, it may be that the neutral gas can “slip through”

the ionized fraction. This process goes by the fancy

name, “ambipolar diffusion”. Both ideas are probably

part of the truth. The picture still needs to be expanded,

however, and put in the context of star formation re-

search, which is one of the most active areas in current

astrophysics. That’s where we’re going in this chapter.

10.2 Molecular Clouds as Precursors

We know that young stars are gregarious. They do

not form singly; rather, they form in clusters, inside

dense, molecular clouds (MC’s) in the ISM. We there-

fore need to consider the physical state of the MC’s,

and how stars — as well as planets and possibly life —

form within them.

10.2.1 Observational constraints

Most of what we know about MCs comes directly from

observations.

• Physical conditions. MC’s are found in a range of

sizes, from ∼ 102 M⊙ to ∼ 106 M⊙, with an approx-

imate ∝ M
−3/2
mc number distribution. Interestingly,

there seems to be a correlation between cloud mass,

cloud distribution in the galaxy, and cloud tempera-

ture. There seem to be two populations of MC’s: the

small clouds (SMC’s), which have internal tempera-

tures ∼ 10K, and the “giant” clouds (GMC’s), which

have internal temperatures & 20 K. The SMC temper-

ature is consistent with heating by the background cos-

mic ray population in the galaxy; they do not seem to

have any internal energy sources (such as hot stars).

This correlates with the absence of young, hot (O and

B) stars in these clouds. The SMC population is dis-

tributed throughout the galaxy, with no particular pref-

erence for spiral arms. The GMC’s, on the other hand,

require internal energy sources, and we do observe

young O and B stars forming in these clouds. Their

higher temperature is thought to be due to heating by

these massive protostars. GMC’s are not distributed

uniformly in the galaxy, but are found in spiral arms

(they provide the young, bright stars by which we see

pretty spiral arms in external galaxies).

• Lifetimes. We know that MC’s are self-gravitating:

their pressure generally exceeds the typical ISM pres-

sure, so they cannot be in pressure balance with the

ISM. We also know their mass exceeds the Jeans’ mass

for their temperatures and densitites. We would ex-

pect them to be in a state of gravitational collapse. If

this were the case, we can use the free-fall time (check

back to equation 4.18) to guesstimate how how quickly

they should collapse. We find tff ∼ 107 years for

typical mean MC densities, n ∼ 100cm−3. Com-
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bining this with the total mass in MC’s in our galaxy,

∼ 5× 109M⊙, we can estimate the current star forma-

tion rate that this simple picture (free-fall collapse of

all MC’s) would predict: we get a rate ∼ 500 M⊙/yr.

This prediction is much larger than the observed rate,

∼ a few M⊙/yr. Thus, only about one percent of the

clouds we know about can be collapsing; the rest must

be supported by gravity somehow, and have a lifetime

∼ 100 times longer than this prediction.

• Turbulence. This support against gravity almost cer-

tainly is provided by internal random motions in the

clouds, which are generically called “turbulence”. We

can measure internal ∆v’s, from linewidths; we find

∆v ≫ vth ≃ (kBT/m)1/2. Thus, the internal mo-

tions are highly supersonic. Further, the linewidth does

not come from rotation (which could be detected), nor

does is come from free-fall collapse (from the argu-

ment above). Thus, it must be from random inter-

nal motions – the clouds must contain subclumps, or

waves, which move through the “cloud” at supersonic

velocities, vran ∼ ∆v. These random velocities do

appear able to provide the virial support: the correla-

tion ∆v2 ∝ nR2 ∝ Mmc/R is observed, consistent

with virial balance; the numbers also work out, to have

v2ran ≃ GMmc/R.

MC’s are also magnetized. We know this from Zee-

man splitting of spectral lines, also from polarization

of starlight, which comes from dust grain alignment

with the magnetic field (the grains are dielectrics). The

fields can, in principle, also help support the cloud

against collapse. In practice, the fields and turbulence

are probably intimately mixed (gas flows stretch and

twist field lines; the field fights back and limits turbu-

lent velocities). We also know that turbulent (and thus

magnetic) decay times are very likely short compared

to the MC lifetimes. Thus “turbulence” or “B fields”

aren’t the full answer; something inside the cloud must

drive the turbulence. Current thinking has the driver

being newly formed YSOs within the cloud – their

winds and jets may dump enough energy back into the

MC to stabilize it.

10.2.2 How do they fragment?

We know that the Jeams mass in a MC is much larger

than the mass of a single star (even a big one). We also

know that stars form in large numbers within MCs. It

follows that the gravitational collapse process within

the MC must involve fragmentation into a large num-

ber of star-sized structures. We don’t know how this

happens, but can find a couple of hints in the data.

•The Jeans mass depends on temperature and den-

sity, as MJ ∝ T 3/2/ρ1/2. Thus, as a large cloud

collapses, and its density increases, MJ will drop

if the cloud stays cool. This should allow smaller

and smaller subclumps to become unstable, and frag-

ment out of the larger-scale collapse (recalling tff ∝
1/ρ1/2, so that denser subclumps fragment faster).

This process should continue as long as the collapsing

cloud can stay cool. People tend to argue that the cloud

will stay cool as long as it stays transparent, and can

radiate effectively. Once it goes opaque (noting that

opacity ∝ ρR ∝ M/R2 for a cloud of fixed mass1),

it may have trouble radiating away the energy gener-

ated by the gravitational collapse. If this happens, T
will increase, and MJ will increase; this will provide a

smallest fragment size. This process is called “opacity-

limited fragmentation”.

• The Initial Mass Function (IMF), which describes

the mass distribution of newly formed stars, can be de-

termined from the mass distribution of stars that are

currently around. If a star has a visible lifetime τ(m)
(which is a function of the mass m of the star), and

if stars are created in the galaxy at a rate S(m, t), the

current distribution of stars N(m, t) is given by

dN(m, t)

dt
= S(m, t)− N(m, t)

τ(m)
(10.2)

If S(m, t) is not varying in time, this has the simple

solution

N(m, t) = S(m)
[

1− e−t/τ(m)
]

(10.3)

which allows us to relate N(m, t) (which can, in prin-

ciple, be observed) to S(m), the initial mass function

(which we want to know).

