Physics 121 — November 28, 2017

Announcements:
* Final exam on Thursday, Dec 14 at 9:00 AM in Workman

101
* Review on Dec 7 (last class meeting)

Assignments:
« Finish reading Chapter 16.

« Complete ETA Problem Set #15 (last one!) by Monday,
Dec 4.

« End-of-chapter problems: Ch 16: 70, 71, 81, 87, 98, 102,
and 114. Due by 4 pm, Dec 4.

« Recitation practice problems 69, 82, 97, 103, and 106



Tips for Chapter 16 HW

#81: Assume that the ocean wave velocity and
wavelength remain constant.

#87: Change the clause, “the intensity atthe-seuree
1s I, at a distance of one meter from the source” .
#114: You want to find the smallest overtone
frequency that is greater than 100 Hz.



Quick Review:

Traveling waves:

This one-wavelength
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Transverse wave: motions of mass element are perpendicular to the
direction of wave motion.

Longitudinal wave: motions of mass element are parallel to the
direction of wave motion.



y= % = %(%) —@ (16.3)

Think back to our discussion of a mass on a spring, when the position of the mass was modeled as x(t) = A coslamr + ¢).
The angle ¢ is a phase shift, added to allow for the fact that the mass may have initial conditions other than x = +A and

v = (). For similar reasons, the initial phase is added to the wave function. The wave function modeling a sinusoidal wave,
allowing for an initial phase shift ¢, is

vix, 1) = A sinfkx F ar + ¢) (16.4)

The value

(kx F ot + ¢b) (16.5)

is known as the phase of the wave, where ¢ is the initial phase of the wave function. Whether the temporal term @i is

negative or positive depends on the direction of the wawve. First consider the minus sign for a wave with an initial phase
equal to zero (¢h = (). The phase of the wave would be (kx — @r). Consider following a point on a wave, such as a

crest. A crest will ocour when sin (kx — ar) = 1.00 , that is, when kx — @t = nr +Z. for any integral value of n. For

2

instance, one particular crest occwrs at Ax — e = %. As the wave moves, time increases and x must also increase to keep

the phase equal to %. Therefore, the minus sign is for a wave moving in the positive x-direction. Using the plus sign,
KX 4+ mf = %. As time increases, x must decrease to keep the phase equal to % The plus sign is used for waves moving in
the negative x-direction. In summary, y(x, 1) = A sinfkx — @ + ¢b) models a wave moving in the positive x-direction and

vix, t) = A sinlkx + @t + ¢¢) models a wave moving in the negative x-direction.



Energy and Power in Waves:
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The time-averaged power of a sinusoidal mechanical wave, which is the average rate of energy transfer assoclated with a
wave as it passes a point, can be found by taking the total energy associated with the wave divided by the time it takes to
transfer the energy. If the velocity of the sinusoidal wave 1s constant, the time for one wavelength to pass by a point 1s equal
to the period of the wave, which 1s also constant. For a sinusoidal mechanical wave, the time-averaged power is therefore
the energy associated with a wavelength divided by the period of the wave. The wavelength of the wave divided by the
period is equal to the velocity of the wave,

: 16.10
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Note that this equation for the time-averaged power of a sinusoidal mechanical wave shows that the power is proportional
to the square of the amplitude of the wave and to the square of the angular frequency of the wave. Recall that the angular
frequency is equal to @ = 2xf, so the power of a mechanical wave is equal to the square of the amplitude and the square

of the frequency of the wave.



FIGURE 16.1
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From the world of renewable energy sources comes the electric power-generating
buoy. Although there are many versions, this one converts the up-and-down motion,
as well as side-to-side motion, of the buoy into rotational motion in order to turn an
electric generator, which stores the energy in batteries.

Power from this buoy should be proportional to the wave amplitude squared




A related concept 1s the Intensity carried by waves
(ETA problem 1, Chapter 16 problem 87.

Another important characteristic of waves is the intensity of the waves. Waves can also be concentrated or spread out. Waves
from an earthquake, for example, spread out over a larger area as they move away from a source, so they do less damage
the farther they get from the source. Changing the area the waves cover has important effects. All these pertinent factors are
included in the definition of intensity (I) as power per unit area:

(16.11)

o
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where P is the power carried by the wave through area A. The definition of intensity is valid for anv energy in transit,
including that carried by waves. The SI unit for intensity is watts per square meter (W/m?). Many waves are spherical waves
that move out from a source as a sphere. For example, a sound speaker mounted on a post above the ground may produce
sound waves that move away from the source as a spherical wave. Sound waves are discussed in more detail in the next
chapter, but in general, the farther you are from the speaker, the less intense the sound you hear. As a spherical wave moves

. L 2 : : .
out from a source, the surface area of the wave increases as the radius increases {A = 4xr ) The intensity for a spherical

wave is therefore

J__P_ (16.12)

Let’s look at a few examples:
1. An omnidirectional speaker
2. A small laser pointer



Consider an omnidirectional speaker driven by a 200-Watt audio
amplifier. Typically, only 1% of the electrical energy from the
amplifier is converted to acoustic energy (the rest is mostly
dissipated as heat).

What is the acoustic wave intensity 4 meters from the speaker,
assuming a spherical sound wave?



Consider an omnidirectional speaker driven by a 200-Watt audio
amplifier. Typically, only 1% of the electrical energy from the
amplifier is converted to acoustic energy (the rest is mostly
dissipated as heat). We found 100 dB level at 4 m from speaker.

