MAXWELL'S EQUATIONS

Name or Description	SI	Gaussian
Faraday's law	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$
Ampere's law	$ abla imes \mathbf{H} = rac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$	$ abla imes \mathbf{H} = rac{1}{c} rac{\partial \mathbf{D}}{\partial t} + rac{4\pi}{c} \mathbf{J}$
Poisson equation	$\nabla \cdot \mathbf{D} = \rho$	$\nabla \cdot \mathbf{D} = 4\pi\rho$
[Absence of magnetic monopoles]	$\nabla \cdot \mathbf{B} = 0$	$\nabla \cdot \mathbf{B} = 0$
$egin{array}{c} { m Lorentz} \ { m force} \ { m on} \ { m charge} \ q \end{array}$	$q\left(\mathbf{E}+\mathbf{v}\times\mathbf{B}\right)$	$q\left(\mathbf{E} + \frac{1}{c}\mathbf{v} \times \mathbf{B}\right)$
$\begin{array}{c} { m Constitutive} \\ { m relations} \end{array}$	$\mathbf{D} = \epsilon \mathbf{E} \\ \mathbf{B} = \mu \mathbf{H}$	$ \mathbf{D} = \epsilon \mathbf{E} \\ \mathbf{B} = \mu \mathbf{H} $