In general S(m) is expected to be a decreasing func-

tion of m, giving many low-mass stars and few high-

mass stars. It is determined by the complex inter-

play between fragmentation, coalescence, accretion,

and outflow, so at present it is quite poorly under-

stood but is held to be one of the holy grails of as-

trophysics. From the observational side it seems that

at high masses (m & M⊙), S(m) can be approxi-

mated by a power law. The form S(m) ∝ m−2.35

is called the Salpeter initial mass function, and has

1We’ll see what this means next term
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been around for a long time. Below m ∼ M⊙, it gets

harder to determine N(m, t) accurately. It is clear that

S(m) flattens out; whether or not if turns down below

m ∼ 0.1 − 0.3 M⊙ is less clear. In addition, several

people have suggested that the locally measured IMF

being the superposition of two IMF’s, resulting from

two types or modes of star formation. The suggestion

is that low-mass stars (compared to ∼ 1M⊙) form in

one region – probably the SMC’s – and that high-mass

stars (above ∼ 1M⊙) form elsewhere – probably the

GMC’s – and that different physics governs the two

modes. This is called bimodal star formation.

The range of allowed stellar masses is, on the other

hand, fairly well determined by the physics of the

stars themselves. At the high-mass end, stars with

M & 60M⊙ are unstable; their own luminosity gener-

ates too much radiation pressure for the star to be able

to attain hydrostatic equilibrium from its own grav-

ity. At the low-mass end, 0.1 M⊙ is about the lowest

mass object which can sustain hydrogen fusion. Ob-

jects with masses lower than that certainly do exist but

are not called stars. If they can fuse deuterium they’re

called brown dwarfs, and if they are too low mass for

that they’re planets.

10.3 Young Stellar Objects: how do they evolve?

Somehow or other, a star-sized fragment of a MC sep-

arates out and collapses to form the star. Current think-

ing — based on an impressive amount of new data, as

well as theory — identifies four stages of this process2

(as illustrated in Figure 10.1). A caveat: what follows

is thought to describe the formation process for low-

mass stars only.

(1) Initial Contraction and core collapse. When

the protostar first detaches from its MC environment

and starts to collapse, it’s probably still nearly spher-

ical, and collapsing only slowly. Refer back to chap-

ter 4, where we discussed self-gravitating isothermal

spheres. These are characterized by a core of size

ro ∝ (T/ρo)
1/2; they are probably a good approxi-

mation to the initial state of the protostar. As the cloud

slowly gets denser (and/or cools), the core gets smaller;

so we expect an inside-out collapse (the core collapses

most rapidly, the outer layers follow later). Much of

2Jargon warning: many authors break YSOs up into Class 0,

Class I, Class II, Class III objects. These Classes correlate decently

with the four phases I list here, but are more observationally based

— so I won’t describe them in detail here.

Figure 10.1 Illustrating the four likely stages of low-mass

star formation; from Shu etal, Ann.Rev.Ast.Ap, 1987. See

text for details. Note, this cartoon needs to be updated, to

include outflows, which we now know are an important part

of the process.

the MC magnetic field must be lost in this stage, possi-

bly by ambipolar diffusion. Note the protostellar core

is well hidden at this stage, being shrouded by its dusty

outer envelope.

(2) Disk formation and outflows. As the inside-out

collapse proceeds, the inner parts settle into what will

become the core of the protostar. Material continues

to accrete from the surroundings, but now — due to

angular momentum — it settles into a disk around the

core. That was expected; but here’s where the surprise

came. People did not expect gravitational collapse also

to involve outflow (it is the wrong direction), but it

does. Observations show that just about every proto-

star has bipolar outflows, which can be quite broad,

not well collimated. They are usually seen in molec-

ular lines. Some YSOs also produce well-collimated

jets, usually seen in the optical. The optically bright

“nebulae” called Herbig-Haro objects, which used to

seem only a curiosity, are now known to be associated

with shocks in these YSO jets.

In addition, some YSO’s are found to have a disk struc-

ture, oriented perpendicular to the jet or bipolar out-

flow. These are presumably the accretion disks —

or at least the rotation-supported outer regions of the

“reservoir” from which material accretes to form the

star. Some authors estimate that ∼ 1/3 of the in-

falling matter goes out again in the outflow/jet, and

∼ 2/3 makes it onto the protostar. Because there is

still a lot of (dusty) reservoir material, YSOs in this

stage are mostly shrouded objects, detectable only in

radio/molecular lines; one author talks about “deeply



50 Physics 425 Notes Fall 2014

buried protostars with their infalling envelopes and as-

sociated bipolar outflows”.

(4) Post-outflow, pre-Main Sequence star. Eventu-

ally, the outflow slows, as does the general infall of

matter. At some point the YSO becomes visible in

optical and IR, as the surrounding dust/gas is cleared

away. When nuclear burning starts, these young stars3

appear on the HR diagram. They still have disks and

outflows; T Tauri stars are examples here (several of

them have detectable disks). Finally, the outflows re-

duce to normal stellar-wind level, and the disk either

is all accreted or (mostly) dissipates. Remnants of

these circumstellar disks, presumably, become plane-

tary systems.

Caveat 1: magnetic activity. It seems that YSOs,

at least in the PMS/T Tauri stage, have unusually

high levels of magnetic activity (think of solar flares,

eruptive prominences, but at a much stronger level).

They can show strong X-ray emission (which requires

plasma much hotter than the conventional picture,

above, would predict), and also nonthermal radio emis-

sion (which requires relativistic electrons and a mag-

netic field). This interesting area is just starting to be

explored ... stay tuned.

Caveat 2: what about high mass stars? High-mass

star formation seems still to be less well understood;

the problem is that the strong radiation pressure af-

ter nuclear burning starts disrupts the inflow/accretion

process ... and people do not seem sure of what hap-

pens at that point. Once again, stay tuned.

Key points

• Basic gravitational (in)stability criteria;

• Isothermal spheres: what they are, what character-

izes the solution;

• Molecular clouds: their general nature, how they re-

late to the YSO’s which they contain;

• YSO’s: what we observe, and what we think their

evolutionary stages are.

3alternatively, pre-main-sequence, “PMS”, star
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11 Accretion II: compact objects

Now, let’s get back to accretion onto compact objects

– dense stellar remnants and black holes.

11.1 Basic ideas

Before we talk about specific objects, let’s start with an

overview of important physical ideas.

11.1.1 Energetics (“Accretion Power”)

Recall what we discussed briefly in chapter 6. The

basic idea is that accreting matter liberates its gravi-

tational energy, at a rate Ėg ∼ GMṀ/r, for some

mass accretion rate Ṁ and some “conversion radius”

r. Physically, this energy must be converted to internal

energy of the accreting stuff (via friction, for instance)

and the hot matter then radiates with some (as yet un-

specified) efficiency ε:

L = ε
GMṀ

r
(11.1)

This applies to general accretion flows, be they onto

YSO’s or neutron stars.