Sound intensity level g Intensity / Example/effect
(dB) (Wrn?)
0 1% 1012 Threshold of hearing at 1000 Hz
10 1 10~ Rustle of leaves
20 1% 1010 Whisper at 1-m distance
30 1% 102 Quiet home
40 1% 108 Average home
50 1% 10~7 Average office, soft music
60 1% 106 Normal conversation
70 1% 103 Noisy office, busy traffic
80 1% 104 Loud radio, classroom lecture
90 1% 1073 Inside a heavy truck; damage from prolonged
exposurel]
100 1% 10~2 Noisy factory, siren at 30 m; damage from 8 h per day
exposure
110 1% 107! Damage from 30 min per day exposure
120 1 Loud rock concert; pneumatic chipper at 2 m;

threshold of pain

140 | % 102 Jet airplane at 30 m; severe pain, damage in seconds

160 1 % 104 Bursting of eardrums



FIGURE 16.22
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When two linear waves in

Superposition of waves:
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1y H iy = 18.00
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the same medium interfere, the height of resulting wave is the

sum of the heights of the individual waves, taken point by point. This plot shows two waves
(red and blue) added together, along with the resulting wave (black). These graphs
represent the height of the wave at each point. The waves may be any linear wave,
including ripples on a pond, disturbances on a string, sound, or electromagnetic waves.
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Superposition of two waves with
identical amplitudes, wavelengths, and
frequency, but that differ in a phase shift.
The red wave is defined by the wave
function y,(x, t) = A sin(kx — wt) and the
blue wave is defined by the wave
function y,(x, t) = A sin(kx — wt + ¢).
The black line shows the result of

adding the two waves. The phase
difference between the two waves are
(a)0.00 rad, (b) n/2 rad, (c) r rad, and
(d) 3 m/2 rad.

(b)

{©)

(d)

FIGURE 16.24
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FIGURE 16.23
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Superposition of nonidentical waves exhibits both constructive and destructive
interference.
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You *may* learn about Fourier decomposition and analysis in a math course.




Quick Review:

Traveling waves on a string

A critically important quantity 1s the linear mass density (mass per unit length)

mass of string (16.7)

B= length of string =~ [~

In this chapter, we consider only string with a constant linear density. If the linear density is constant, then the mass (Am)
of a small length of string (Ax) is Am = uAx. For example, if the string has a length of 2.00 m and a mass of 0.06 kg, then
0.06 kg
200 m

is Am=pulAx= (D‘D3E|_%}j 001 m=3.00x 1077 kg. The guitar also has a method to change the tension of the strings.

the linear density is u = = {].'DEI;—%. If a 1.00-mm section is cut from the string, the mass of the 1.00-mm length

The tension of the strings is adjusted by turning spindles, called the tuning pegs, around which the strings are wrapped. For
the guitar, the linear density of the string and the tension in the string determine the speed of the waves in the string and the
frequency of the sound produced is proportional to the wave speed.

Wave Speed on a String under Tension

To see how the speed of a wave on a string depends on the tension and the linear density, consider a pulse sent down a taut
string (Figure 16.13). When the taut string is at rest at the equilibrium position, the tension in the string Fy is constant.

Consider a small element of the string with a mass equal to Am = pAx. The mass element is at rest and in equilibrium and

the force of tension of either side of the mass element is equal and opposite.

Am = ulx
i, e e e —_———— B e e —
Fr b= A+ Fr

Figure 16.12 Mass element of a string kept taut with a
tension Fy . The mass element is in static equilibrium, and the

force of tension acting on either side of the mass element is
equal in magnitude and opposite in direction.



Yi

¥z

¥Yi7°

P Ax

X

X X
Figure 16.14 A string under tension is plucked, causing a pulse to
move along the string in the positive x-direction.

The derivation of the wave equation for a string under tension (pp 824-
825) 1s rather complicated, but we can qualitatively explain the result.

Py _ 1
dx? v: o el

| *vix, 1)

Therefore,
2
v Fr

Solving for v, we see that the speed of the wave on a string depends on the tension and the linear density.

Speed of a Wave on a String Under Tension

The speed of a pulse or wave on a string under tension can be found with the equation
IF (16.8)
|
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where Fy is the tension in the string and u is the mass per length of the string.
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(a) One end of a string is fixed so that it cannot move. A wave propagating on the string, encountering this fixed boundary

condition, is reflected 180°(m rad) out of phase with respect to the incident wave.

(b) One end of a string is tied to a solid ring of negligible mass on a frictionless lab pole, where the ring is free to move. A
wave propagating on the string, encountering this free boundary condition, is reflected in phase 0° (0 rad) with respect to

the wave.

Check out this wave simulation



https://phet.colorado.edu/sims/html/wave-on-a-string/latest/wave-on-a-string_en.html
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Figure 16.26 openstax-

Time snapshots of two sine waves. The
red wave 1s moving in the —x-direction
and the blue wave 1s moving in the +x-

direction. The resulting wave 1s shown
in black. Consider the resultant wave at
the pointsx =0m, 3 m, 6 m, 9m, 12
m, 15 m and notice that the resultant
wave always equals zero at these points,
no matter what the time 1s. These points
are known as fixed points (nodes). In
between each two nodes 1s an antinode,
a place where the medium oscillates
with an amplitude equal to the sum of
the amplitudes of the individual waves.
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Figure 16.27 —_
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When two 1dentical waves are moving in opposite directions, the resultant wave is a standing

wave. Nodes appear at integer multiples of half wavelengths. Antinodes appear at odd
multiples of quarter wavelengths, where they oscillate between y = +4. The nodes are

marked with red dots and the antinodes are marked with blue dots.



