Physics 121 — October 26, 2017

Announcements:
Answers 1n back of book for #41 may not be correct.
We are only covering through section 10.5 this week
Interesting NRAO seminar on Friday, Nov 3.
Assignments:

This week:
« Read Chapter 10.

« Complete ETA Problem Set #10 by Monday, Oct 30.

« End-of-chapter problems: Chap 10 #3535, 41, 54, 62, 67, and
68. Due by 4 pm, Oct 30.

« Recitation: Practice problems on springs, Chap 9, and on
free body diagrams.


https://science.nrao.edu/facilities/vla/ctw/coll/abstracts-2017-fall/Howes

Topics for today:

* Definitions for rotational motion: angular displacement,
angular velocity, and angular acceleration.

* Kinematic equations for rotational motion with constant
angular acceleration.

* Moment of inertia.

* Rotational kinetic energy and conservation of total energy.



Quantities for Describing Rotational Motion

r = distance from rotational axis
0 = angular displacement

o = angular velocity = dO/dt

o = angular acceleration = dw/dt

v = tangential velocity = rw
a = tangential acceleration = ra

Yi Z)

=)
tn

o1 |

=l
wl
<7




Linear Rotational
Position X (7]
dt dt
Acceleration _dv _dw
a= o
dt dt
®
Angular velocity vector
«._ Direction of motion along the z-axis
s
< T A
b
‘f,{/ )
/ w = constant
|'|I.I.I Vl \
|I rj_ r2 II||
I|
A X J;’/f’ Counterclockwise
X \.\ // rotation
\\\ ‘//
e //'/
—==



o will always be parallel to o (if ® 1s increasing in magnitude
with time) or anti-parallel to  (if ® 1s decreasing with time).
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Acceleration in Uniform vs. Non-uniform Circular Motion

a.x Av v,

(a) (b)

Figure 10.14 (a) Uniform circular motion: The centripetal acceleration @ has its vector inward toward the axis of

rotation. There is no tangential acceleration. (b) Nonuniform circular motion: An angular acceleration produces an
inward centripetal acceleration that is changing in magnitude, plus a tangential acceleration a; .



Example

Let’s examine one of the turbines in the
Brazos wind farm in west Texas. It has
blades that are 40 meters long and the
turbine 1s rotating at a constant 20 rpm
(revolutions per minute).

What is the magnitude (in rad/s) and
direction of ® ? What is the tangential
velocity at the blade tip?



For constant angular acceleration, the kinematic equations look
similar to the translational kinematic equations.

Relationships between Rotational and Translational Motion

We can look at two relationships between rotational and translational motion.

1. Generally speaking, the linear kinematic equations have their rotational counterparts. Table 10.2 lists the four
linear kinematic equations and the corresponding rotational counterpart. The two sets of equations look similar to
each other, but describe two different physical situations, that is, rotation and translation.

Rotational Translational
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Table 10.2 Rotational and Translational
Kinematic Equations



Example

For the Brazos wind farm turbine, suppose it
shuts down from 20 rpm to O rpm 1n a time
span of one minute, with a constant angular
acceleration.

What is the magnitude (in rad/s?) and direction

of o ? What 1s the tangential acceleration at the
blade tip?

How many revolutions does the turbine make
during the minute it takes to come to rest?



Rotational Kinetic energy

Consider a single mass being swung in a circle on the end
of a string with length r.

masm with speed, v The kinetic energy is just
1
K=-mv’®=-m@w)? = =(mr?)w?
2 2 (rw) 2( o

Now 1f we have a large number of little
masses connected together to form a
hoop, then we add up all of the kinetic
energies to get the total for the hoop.

2 2 _ 1 APV
K = szjvj = Eij(rja)) = EZ(mjrj Jw

Note that for all solid rotating bodies, ® is the same at all points



Moment of Inertia for a distribution of discrete masses

for rotational motion. This quantity is called the moment of inertia I, with units of kg - m?2

I = Z m; r%. (10.17)
J

Example: for case (a), | = mR? + mR? = 2mR?
for case (b), I = m(0)? + m(2R)? = 4mR?
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The moment of inertia for an object depends on where we
place the axis of rotation!



For objects with a continuous distribution of mass,

a

dm

Figure 10.24 Using an infinitesimally small piece of mass to
calculate the contribution to the total moment of inertia.

The need to use an infinitesimally small piece of mass dm suggests that we can write the moment of inertia by evaluating
an integral over infinitesimal masses rather than doing a discrete sum over finite masses:

=, mr;® becomes I= f r*dm. (10.19)
i



FIGURE 10.20
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Values of rotational inertia for
common shapes of objects

Note that the book goes through
the calculations for various
shapes and rotation axes, and
presents the “parallel axis”
theorem.

This 1s important material, but
we will not be doing integral
calculations or solving
complicated mass distributions to
find moments of inertia. For the
most part, we can just refer to the
results shown in this table.




Iclicker: A solid cylinder made of lead has the same mass and
same length as a solid cylinder made of alumimum. The
rotational nertia of the lead cylinder compared to the aluminum
one 1s:

2

Disk or solid cylinder
aboul 1ls axis

A. greater T MR

B. less

C. same

D. unknown unless both radi1 are specified exactly



Now that we’ve defined the moment of 1nertia,

Rotational Translational
_ 2 m
I'= Z m;r;
J
K = %Img K = %mvz

Table 10.4 Rotational and
Translational Kinetic Energies and
Inertia

And the total energy becomes

E _ 1 2+1I 24+ U
T—va Za)



Example:
(a) A hoop of mass M and radius R, and a solid disk
of mass M and radius R, both slide down a
frictionless ramp of height H, starting from rest.
What are their velocities when they reach the
bottom?

(b) Now suppose the hoop and disk both roll down
the ramp. What are the final velocities?

Note: for rolling motion, it’s easy to show (though
not until Chap 11!) that the translational velocity i1s
given by v =ro



ETA Problem 9.4.22

Professional Application The Moon's craters are remnants of meteorite collisions.
Suppose a fairly large asteroid that has a mass of 5.00x10" kg (about a kilometer
across) strikes the Moon at a speed of 15.0 km/s. (a) At what speed does the Moon

recoil after the perfectly inelastic collision (the mass of the Moon is 7.36 x 10* kg)?

(b) How much kinetic energy is lost in the collision? Such an event may have been
observed by medieval English monks who reported observing a red glow and
subsequent haze about the Moon. (c) In October 2009, NASA crashed a rocket into the
Moon, and analyzed the plume produced by the impact. (Significant amounts of water
were detected.) Answer part (a) and (b) for this real-life experiment. The mass of the
rocket was 2000 kg and its speed upon impact was 9000 km/h. How does the plume
produced alter these results?