Another approach is sometimes used for accretion onto

black holes. Let’s think about the conversion radius

r. The smallest it’s likely to be is some factor times

the “gravitational radius” around a black hole, rg =
GM/c2.1 If we scale r in (11.1) to rg, we have

L = ε
GMṀ

rg

rg
r

= ε
rg
r
Ṁc2 (11.2)

Thus, for conversion close to rg, ε measures the output

luminosity as a fraction of the infalling rest mass en-

ergy; this scaling is often used in black hole accretion

models.

What are typical numbers? A typical galactic X-ray

binary might have L ∼ 1037 erg/s; this requires εṀ ∼
3.5 × 10−7M⊙/yr, for conversion close to rg. Or, a

bright quasar might have L ∼ 1046erg/s; this requires

εṀ ∼ 0.35M⊙/yr.

11.1.2 Eddington luminosity

This is an important reference point: at what luminos-

ity can the radiation pressure from a central source of

1Think about the event horizon of a black hole, or the smallest

stable circular orbit – both of these are ∝ rg . We’ll return to this

later in this chapter.

luminosity L can offset gravity from a central mass M ,

and stop the flow? For most accretion problems, the

infalling matter is fully ionized hydrogen. That means

we must consider the gravitational force on a proton,

and note that the radiation pressure is communicated

via Thomson (electron-photon) scattering (which has a

cross section σT = 6.65 × 10−25cm2).2 With this we

can derive the Eddington luminosity:

Ledd

4πr2
σT
c

=
GMmp

r2
⇒ Ledd =

4πGMmpc

σT
(11.3)

and numerically, this is Ledd ≃ 1.3 × 1038(M/M⊙)
erg/s.

A related quantity is the Eddington mass flux. This is

the mass flow that produces Ledd in a given system.

Defining

Ledd = ε
GMṀedd

r

gives us

Ṁedd =
4π

ε

r

rg

GMmp

cσT
(11.4)

11.1.3 Thermal state

This is critical to interpreting observations of accretion

systems. While the full story here can be quite com-

plex,3 one useful simple estimate is possible. If the

infalling matter and radiation it generates are in some-

thing close to thermal equilibrium, we know from ba-

sic thermodynamics that it radiates as a black body.

That means the luminosity coming from its surface

has an intensity (energy per time per surface area)

σSBT
4, where σSB = 5.67× 10−5 (cgs) is the Stefan-

Boltzmann constant. We also know that the typical

photon energy hν ∼ kT . Equating the luminosity in

(11.1) to that lost by black body radiation determines

the lowest temperature the gas will reach. You will find

that T ∼ 107 K for accretion onto a solar-sized black

hole (and thus we have galactic X-ray binaries); and

T ∼ 104 − 105 K (and thus we have UV and optical

sources) for accretion onto a massive M ∼ 109 M⊙

black hole (as in a galactic nucleus).

We must remember, however, that the situation in an

accretion flow is rarely that simple. One complication

2Other physical states for the accreting matter call for other

values of σ and m.
3We would need to know how rapidly the plasma is heated by

friction, turbulence, magnetic dissipation, etc; and how effectively

it can lose energy by radiation – which depends on all sorts of

details about the plasma density, temperature, etc..
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is that the radiation emitted by the infalling matter may

well not be in thermal equilibrium with the matter; that

will be the case if the flow is transparent to the radia-

tion, meaning that the mean free path for a photon to

be absorbed or scattered is large compared to the size

of the system. Just how the radiation comes out will

be a major topic for next term. For now, I’ll just note

that the inflowing plasma will be hotter, and transpar-

ent (parts of) accretion flows can reach temperatures

∼ 108 − 1010 K. Another complication is that some of

the accretion energy does not simply to go heating, but

(somehow) goes to accelerating a few particles to rela-

tivistic energies. We know this because we know that

many accretion sources are “nonthermal”, with signifi-

cant emission by these relativistic particles due to their

gyromotion in the local magnetic field.

11.1.4 The transtion to disk accretion

We’ve worked so far with spherical accretion – because

it’s simple, and because it’s probably a useful limit-

ing case (for accretion from large distances in a quasi-

symmetric system). But think about conservation of

angular momentum. If the quasi-spherical inflow has

any net angular momentum at all, its angular veloc-

ity will increase as the matter flows inward; eventually

we can no longer assume spherical inflow, and rota-

tion will dominate perpendicular to the rotation axis.

However, parallel to the rotation axis the collapse can

continue – and in most systems will be helped along

by radiative cooling (as the collapsing matter loses its

internal energy and pressure support against gravity).

Thus we expect an inflow that is initially spherical –

say at large distances from its core – to change to disk-

like accretion closer to the core.

From there, the matter must lose angular momentum

in order to keep accreting. This is thought to come

from viscosity in quasi-steady flows (as we’ll see in

chapter 12), or possibly from instabilities in unsteady

flows (i.e., the flow might fragment into blobs, some of

which move inward).

11.1.5 Size Matters

The size of the accretion region is critical to both the

energetics and the thermal state of the accreting matter.

That means it’s critical to both the luminosity and the

spectrum of the accretion flow. For quick reference,

the interesting sizes are:

• The YSO radius is probably comparable to the radius

the YSO will have when it reaches the main sequence.

If the YSO is strongly magnetized, however, magnetic

pressure may stop the accretion flow at a significantly

larger radius.

• The neutron star radius is about 10 km. Most of the

action for accretion onto a neutron star probably occurs

close to this radius.

• Gravitational radius of a star-sized black hole is

rg ≃ 1.5(M/M⊙) km. Most of the action for accre-

tion onto a black hole probably occurs from a few to a

few tens of rg.

• Gravitational radius of a galaxy-sized black hole

is rg ≃ 1.5 × 1014(M/109M⊙) cm ≃ 10 AU for a

109M⊙ black hole — the radius of Saturn’s orbit. So

most of the action for a massive black hole in a galactic

nucleus occurs well below 1 pc.

11.1.6 Jets and outflows

Finally, we should note that just about every accretion

inflow involves an outflow. This comes from the data:

jets (and sometimes less collimated outflows as well)

are found in connection with just about every accre-

tion disk, everywhere. This has long been known to be

true for massive black holes in AGN. We now know

that many star-sized binary accretion systems within

the galaxy drive out well-collimated jets. We also

now know (as in chapter 10) that jets are commonly

found associated with YSO’s, presumably in their disk-

accretion phase.

With these general ideas in mind, let’s look at some

of the objects and astrophysical settings for “classical

accretion”.

11.2 The Setting: Compact Stellar Remnants

Our focus in this chapter is accretion onto compact ob-

jects – neutron stars and black holes. While this is not

a course in stellar structure, one of our applications has

been the ISM. We remember that the state of being a

“star” ties up that piece of the ISM for quite while.

