Physics 121 — September 12, 2017

Assignments:

This week:
o Finish reading chapter 4 of textbook (note: we will NOT

cover the section on nonuniform circular motion, pp. 191-
193 of textbook)

« Make sure that your clicker or phone app 1s registered for
this class: “PHYS121 Minschwaner F2017” The course
1s “NMTphysl121 Minschwaner”

«Complete ETA Problem Set #4 and chapter 4 written
problems 30, 36, 59, 62, 76, due by Sept 18 at 4 PM

« Do practice problems in recitation this week

o Start reading Chapter 5




Key concepts for today:

* Velocity and acceleration in 2- or 3-D

* Independence of perpendicular motions
* Equations of motion in 2- or 3-D

* Projectile Motion



Consider a projectile moving only under the influence
of gravity where the air drag is negligible (such as a
javelin). Can it be thrown in such a way that its
velocity and acceleration vectors are perpendicular to
one another at some point along its path?



Consider a projectile moving only under the influence
of gravity where the air drag is negligible (such as a
javelin). Can it be thrown in such a way that its
velocity and acceleration vectors are perpendicular to
one another at some point along its path?

A. Yes
B. No

C. Maybe, but the thrower would have to be strong
enough to make it supersonic.




Recall the 1-D equations of motion from last week

Putting Equations Together

In the following examples, we continue to explore one-dimensional motion, but in situations requiring slightly more
algebraic manipulation. The examples also give insight into problem-solving techniques. The note that follows is provided
for easy reference to the equations needed. Be aware that these equations are not independent. In many situations we have
two unknowns and need two equations from the set to solve for the unknowns. We need as many equations as there are

unknowns to solve a given situation.

Summary of Kinematic Equations (constant a)

x=xg+Wt
_ va4v
y=-14

2
v=vy+at

X =xp+ vyt +%.mf2

w2 = v% + 2a(x — xp)

p. 134 of textbook



Now for 2- or 3-D, instead of just “x” we have to
measure displacement using a position vector “r”

T O =x01 +0] +20k. (4-2)

Figure 4.2 shows the coordinate system and the vector to point P, where a particle could be located at a particular time
t. Note the orientation of the x, y, and z axes. This orientation is called a right-handed coordinate system (Coordinate
Systems and Components of a Vector) and it is used throughout the chapter.
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Figure 4.2 A three-dimensional coordinate system with a
particle at position P(x(t), y(t), z(t)).



Similarly, for 2- or 3-D we have to consider the
instantaneous velocity vector “v” as the rate of
change 1n the displacement vector r (note this
could be a change in the magnitude of r, or just in
the direction of r, or both).

Velocity Vector

In the previous chapter we found the instantaneous wvelocity by calculating the derivative of the position function with
respect to time. We can do the same operation in two and three dimensions, but we use vectors. The instantaneous velocity
vector is now

—_ —_
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Figure 4.7 A particle moves along a path given by the gray
line. In the limit as Ar approaches zero, the velocity vector
becomes tangent to the path of the particle.

Equation 4.4 can also be written in terms of the components of ¥ (r). Since

— n n M
r (h=x(0i +vi)j +z0k.

We Can write

v ()= vx(r}? + VF(:}? + vz{r}ﬂ (4.5)
where
vxlt) = %, vn) = %, vA1) = %, (4.6)

Vy » Vy , V, are called the components of the velocity



¢e .9

For vector acceleration “a” we use the rate of change in v

- . Na+AD-~F@® _d¥V® (4.8)
a () _:11% At T odt
The acceleration in terms of components is
— AN dv (DR AN 4.9
n (E)Zm&(z}l N vdr Jj +dv£;[z}kt (4.9)

Also, since the velocity is the derivative of the position function, we can write the acceleration in terms of the second
derivative of the position function:

2 0= d;:lgr)‘i‘ ) d;_:-gz} . df:gr);‘ (4.10)
here $0x _ &% .
r _— —
where dt dt? ax  and similarly for a, and a,

These are called the components of acceleration.



We will be working (mostly) with constant acceleration.

The only exceptions will be uniform circular motion (when
the magnitude of “a” remains constant, but the direction of
“a” 1s changing), and elliptical orbits in gravitational
motion (when both the magnitude and direction of “a” can

change).



I cannot emphasize this point enough:

The Independence of Perpendicular Motions

When we look at the three-dimensional equations for position and velocity written in unit vector notation, Equation 4.2
and Equation 4.5, we see the components of these equations are separate and unique functions of time that do not depend
on one another. Motion along the x direction has no part of its motion along the y and z directions, and similarly for the other
two coordinate axes. Thus, the motion of an object in two or three dimensions can be divided into separate, independent
motions along the perpendicular axes of the coordinate system in which the motion takes place.

To illustrate this concept with respect to displacement, consider a woman walking from point A to point B in a city with
square blocks. The woman taking the path from A to B may walk east for so many blocks and then north (two perpendicular
directions) for another set of blocks to arrive at B. How far she walks east is affected only by her motion eastward. Similarly,
how far she walks north is affected only by her motion northward.

Independence of Motion

In the kinematic description of motion, we are able to freat the horizontal and vertical components of motion separately.
In many cases, motion in the horizontal direction does not affect motion in the vertical direction, and vice versa.

An example illustrating the independence of wertical and horizontal motions is given by two baseballs. One baseball is
dropped from rest. At the same instant, another is thrown horizontally from the same height and it follows a curved path. A
stroboscope captures the positions of the balls at fixed time intervals as they fall (Figure 4.8).



