Physics 121 — November 21, 2017

Announcements:
No labs or recitations this week

Assignments:
This week:

« Read Chapter 16.
« Complete ETA Problem Set #14 by Monday, Nov 27.

« End-of-chapter problems: Ch 16: 40, 42, 48, and 55.
Due by 4 pm, Nov 27.



Let’s take a quick look at a HW problem from Chapter 10

68. A pendulum consists of a rod of mass 2 kg and length
1 m with a solid sphere at one end with mass 0.3 kg and
radius 20 cm (see the following figure). If the pendulum is
released from rest at an angle of 30°, what is the angular

velocity at the lowest point?
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\) 0.3 kg, 20 cm radius



Need to use conservation of energy AK=AU
First calculate center of mass to get gravitational AU=mgAh__

To find AK, need the moment of inertia of the rod-sphere system
Solve for ®

==

Solution

the center of mass of the system 1s located at

X, +myx,  2Kkg(0.5m)+0.3kg(1.2m)
my +m, (2.0+0.3)kg

I :%(2 kg)(1.0m)” + %({}.3 keg)(0.2m)* +03kg(1.2m)* =1.1kg- m°,

X = (0.6 m from the axis of rotation.

AU =mgAh=(2.3kg)(9.8)0.6 m(1-cos30)=1.8J, and

ﬂK:lfmI:l{l.lkg-nf}mz:>m: L8] 5
7 2 0.55kg-m

=1.82rad/s

Note — given the scale in the problem, you could just treat the sphere as
a point mass located 1.2 m from the pivot (neglecting the second term
in L4, and just keeping the third term).



Now look at problem 51 from Chapter 15 (and last ETA problem)

The amplitude of a lightly damped harmonic oscillator decreases by 3.0%
during each cycle.

a. What percentage of the mechanical energy of the oscillator 1s lost in
each cycle?
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Figure 15.26 Position versus time for the mass oscillating on a spring in a viscous fluid.
Motice that the curve appears to be a cosine function inside an exponential envelope.

Answer 1n back of book i1s wrong!
Also, what is meant by “lightly damped™?
The correct term 1s “underdamped”.



Traveling waves:

This one-wavelength
section . ..

h"'.i ?\.. y V= ;L..IT
| I
v = wave speed i =1 /\/l
I'= period |
® = angular frequency I/\/
f = o/(2n) = frequency | -
A= WEIVE]_E‘:I‘lgth : I ... moves to
N 2. —n here in one
k= 2m/\ = angular wavenumber period 7.

Transverse wave: motions of mass element are perpendicular to the
direction of wave motion.

Longitudinal wave: motions of mass element are parallel to the
direction of wave motion.

Pretty cool simulation for traveling longitudinal and tranverse waves


http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
http://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

iclicker:

Consider a traveling wave on a string shown below at some
instant in time which we define as t=0 The direction of the
instantaneous velocity of a small piece of the string located
at point P, at time t=0, 1s

B f

=l
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Figure 16.2 Snapshots of a transverse wave moving through a string under tension, beginning at
time ¢ = T and taken at intervals of 7. Colored dots are used to highlight points on the string.
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On the other hand, we just saw that the motion on
the surface of water waves 1s circular, not up-
and-down as depicted here.

s ) B3

Figure 16.3 An idealized surface water wave passes under a seagull that bobs up and down in
simple harmonic motion. The wave has a wavelength A, which 1s the distance between adjacent

1dentical parts of the wave. The amplitude A of the wave 1s the maximum displacement of the wave
from the equulibrium position, which 1s indicated by the dotted line. In this example, the medium
moves up and down, whereas the disturbance of the surface propagates parallel to the surface at a
speed v.

This 1s an idealized situation that allows us
to use all of the tools we develop for waves
on strings.



ETA Problem 16.1.2

Note that the wavelength of this note in air (v~340 m/s)
is about % the wavelength in water (also, HW #42).



y= % = %(%) —@ (16.3)

Think back to our discussion of a mass on a spring, when the position of the mass was modeled as x(t) = A coslamr + ¢).
The angle ¢ is a phase shift, added to allow for the fact that the mass may have initial conditions other than x = +A and

v = (). For similar reasons, the initial phase is added to the wave function. The wave function modeling a sinusoidal wave,
allowing for an initial phase shift ¢, is

vix, 1) = A sinfkx F ar + ¢) (16.4)

The value

(kx F ot + ¢b) (16.5)

is known as the phase of the wave, where ¢ is the initial phase of the wave function. Whether the temporal term @i is

negative or positive depends on the direction of the wawve. First consider the minus sign for a wave with an initial phase
equal to zero (¢h = (). The phase of the wave would be (kx — @r). Consider following a point on a wave, such as a

crest. A crest will ocour when sin (kx — ar) = 1.00 , that is, when kx — @t = nr +Z. for any integral value of n. For