Let’s bypass that and jump from YSO’s to the very end

of the star’s life.

11.2.1 From main sequence stars to remnants

We can recall the likely events at the end of a star’s

main sequence life, after it has exhausated its nuclear

fuel and nuclear burning has stopped. Its evolution

depends on its mass. One scaling mass is the Chan-
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drasekhar mass, Mch ≃ 1.4M⊙; this is the maximum

mass of a star which can be supported by electron de-

generacy pressure. Current thinking as to the end of

a star’s life is as follows – though note this picture is

vastly oversimplified:

•M <∼Mch: the star quietly settles to a state supported

by electron degeneracy pressure, that is a white dwarf.

• Mch
<∼M <∼ 8M⊙: the star develops an electron de-

generate core, at M ∼ Mch, which becomes a white

dwarf. The rest of the star’s mass is ejected, in some

form such as a strong stellar wind or a planetary neb-

ula.

• M & 8M⊙: the star meets a violent end. When

its fuel is exhausted, the core collapses suddenly. This

collapse drives the core through the electron degener-

acy density, into a more dense and more compact rem-

nant. The outer layers of the star “bounce”, and are

driven outwards at high speed. This is a Type II super-

nova.4 Detailed models of SN currently predict that the

remnant is a neutron star if the original star’s mass is
<∼30M⊙, and is a black hole for larger original masses.

We should note that these arguments are based in the

best current stellar evolution models – but that they are

still somewhat uncertain (the number “8” really means

“several to 10”). In addition, there is still a discrep-

ancy between the supernova rate in the galaxy and the

required pulsar birth rate – so we don’t understand ev-

erything yet. What we can say with certainty, is that

the normal process of stellar evolution ties up some of

the total (baryonic) mass of the galaxy into remnants

– white dwarfs, neutron stars and black holes – which

just sit there, providing gravity but not interacting with

the ISM or galactic evolution any further.

11.2.2 The result: (star-sized) compact objects

Our interest here is the connection between these stel-

lar remnants and accretion processes in astrophysics.

To that end, I’ll group them by how we observe them,

and/or their role in high-energy astrophysics.

• White dwarf stars are the low-mass end of the

compact-object set. We are not going to say much

about them...they are not as important in high-energy

4You recall the two types of supernovae. Type I are believed

to come from accretion of matter onto a white dwarf, which drives

a thermonuclear explosion. They are very uniform in their spectra

and their light curves, with potential use as standard candles. Type

II are much more varied in their properties, and are thought to come

from stellar collapse as described above.

astrophysics.

• Isolated neutron stars can appear as pulsars. These

small (radius ∼ 10 km), rapidly rotating stars have

strong, narrowly beamed “hot spot” sources of co-

herent radio emission; when the beams rotate into

our line of sight we see a “pulse”. A few are also

pulsed X-ray and γ-ray sources, as the radio emission

region seems also to emit beamed X-ray and γ-ray

photons. These stars have very high magnetic fields

(∼ 1012 G), and a dense, corotating charged magne-

tosphere (probably composed of an electron-positron

“pair” plasma). They emit coherent radio radiation

– generated by some (as yet uncertain) plasma pro-

cess in which bunches of charges oscillate together.

Finally, it’s thought that they drive relativistic winds,

which carry mass and energy away from the star; these

winds may be what feeds the filled supernova remnants

(called plerions).

• Neutron stars in binary systems have many op-

tions. Some of these are pulsars, particularly the

rapidly rotating millisecond pulsars which are thought

to have been spun-up by accretion of matter from their

companion. In addition, binary-system neutron stars

are often strong X-ray sources – not beamed but more

isotropic. The energy source here is very likely quasi-

steady accretion, through an accretion disk, from the

companion star. In the accretion process, gravitational

energy is turned into heat (possibly also relativistic,

nonthermal particles), and from there goes to radia-

tion. Jets are also common – but not universal – in such

systems (such objects as SS433, or the “microquasars”

being found recently). As with protostellar jets, the

existence of jets here reinforces the jet-accretion disk

connection.

• Black holes in binary systems can also be accretion-

powered X-ray and γ-ray sources. Just as with neu-

tron star binaries, the radiation in BH binaries comes

from the the accretion process; the fact that the “ac-

tion” is occuring at somewhat smaller radii should lead

to some differences in the details. The most important

point about these systems is probably that they exist.

That is, the parameters of the binary orbit allow us to

determine the mass of the compact, accreting compan-

ion. There are a handful of systems for which the com-

pact object’s mass is comfortably above 3M⊙ (the the-

oretical “Chandrasekhar”-type upper limit on the mass

of a neutron star) — and for these systems, we can ar-

gue strongly that they contain a star-sized black hole.
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• Finally, an historical comment. Gamma-ray

bursters used to be included in this list. Until a

few years ago, people argued as to whether they are

galactic or extragalactic (there was no clear measure

of their distance). Mose people favored a galac-

tic location; at such a distance, the energy of their

bursts suggested some explosive accretion event in-

volving a neutron star. Recently, however, it has been

shown conclusively that they are extragalactic (from

the high redshift of spectral lines in the associated op-

tical sources; finding such sources was a major step

forward). This pushes their energies up by a lot – if

they were isotropic emitters, the energy released would

approach the regime where models might involve an

explosive release of the entire binding energy of a neu-

tron star (as in a NS-NS collision?); larger than the

canonical 1051 erg known to be released in a super-

nova. But again, another important observation clari-

fied this: a brand new supernova was found at the exact

spot where a GRB had just gone off. How can we rec-

oncile the energetics? It can all work if the GRB is

beamed – if part of the supernova process is the cre-

ation of a short-lived relativistic jet of material. Rela-

tivistic effects make the γ-radiation emitted by this jet

appear much brighter when viewed close to the jet’s di-

rection of motion – that’s called forward beaming. And

yet the game isn’t over: there are two types of GRBs

(short pulse and long pulse); only one type seems to be

consistent with SN explosions; the origin of the other

type is still being discussed.

11.3 The Setting: Active Galactic Nuclei

Black holes in galactic nuclei aren’t really “stellar”,

but they are related to star-sized compact objects in

the ways they shine (and the ways in which they are

modelled). Active galactic nuclei – Seyfert galaxies,

radio galaxies, quasars – are believed to be powered

by accretion onto supermassive black holes (“SMBH”;

∼ 108 − 109M⊙). In a very few objects spectral lines

or masers can be localized close to the central mass,

with clear signs of ordered (disk-like) rotation. The in-

ferred velocities are used to determine the central mass.