Figure 4.8 openstax”

z ?-”" Horizontal motion,
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Vertical motion,
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A diagram of the motions of two 1dentical

balls: one falls from rest and the other
has an initial horizontal velocity. Each
subsequent position is an equal time
interval. Arrows represent the horizontal
and vertical velocities at each position.
The ball on the right has an initial
horizontal velocity whereas the ball on
the left has no horizontal velocity.
Despite the difference in horizontal
velocities, the vertical velocities and
positions are identical for both balls,
which shows the vertical and horizontal
motions are independent.



This independence holds for all projectiles, even those with a vertical
component to the nitial velocity.

{b) Horizontal component: constant velocity
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Key points:

1. V, = constant during the flight

2. 'V, varies during the flight, with acceleration = constant = -g

3. Vector velocity at any time is determined by components V, and V,
Let’s look at the equations of motion now.



This 1s pretty good advice from the textbook on p. 177

Problem-Solving Strategy: Projectile Motion

1. Resolve the motion into horizontal and vertical components along the x- and y-axes. The magnitudes of the
components of displacement s along these axes are x and y. The magnitudes of the components of velocity

v are v, = vcosf and Vy= vsiné), where v is the magnitude of the velocity and 8 is its direction relative
to the harizontal, as shown in Figure 4.12.

2. Treat the mofion as two independent one-dimensional motions: one horizontal and the other vertical. Use the
kinematic equations for horizontal and vertical motion presented earlier.

3. Solve for the unknowns in the two separate motions: one horizontal and one vertical. Note that the only
common variable between the motions is time f. The problem-solving procedures here are the same as those
for one-dimensional kinematics and are illustrated in the following solved examples.

4. Recombine quantities in the horizontal and vertical directions to find the total displacement s and velocity
V . Solve for the magnitude and direction of the displacement and velocity using

5= '|,I'11 + }'2._, f= tan_l{;.?fx]._, V= 1|||v§ + vg._,

where 8 is the direction of the displacement i



Let’s try this out on example 4.7 from the textbook

Example 4.7

A Fireworks Projectile Explodes High and Away

During a fireworks display, a shell is shot into the air with an initial speed of 70.0 m/s at an angle of 75.0° above

the horizontal, as illustrated in Figure 4.13. The fuse is timed to ignite the shell just as it reaches its highest point
above the ground. (a) Calculate the height at which the shell explodes. (b) How much time passes between the
launch of the shell and the explosion? (c) What is the horizontal displacement of the shell when it explodes? (d)
What is the total displacement from the point of launch to the highest point?
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Figure 4.12 The trajectory of a fireworks shell. The fuse is set

to explode the shell at the highest point in its trajectory, which is

found to be at a height of 233 m and 125 m away horizontally.




This 1s a good example for problems where the final
position 1s not level with the initial position (y 1s not
equal to zero when the ball lands)

Example 4.8

Calculating Projectile Motion: Tennis Player
A tennis player wins a match at Arthur Ashe stadium and hits a ball into the stands at 30 m/s and at an angle
45° above the horizontal (Figure 4.14). On its way down, the ball is caught by a spectator 10 m above the

point where the ball was hit. (a) Calculate the time it takes the tennis ball to reach the spectator. (b) What are the
magnitude and direction of the ball's velocity at impact?

Figure 4.14 The trajectory of a tennis ball hit into the stands.




One of most convincing displays of the independence of vertical
And horizontal motion 1s the classic “Shoot the monkey”
problem:

Let’s analyze this problem is some detail, then we’ll try a live
demo 1n class.


https://www.explorelearning.com/index.cfm?method=cResource.dspDetail&resourceid=609

These equations may be useful at times, but be
careful because they can only be applied in
specific instances!

2(vy sindg) (4.24)
Twt=—75 -

This is the time of fhght fora pm]ectlle both launched and meactng on a flat horlznntal surface Equation 4.24 doesnot
apply ' of the tennis player
hitting the ball into the stands The other sc:lutu:m t=10, cc:rnespunds to the time at launch The time of flight is linearly
proportional to the initial velocity in the y direction and inversely proportional to g. Thus, on the Moon, where gravity is
one-sixth that of Earth, a projectile launched with the same velocity as on Earth would be airborne six times as long.

Trajectory

The trajectory of a projectile can be found by eliminating the time variable t from the kinematic equations for arbitrary t and
solving for y(x). We take xj = v =0 so the projectile is launched from the origin. The kinematic equation for x gives

x x
r=vl=il=g—="—"7
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Substituting the expression for t into the equation for the position ¥ = (v sinflpht — %grz gives
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Rearranging terms, we have

y = (tanfg)x — [—3 2];3. (4.25) Not so
2ivpcosdy)
T useful,
but

This trajectory equation is of the form y = ax + bx<__which is an equation of a parabola with coefficients




- v% sinﬂ.ﬂﬂ (4.26)
Y

Note particularly that Ecuation 4.26 is valid only for launch and impact on a horizontal s@aﬂgg is
directly proportional fo the square of the initiat speed vy and sin2#;, amd {tis inversely proportional to the acceleration of

gravity. Thus, on the Moon, the range would be six times greater than on Earth for the same initial velocity. Furthermore, we
see from the factor sin2éy; that the range is maximum at 45°. These results are shown in Figure 4.15. In (a) we see that

the greater the initial velocity, the greater the range. In (b), we see that the range is maximum at 45°. This is true only for
conditions neglecting air resistance. If air resistance is considered, the maximum angle is somewhat smaller. It is interesting
that the same range is found for two initial launch angles that sum to 90°. The projectile launched with the smaller angle

has a lower apex than the higher angle, but they both have the same range.



