Physics 121 — September 14, 2017

Assignments:

This week:
o Finish reading chapter 4 of textbook (note: we will NOT

cover the section on nonuniform circular motion, pp. 191-
193 of textbook)

« Make sure that your clicker or phone app 1s registered for
this class: “PHYS121 Minschwaner F2017” The course
1s “NMTphysl121 Minschwaner”

«Complete ETA Problem Set #4 and chapter 4 written
problems 30, 36, 59, 62, 76, due by Sept 18 at 4 PM

« Do practice problems in recitation this week

o Start reading Chapter 5




Key concepts for today:

e Uniform circular motion

* Centripetal acceleration

* Relative motion (again, stressing the independence of the
x and y components of position, velocity, and
acceleration)



Recall the equations for projectile motion from Tuesday

To describe projectile motion completely, we must include velocity and acceleration, as well as displacement. We must find
their components along the x- and y-axes. Let’s assume all forces except gravity (such as air resistance and friction, for
example) are negligible. Defining the positive direction to be upward, the components of acceleration are then very simple:

ay=—g=-98m/s* (—32fUs?).

Because gravity is vertical, ay = (. If a; = (), this means the initial velocity in the x direction is equal to the final velocity

in the x direction, or vy = v,. With these conditions on acceleration and velocity, we can write the kinematic Equation

4.11 through Equation 4.18 for motion in a uniform gravitational field, including the rest of the kinematic equations for
a constant acceleration from Motion with Constant Acceleration. The kinematic equations for motion in a uniform
gravitational field become kinematic equations with a, = —g, a,=0:

(4.20)

Horizontal Motion

Vertical Motion

y=yg+ %(1’@}, + vyt
(4.21)
(4.22)

(4.23)

These equations on p. 134 of the textbook should be shaded!



First, we need to finish analyzing the “shoot the monkey” demo.

Then we’ll look at some of the shortcut equations (good only for
specific kinds of problems).

We’ll wrap this topic up with a clicker question for “shoot the
instructor’” exercise!



These equations may be useful at times, but be
careful because they can only be applied in
specific instances!

2(vy sindg) (4.24)
Twt=—75 -

This is the time of fhght fora pm]ectlle both launched and meactng on a flat horlznntal surface Equation 4.24 doesnot
apply ' of the tennis player
hitting the ball into the stands The other sc:lutu:m t=10, cc:rnespunds to the time at launch The time of flight is linearly
proportional to the initial velocity in the y direction and inversely proportional to g. Thus, on the Moon, where gravity is
one-sixth that of Earth, a projectile launched with the same velocity as on Earth would be airborne six times as long.

Trajectory

The trajectory of a projectile can be found by eliminating the time variable t from the kinematic equations for arbitrary t and
solving for y(x). We take xj = v =0 so the projectile is launched from the origin. The kinematic equation for x gives
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Substituting the expression for t into the equation for the position ¥ = (v sinflpht — %grz gives
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Rearranging terms, we have
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T useful,
but...

This trajectory equation is of the form y = ax + bx<__which is an equation of a parabola with coefficients




- v% sinﬂ.ﬂﬂ (4.26)
Y

Note particularly that Ecuation 4.26 is valid only for launch and impact on a horizontal s@aﬂgg is
directly proportional fo the square of the initiat speed vy and sin2#;, amd {tis inversely proportional to the acceleration of

gravity. Thus, on the Moon, the range would be six times greater than on Earth for the same initial velocity. Furthermore, we
see from the factor sin2éy; that the range is maximum at 45°. These results are shown in Figure 4.15. In (a) we see that

the greater the initial velocity, the greater the range. In (b), we see that the range is maximum at 45°. This is true only for
conditions neglecting air resistance. If air resistance is considered, the maximum angle is somewhat smaller. It is interesting
that the same range is found for two initial launch angles that sum to 90°. The projectile launched with the smaller angle

has a lower apex than the higher angle, but they both have the same range.



This figure 1s a great summary of how projectile motion
depends on 1nitial velocity and elevation angle

y

= R = 255m -

(b)
Figure 4.15 Trajectories of projectiles on level ground. (a) The
greater the imitial speed v, the greater the range for a given

mitial angle. (b) The effect of initial angle #; on the range of a

projectile with a given initial speed. Note that the range is the same
for initial angles of 15% and 75%, although the maximum

heights of those paths are different.



Clicker Question (3-minute response, you may discuss):

Consider a small projectile shot from a catapult at a target
located a horizontal distance 10 m from the catapult. If the
initial speed of the projectile 1s 13 m/s, at what elevation
angle should the projectile leave the catapult?

(Note — answer with largest response will be tested on a
live target....)

A. 12°
B. 18°
C. 36°

D. 45°



FIGURE 4.17

openstax™

Projectile to satellite. In each case
shown here, a projectile is launched
from a very high tower to avoid air
resistance. With increasing initial speed,
the range increases and becomes
longer than it would be on level ground
because Earth curves away beneath its
path. With a speed of 8000 m/s, orbit is
achieved.



Uniform circular motion
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A particle is moving in a circle at a constant speed, with position and velocity
vectors at times t and t + At.

Velocity vectors forming a triangle. The two triangles in the figure are similar. The
vector AV points toward the center of the circle in the limit At — 0.

The book derives the acceleration in this case as

a. = —
¢ r



Centripetal acceleration ( a, ) in circular motion
always points to the center of the circle.

v

In uniform circular
motion, |v|is a
constant, the only
acceleration is a_,
and a_ 1s always
perpendicular to v.




We’ll see more of this later, but for now we should define some
quantities for uniform circular motion.

A particle executing circular motion can be described by its position vector T (7). Figure 4.20 shows a particle executing

circular motion in a counterclockwise direction. As the particle moves on the circle, its position vector sweeps out the angle
¢ with the x-axis. Vector T (r) making an angle @ with the x-axis is shown with its components along the x- and y-axes.

The magnitude of the position vectoris A = | T (rl| and 1s also the radius of the circle, so that in terms of its components,

A n
T () = Acosaxr i +Asinar j. (4.28)

Here, @ 1s a constant called the angular frequency of the particle. The angular frequency has units of radians (rad) per
second and is simply the number of radians of angular measure through which the particle passes per second. The angle &
that the position vector has at any particular time 15 @i .

If T 1s the period of motion, or the ime to complete one revolution ( 2x rad), then

_ < Very useful relation,
¥

and sometimes you’ll

-

have to convert from

J/ Fio rpm to rad/s
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Figure 4.20 The position vector for a particle in arcular
motion with its components along the x- and y-axes. The particle
moves counterclockwise. Angle & 1s the angular frequency w
in racdians per second multiplied by t.



Suppose you know o instead of v. Can you still find a_?

One reason that we might be interested in finding a, :

The “g-force” (though
it’s not really a force!)
exerted on us when we
round curves or fly in
airplanes.
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Relative Motion, key points

1. Define your coordinate system
2. Clearly define your velocities using subscripts
3. Simply add vector components of velocity

There are typically two kinds of problems we’ll face:
(1) Find the relative velocity between two objects

(11) Find the velocity of an object that 1s moving within air
or water that 1s also in motion (winds or currents)






Figure 4.27 =
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A car travels east toward an intersection while a truck travels south toward the same intersection.




Figure 4.28
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Vector diagram of the vector equation Vo = Veg + Vgr.
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This arrow
1S pointing
the wrong
way!