It’s worth pointing out that this isn’t directly a detec-

tion of a black hole; it’s a detection of a small, “mas-

sive dark object” (MDO, the term in some of the litera-

ture). Whether MDO or BH, models of AGN generally

assume an accretion disk flow, with all the associated

physics that can occur in star-sized accretion systems.

Some AGN – those in radio galaxies – are also, of

course, associated with strong, collimated, relativistic

jets. In addition, we now have strong (if indirect) evi-

dence that every galaxy contains a MDO in its heart –

with mass related to the mass of the “bulge” part of the

galaxy. But in most galaxies the MDO is not “active”;

we detect it only by its gravitational effects.5 More on

this next term.

11.4 Black Holes (a quick visit)

This isn’t a course in general relativity, so these notes

are not the place for a full exposition of general rel-

ativity. I will assume that you have seen the basics,

such as in Carroll & Ostlie, and will focus on those as-

pects of black holes which are relevant to their role in

high-energy astrophysics. We will only have a once-

over-lightly visit, emphasizing the aspects of black

holes that are important for their accretion-related as-

trophysics.

In terms of accretion physics – or the black hole’s im-

pact on its surroundings – we only need to understand

a few critical radii. We need to know the size of the

event horizon – that’s the surface inside of which noth-

ing (not a rock, a photon, you or me) can escape. We

also need to know a little bit about stable orbits, as fol-

lows.

11.4.1 Stable orbits

To set the stage, think about circular orbits around a

mass M in Newtonian gravity. They’re easy: grav-

ity provides the centripetal force. Thus, GM/r2 =
v2/r = L2/r3 connects r to v (or to the angular mo-

mentum per mass, L = rv), uniquely. At any radius

r, the orbit is described by L2 = GMr. In addition,

you know this orbit is stable: think about perturbing

a planet in orbit around the sun. It will just oscillate

radially around its initial radius – that’s an epicycle. In

other words, any circular orbit in Newtonian gravity is

stable. (This also holds for closed elliptical orbits, the

math just gets longer). You also know about open (hy-

perbolic) orbits: if I start at infinity and throw a rock at

the sun, and it has any angular momentum at all, it will

pass by the sun and escape back to infinity. It won’t be

captured unless I drop it directly at the sun (that means

it has zero angular momentum).

However this changes in General Relativity. At large

radii we can indeed find a stable circular orbit; and as

r → ∞, the solution approaches the Newtonian one.

5Does this mean it’s not accreting matter? If so, why not?
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But for small radii, we can no longer find a stable cir-

cular orbit. If you try to put a rock in orbit close to the

black hole, it will either fall in or fly away. You won’t

be able to find an equilibrium. The innermost stable

radius is critical for disk accretion – it’s the smallest

radius for which quasi-stable accretion disks can ex-

ist. This innermost radius is also relevant to capture

orbits: if a rock comes too close to the black hole,

it will be captured (it’s trajectory will pass within the

event horizon), even if it has finite angular momentum.

The capture radius is usually comparable to the inner-

most stable radius although it has to be derived by more

complicated methods.

Now, we carry on to describe (not derive!) black hole

solutions of Einstein’s field equations.

11.4.2 Schwarzchild black holes

Formally, a “black hole” is the name we give to a par-

ticular vacuum solution of Einstein’s field equations.

The fundamental quantity in classical GR is the metric:

the distance between two space-time points. The GR

field equations are a set of second-order PDE’s which

describe the metric and its connection to the sources.6

Solutions to these equations must assume some type of

symmetry, and will involve one or more constants of

integration.

Two important vacuum solutions have been worked

out.7 The simplest is an isotropic, static solution,

which has one constant of integration (we call it M ).

This is the Schwarzchild metric. It is the most famil-

iar: it describes the space around a non-rotating object

of mass M .

A Schwarzchild black hole has one critical surface, the

event horizon, at rs = 2rg = 2GM/c2. This is the

6Want a familiar example? Think of Maxwell’s equations: they

are PDE’s with the field terms (E,B) “on the left”, and the source

terms (ρ, j) “on the right”. The GR field equations are analogous

– the terms on the left involve the metric; the terms on the right

involve the sources, namely, the distribution of mass-energy. A

vacuum solution is analogous to a point charge in empty space –

no external sources.
7A third solution is the Reissner-Nordstrom metric; it is not

a vacuum solution, but rather allows a radial electric field to exist

throughout space. This solution adds a third constant, Q, corre-

sponding to the object’s charge. There is little evidence that any

astrophysical body carries significant charge, and good arguments

against that being the case (think: if you charged up a star, how

long would it stay charged, given all those free charges around in

the ISM?) Thus, the R-N solution is rarely invoked; the first two

are the common ones.

surface of no escape; no trajectory (particle or photon)

that starts within rs can reach the outside world. It’s the

surface of infinite time dilation: periodic signals start-

ing at rs are dilated to infinite period. It’s the surface of

stationarity: outside of rs, you can sit still (think of fir-

ing your rocket motors “downward”, to hold yourself

in a fixed position relative to the star), but inside rs, this

is not possible. (Mathematically, it’s easy to show that

dt > 0 – advancing time – requires ds < 0 – motion

in space – inside of rs). However, you should note that

rs is not in any way a physical barrier for something

moving inwards; except for tidal forces, you don’t no-

tice anything dramatic as you cross the event horizon.

The unusual effects are related to how you or your sig-

nals connect with the outside world.

What about astrophysical applications that do not in-

volve a mass crossing the event horizon? This is where

we need to analyze orbits in this geometry. When this

is carried out, we find there is a minimum radius for

which stable circular orbits are possible. It is:

rms = 6rg = 3rs (11.5)

No stable orbits are possible at smaller radii. This is,

thus, another important scale for a Schwarzchild black

hole; it is often taken as the inner edge of an accretion

disk around such a BH.

11.4.3 Kerr black holes

The next simplest is an axisymmetric, static solution,

which has two constants of integration (M and J).

This is the Kerr metric. It describes the space around

an object of mass M and angular momentum J . No-

tation: it’s common to work with the parameter a =
J/Mc, the normalized angular momentum per mass.

Well-behaved solutions exist only for a < M . Because

of this mathematical limit,8 the astrophysical specula-

tion is that more rapidly rotating systems can never be-

come black holes.

A Kerr BH has two important scaling radii. It has an

event horizon,

ro =
rs
2

+

[

(rs
2

)2
− a2

]1/2

(11.6)

which is the surface of no escape, just as in the

Schwarzchild case. Note this is a spherical surface,

8which is in units with G = c = 1, which relativists love; in

more normal units, the limit is J/Mc < GM/c2.
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also as in the Schwarzchild case. The surface of sta-

tionarity is distinct in the Kerr metric:

r+ =
rs
2

+

[

(rs
2

)2
− a2 cos2 θ

]1/2

(11.7)

You can escape from within r+, but you can’t sit still.

The direction of increasing time, inside r+, is also

the direction of increasing φ (the angular coordinate).

Note that this surface is not spherical; it bulges out at

the equator.

An interesting related effect is frame dragging. A par-

ticle with no angular momentum at infinity will still

want to move in the direction of increasing φ. The ro-

tation speed of such a particle, seen at r as measured

by a distant observer, is in general

dφ

dt
=

rrsa

(r2 + a2)− a2∆
(11.8)

where ∆ = r2 − 2Mr + a2. A more useful form

of this can be found by going to the equatorial plane

(θ = π/2), and taking r ≫ a,M . Putting all back in

physical units, and converting to an angular speed, we

have

ωLT ≃ 2GJ

r3c2
(11.9)

Orbital mechanics in the Kerr metric are complex. For

circular orbits, one again finds that there is a mini-

mum stable radius. Its limits tell most of the story.

When a → 0, rms → 6rg (which is the Schwarzchild

limit); when a → M (the maximum possible value),

rms → rg. These limits are for prograde orbits; retro-

grade orbits can’t get so close in.

Key points

• Accretion energetics;

• Eddington luminosity;

• Thermal state, black body radiation;

• Compact objects, star sized: what they are, how they

relate to accretion flows;

• SMBH: where we find them, how they relate to ac-

cretion flows;

• MDOs: why can’t we assume they’re all SMBH?
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12 Accretion III: Disk models

We’ve already seen spherical (Bondi) accretion and

talked about the general energetics of accretion flow.

We now need a more concrete picture of disk accre-

tion, which we expect to occur when the accreting gas

has significant angular momentum.

The disk geometry may occur in at least two ways. The

common picture is that of matter being dumped onto

one member of a binary star system from its compan-

ion; the mass in this case clearly has significant or-

bital angular momentum and is confined more or less

to a plane. Another possible case would be that of gas

which is initially accreting spherically, with some an-

gular momentum, and which can also lose energy ra-

diatively. Radiative dissipation will reduce the inter-

nal energy and thus lead to a thin disk; but whatever

dissipates the angular momentum of the gas may well

be less efficient, so that the accreting gas remains sup-

ported by rotation in one plane, while cooling and flat-

tening in the other direction.

Consider a binary star accretion disk, to be concrete.

Mass will move from one star to the other when one of

the stars (the companion) expands to fill its Roche lobe.

The mass coming through the Lagrange point will

have significant angular momentum, and will proba-

bly be initially in a non-circular orbit. However, it

can lose energy quickly, by radiation, and will settle

itself into a circular orbit (the lowest energy orbit for

a given angular momentum). This will be a Keplerian

orbit, with vφ = (GM/r)1/2 (orbital velocity), and

l = (GMr)1/2 (specific angular momentum). This

matter can only spread in radius if some of it loses

angular momentum; this will happen, slowly, due to

viscosity (as described below). Thus, if the mass flux

stays fairly steady, the system will develop a steady ac-

cretion disk.

12.1 Models of thin (alpha) disks

One type of accretion disk model – the oldest, the first

one developed – can be treated analytically. To start,

we assume the gas in the disk moves in a circular orbit,

at the local Kepler velocity, vφ = rΩ(r) where the

angular speed is Ω(r) = (GM/r3)1/2. The gas slowly

drifts inward, at a radial/inflow velocity, vr ≪ vφ, and

a mass accretion rate,

Ṁ = 2πrvr

∫

ρdz (12.1)

We will limit ourselves to physically thin disks; this

means we can reduce the problem to one dimension.

The vertical thickness of the disk is determined by hy-

drostatic equilibrium. This condition is, again, ∇p =
ρg, or ∂p/∂z = ρgz . In the thin-disk limit, we write

∂p/∂z ≃ p/H if H is the disk scale height. For a

disk which is dominated by the gravity of its central

mass (M ), rather than by its own self gravity, we have

gz ≃ GMH/r3. Thus, the vertical support condition

is

H

r
≃
(

p

ρ

r

GM

)1/2

≃ cs
vφ

(12.2)

so that a cool disk is a thin disk. The surface density

is, then,

Σ =

∫

ρdz ≃ ρH (12.3)

Past this point, the analysis gets furry. There are many

different models of accretion disks and accretion flows.

The literature is a bit daunting, with a plethora of

differing assumptions (and consequently differing re-

sults). However,

don’t panic

The basic physics of steady accretion disks can be un-

derstood by looking at the simplest of the models that

are out there, namely steady-state, spatially thin disks.

These models are governed by a few simple principles:

mass and momentum conservation and the effects of

viscosity. However, even in the simplest model which

these notes address, understanding how these basics af-

fect the structure of the disk requires some algebra. I’m

trying to lay out the argument in detail in these notes,

following Accretion Power in Astrophysics, by Frank,

King & Raine. Some of the important results in these

notes are:

Mass conservation equation (12.5), (12.6)

Viscous torques equation (12.8), (12.9)

Angular momentum equation (12.11), (12.12)

Inflow velocity equation (12.21)

Alpha (α) equation (12.22)

Accretion luminosity equation (12.25)

So fasten your seatbelt ..

12.1.1 Mass conservation

Let’s start simply. Consider a ring of disk material,

lying between r and r+dr. It has total mass, M(r, r+
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dr) = 2πrΣdr. Now, this mass changes due to flows

into and out of the ring; that is,

∂

∂t
(2πrΣdr)

= vr(r)2πrΣ(R)− vr(r + dr)2π(r + dr)Σ(r + dr)

And thus, we have

∂

∂t
(2πrΣdr) ≃ −2π(dr)

∂

∂r
(rvrΣ) (12.4)

Note we have assumed there are no local sources or

sinks of mass, just the flows into and out of the ring.

From this, as dr → 0, we get the mass conservation

equation:

r
∂Σ

∂t
+

∂

∂r
(rvrΣ) = 0 (12.5)

(Compare (4.2), our original form for mass conserva-

tion; can you see the connection to 12.5?). And: in a

steady-state system, we have the expected expression

for mass conservation:

Ṁ = 2πrΣvr = constant (12.6)

Thus, as expected, Ṁ is constant with radius in a

steady-state flow.

12.1.2 Viscosity and torque

What happens about the angular momentum? How

does gas with finite angular momentum ever manage

to move inwards? To answer this, consider a parcel of

gas at r. It has specific angular momentum l ∝ r1/2,

and this must be lost if the parcel is to move inwards.

This is accomplished by the friction between rings of

the differentially rotating disk. The friction is transmit-

ted by viscosity.

Big fudge coming: Formally viscosity is a

microscopic process, transporting momen-

tum “sideways” by particle collisions. We

know how to treat this for a plasma, using

Coulomb collisions as always. However, as-

trophysically particle-based viscosity is of-

ten very small (due to ionized plasmas being

such good conductors), and turbulent viscos-

ity will dominate. If the turbulence has mean

velocity vturb and mean scale λ, the coef-

ficient of viscosity ν ∼ 1
3λvturb. This is

conceptually just fine, but very hard to write

down analytically – so just about all accre-

tion disk work makes a standard assumption

(read “fudge”), as discussed below.

A

B

r
r+ dr

r-dr

Figure 12.1 Viscous angular momentum transport in a

shearing medium. Parcels A,B can be thought of either

as single particles (for microscopic viscous transport) or as

turbulent “eddies” (for turbulent viscosity). Following Fig-

ure 15 from Frank, King & Raine; connect notation to the

text as λ ↔ dr

We now illustrate the effect of viscosity on angular

momentum transport by considering a ring of matter

at r, and two adjacent rings, at r − λ and r + λ.

The rings have Ω(r), Ω(r + λ) ≃ Ω(r) + dΩ
dr λ, and

Ω(r − λ) ≃ Ω(r) − dΩ
dr λ. The scale λ can be any lo-

cal differential, but it is most useful to connect it to the

mean free path of whatever accounts for the viscosity.

To first order, viscous transport between the rings

(which may be carried by single-particle collisions, or

by more efficient turbulent motions) exchanges equal

amounts of mass between the layers. We can write this

mass flux as 2πρvturbrH if vturb is some characteristic

turbulent or microscopic turbulent transport velocity.

Note the rate of mass flux inwards must be the same

as outwards, in a steady state disk. Now, consider an

observer in corotation with the fluid on the surface r =
constant. The fluid at r−λ/2 will appear to move with

velocity vφ(r−λ/2) = (r−λ/2)Ω(r−λ/2)−Ω(r)r.

Thus the average angular momentum flux per unit

lengh carried through r =constant in the outward di-

rection is

ρvturbH

(

r − λ

2

)[(

r − λ

2

)

Ω

(

r − λ

2

)

− rΩ

]

A similar expression, changing the sign of λ, gives the

mean inward momentum flux per length. The differ-

ence between in and out gives the net outward momen-

tum flux (which is also the torque per length). If we

multiply this by 2πr we get the net torque exterted by

the outer ring on the inner (and = - the torque of the

inner on the outer, right?):

G(r) ≃ 2πrλvturbΣr
2dΩ

dr
(12.7)

But now, we can collect λvturb in the viscosity coeffi-

cient, ν, to write this as

G = 2πr3νΣ
dΩ

dr
(12.8)
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where we’ve defined ν = λvturb.

G(r+dr)

G(r)

r Ω

Figure 12.2 The net shear force on an annulus at r is the

difference between the shear G(r) on the outer and inner

edges. This net shear force acts on the φ-component of an-

gular momentum.

Finally, then, the net torque on a ring at r is the differ-

ence between the torque exerted by the inner and outer

rings:

G(r + dr)−G(r) ≃ dG

dr
dr (12.9)

Thus, a Keplerian system in which dΩ/dr < 0 has

a net outwards flux of angular momentum. It is this

which allows the inwards flow of matter, as a packet of

gas slowly loses its l.

12.1.3 Angular momentum equation

Next: we need a conservation law for specific angular

momentum. We’ll use the same approach as we used

for mass conservation – consider a ring of matter at

r. It has total angular momentum 2πr(dr)Σr2Ω. This

changes due to matter flowing in and out of the ring,

and also due to the net torque on the ring (exerted be-

cause we’ve assumed each adjacent ring is in Keplerian

motion, and because the matter is viscous). So we can

repeat the same bookkeeping as above ... giving

∂

∂t

(

2πr(dr)Σr2Ω
)

≃

− 2π(dr)
∂

∂r

(

rΣvrr
2Ω
)

+
∂G

∂r
(dr)

Taking the limit dr → 0, this becomes exact, and we

find the conservation law for angular momentum:

r
∂

∂t

(

Σr2Ω
)

+
∂

∂r

(

rΣvrr
2Ω
)

=
1

2π

∂G

∂r
(12.10)

Now – unlike the mass equation, the steady solution

here leads to a “flow of angular momentum” which is

a function of radius. In a steady state, (12.10) becomes

2π
d

dr

(

r3ΣvrΩ
)

=
dJ̇

dr
=

dG

dr
(12.11)

where I’ve defined J̇ = 2πr2ΣvrΩ as the rate of angu-

lar momentum flow (outwards); note it is a function of

r.

Now, integrate (12.11) over r:

νΣ
dΩ

dr
= ΣvrΩ+

C

2πr3
(12.12)

which can also be written,

r2ΣvrΩ =
G

2π
+ C (12.13)

Here, C is a constant of integration.

The conventional approach evaluates this at the in-

ner boundary of the disk, at r1 say. If we’re talking

about accretion onto a hard-surface star, r1 is the stel-

lar surface; the flow must approach solid-body rota-

tion at the surface, so that dΩ/dr → 0 there. Alter-

natively, if we’re talking about accretion onto a black

hole, r1 is taken as the minimum stable orbit. Inside

of that the matter just “falls right across the event hori-

zon”, so that (it might be reasonable to assume) there

is no torque on the last ring, G → 0 there. In either

case, this argument shows that the integration constant

C = −Ṁ (GMr1)
1/2.

We get two important results from this. The first is a

direct solution of (12.12):

νΣ =
Ṁ

3π

[

1−
(r1
r

)1/2
]

(12.14)

This expression for the product (νΣ) will be useful be-

low. The second is an expression for the rate of angu-

lar momentum flow, J̇ . Going back to the definition,

in (12.11), using (12.12) and the value of C , we get

J̇(r) = −r1/2(GM)1/2Ṁ (12.15)

This thus shows explicitly that J flows outward when

M flows inward, and also that J̇ is a function of radius.

12.1.4 Accretion rate and radial velocity

Now that we have an expression for the viscous force,

we can look at its effect on flow within the disk. We

start with the basic equations of mass conservation,

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0 (12.16)

and angular momentum conservation,

r
∂

∂t

(

Σr2Ω
)

+
∂

∂r

(

rΣvrr
2Ω
)

=
1

2π

∂G

∂r
(12.17)
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Combining these, and noting ∂Ω/∂t = 0, we get

rΣvr
∂

∂r

(

r2Ω
)

=
1

2π

∂G

∂r
(12.18)

(compare 12.11). We can also combine this with mass

conservation to get

r
∂Σ

∂t
= − ∂

∂r

[

1

2π

[

∂(r2Ω)

∂r

]−1
∂G

∂r

]

(12.19)

This result will give us the behavior of Σ, once Ω and

G (which involves the viscosity ν) are specified. If we

now assume Kepler orbits, (12.19) becomes

dΣ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

νΣr1/2
)

]

(12.20)

This last is the basic equation governing the time/space

evolution of the density in a Keplerian disk. Solutions

to this are not simple – they depend on the local viscos-

ity (discussed below), and also on the local energetics

(which we haven’t even discussed – temperature and

whatnot). When we do get a solution – and the litera-

ture is full of them – we can go back to (12.18) to find

the radial/accretion velocity:

vr = − 3

Σr1/2
∂

∂r

(

νΣr1/2
)

(12.21)

Thus: the radial velocity (and thus Ṁ , from equation

12.6) is determined by the local viscosity and the lo-

cal surface density. We don’t have enough information

here to solve the system – that needs further arguments

about internal energetics which I’m not going to go

into. But we can see, directly from (12.21), that the

inflow velocity vr ∼ ν/r (to order of magnitude).

12.1.5 What is ν?

The catch, of course, is that we do not know how to

find the viscosity ν. This is the quantity which deter-

mines the rate at which matter can move inwards (the

accretion rate); in addition, all of the details of the disk

models (r-dependence of Σ, vr, temperature, etc.) de-

pend sensitively on ν. The common fudge in disk mod-

els is to parameterize the viscous stress in terms of the

pressure, through a factor α = (viscous stress) / ( pres-

sure). Now, viscous forces come from adjacent rings

of matter which are not moving at the same speed – so

one slips against the other if dΩ/dr 6= 0. Collecting

all this, with the definition of α and the proper way to

write the viscous stress, we get

αp ≃ νρr
dΩ

dr
(12.22)

Remebering that ν has dimensions (turbulent

velocity)×(turbulent length scale), or (mean par-

ticle speed)×(collision mean free path), you should

see that (12.22) makes dimensional sense. This entire,

grand hand-wave is collected in the term “α-disk”. It’s

common to take α = 0.1 in the literature.1

12.1.6 Energy dissipation and luminosity

One nice result is that we can find the radiated energy,

and thus the efficiency ε, without knowing the details

of α. To get this, we use the fact that shear stress dis-

sipates energy. The local heating rate for this disk, in-

tegrated over the disk thickness – call it D(r) (for dis-

sipation) – is

D(r) =
G

4πr

dΩ

dr
= νΣr2

(

dΩ

dr

)2

(12.23)

(The first equality is the definition of heating by vis-

cous shear stress; the second used the result 12.8 for

G). From this, in a Kepler disk, we can find the local

heating rate in terms of the basic quantities:

D(r) =
3GMṀ

8πr3

[

1−
(r1
r

)1/2
]

(12.24)

Now: where does this energy go? Viscous dissipation

heats the local gas. If the inflow speed is slow – an

important assumption in this type of disk model – then

the gas must be able to radiate this away locally. That

means we can equate D(r) to the local luminosity per

area from the disk. Integrating this over r, we find an

expression for the luminosity:

L =

∫ ∞

r1

D(r)2πrdr =
GMṀ

2r1
(12.25)

Thus: if r1 is small – as for a black hole (r1 ≃ rms, the

minimum stable orbit); or even for a neutron star – then

the efficiency (refer back to 11.1) in this type of model

can be high: ε = rs/2r1 where rs is the Schwarzchild

radius.

1Some order-of-magnitude estimates are perfectly valid in as-

trophysics. But perhaps one should not put overmuch confidence in

the details of complicated, ornate accretion disk solutions – houses

of cards – based on assumptions such as this α.
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12.2 Extensions of the model

The basic, thin-disk, α-disk model in the previous sec-

tion has been expanded and reworked extensively in

the literature, in order to try to match the models to the

data. Some of the extensions are as follows.

12.2.1 Hot and/or thick disks

In the previous model we assumed the disk is cold (that

is, cs ≪ vφ), and therefore thin. This allowed a one-

dimensional treatment. This isn’t the only possibility,

of course – the disk may be warm or hot, and there-

fore thick. Two versions of this exist in the literature.

One is a “thick disk”, a disk which is hot throughout.

Such disks are still being worked on – their dynamics

can be complicated, and they are probably globally un-

stable (they break up into non-axisymmetric structures

– big “lumps” in the disk). Another variant is a cool,

thin disk with a hot atmosphere (“corona”), or possi-

bly a hot outflowing wind. This hot component does

not radiate as a black body; it can be a source of high-

frequency radiation (for instance γ rays, hν <∼mec
2).

12.2.2 Accretion flows

The α-disk model, above, was really developed for ac-

cretion onto a hard-surface star. Quite different inner

boundary conditions, and inner flows, can occur if the

disk sits around a black hole. The innermost gas can

just slide across the event horizon. In such flows, the

radial velocity, vr , can go through a sonic point (much

like Bondi accretion) before it reaches the last stable

orbit. If this happens, a parcel of gas doesn’t have time

to radiate “locally” – so that the assumptions going into

(12.23, 12.24) don’t hold. These solutions – called

ADAFs (for Advection Dominated Accretion Flows)

– are therefore underluminous, with L ≪ GMṀ/r.

Thus, an accreting black hole can be faint (relative to

its Eddington luminosity) for at least two reasons. It

may have a low accretion rate (Ṁ ≪ Ṁedd); or its

accretion flow may have a high Ṁ but be ADAF-like.

12.2.3 MHD effects

Everything we’ve done in this chapter has been field-

free, i.e. purely hydrodynamic. That’s probably unreal-

istic, because the accreting plasma is almost certainly

magnetized. Think about the B field in the accreting

material being “tied to infinity”, to start. Flux freezing

means that the field lines will be dragged along with

the plasma; the field will be amplified, and will develop

a toroidal component (forming sort of a helix). Two

things follow from this. The helical field can chan-

nel, and even accelerate, a wind-type outflow (“MHD

winds”). In addition, the field lines tied to the rotat-

ing plasma create a ∂B/∂t, which creates a E field:

E = vrot × B/c. This E field may be able to accel-

erate particles (are accretion disks a source of cosmic

rays?). In addition, this system creates a E×B Poynt-

ing flux, also directed out along the rotation axis; this

may be how jets are made.

Key points

• Thin accretion disk: the basic picture;

• Viscosity: what it is, why its important, how it con-

trols Ṁ ;

• Energetics: what is the disk’s luminosity?