2

instance, one particular crest occwrs at Ax — e = %. As the wave moves, time increases and x must also increase to keep

the phase equal to %. Therefore, the minus sign is for a wave moving in the positive x-direction. Using the plus sign,
KX 4+ mf = %. As time increases, x must decrease to keep the phase equal to % The plus sign is used for waves moving in
the negative x-direction. In summary, y(x, 1) = A sinfkx — @ + ¢b) models a wave moving in the positive x-direction and

vix, t) = A sinlkx + @t + ¢¢) models a wave moving in the negative x-direction.



iclicker:

A wave 1s described by the equation

y(x,7) = 0.1sin(3x + 10t)
where X 1s 1n meters, y 1s 1 centimeters, and t 1s 1n seconds.
The wavelength 1s

A. 61tm
B. 37 m
C. 2n/3 m
D. n/3m

E. 01 cm



Class Management | Instructor | Help
ETA Problem Set 14 Begin Date: 11/20/2017 4:00:00 PM -- Due Date: 11/27/2017 4:00:00 PM End Date: 12/8/2017 11:00:00 PM

(20%) Problem 5: Special sections of roadway are sometimes paved with “rumble
strips™ to alert inattentive drivers. In a particular case the grooves are spaced L =
(.26 m apart and the depth of each groove 1s d = (.25 cm. As you drive over this
rumble strip, the tires of your car oscillate about their equilibrium positions with a
frequency of f= 52 Hz. Refer to the figure, which is not drawn to scale.

Otheexpertta.com

Ll @7 339 Part (a) Enter an expression that describes the vertical position, 1(7), of one of the car tires as a function of time, ¢, in terms of the
defined quantities. Assume the motion is sinusoidal, with its argument in radians and the positive y-axis up. Take the tire’s equilibrium position as
v =0 and take v(0) = 0 and increasing.

| & 8 33% Part (b) Find the vertical position of the tire, in centimeters, at the time /= 2.6 s.

For part (a), be sure to pay attention to the last sentence.
For part (b), remember to use radians in your trig function!



Traveling waves on a string

A critically important quantity 1s the linear mass density (mass per unit length)

mass of string (16.7)

B= length of string =~ [~

In this chapter, we consider only string with a constant linear density. If the linear density is constant, then the mass (Am)
of a small length of string (Ax) is Am = uAx. For example, if the string has a length of 2.00 m and a mass of 0.06 kg, then
0.06 kg
200 m

is Am=pulAx= (D.DSEI—%}] 001 m=3.00x 1077 kg. The guitar also has a method to change the tension of the strings.

the linear density is u = = {].{B%. If a 1.00-mm section is cut from the string, the mass of the 1.00-mm length

The tension of the strings is adjusted by turning spindles, called the tuning pegs, around which the strings are wrapped. For
the guitar, the linear density of the string and the tension in the string determine the speed of the waves in the string and the
frequency of the sound produced is proportional to the wave speed.

Wave Speed on a String under Tension

To see how the speed of a wave on a string depends on the tension and the linear density, consider a pulse sent down a taut
string (Figure 16.13). When the taut string is at rest at the equilibrium position, the tension in the string Fy is constant.

Consider a small element of the string with a mass equal to Am = pAx. The mass element is at rest and in equilibrium and

the force of tension of either side of the mass element is equal and opposite.

Am = ulx
- - ——————
il A i A e e, i e o
Fr b= A+ Fr

Figure 16.12 Mass element of a string kept taut with a
tension Fy . The mass element is in static equilibrium, and the

force of tension acting on either side of the mass element is
equal in magnitude and opposite in direction.
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Figure 16.14 A string under tension is plucked, causing a pulse to
move along the string in the positive x-direction.

The derivation of the wave equation for a string under tension (pp 824-
825) 1s rather complicated, but we can qualitatively explain the result.

Py _ 1
dx? v: o el

| *vix, 1)

Therefore,
2
v Fr

Solving for v, we see that the speed of the wave on a string depends on the tension and the linear density.

Speed of a Wave on a String Under Tension

The speed of a pulse or wave on a string under tension can be found with the equation
IF (16.8)
|
vl 'I' -

where Fy is the tension in the string and u is the mass per length of the string.
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Figure 16.14 A string under tension is plucked, causing a pulse to
move along the string in the positive x-direction.

The derivation of the wave equation for a string under tension (pp 824-
825) 1s rather complicated, but we can qualitatively explain the result.

Pren_ | P Linear wave equation.
v One of the most
Therefore, . . .
| 1mp0rtant equations 1n
v Fr
" sms/ engineering!
Solving for v, we see that the speed of the wawve on a string depends on the tension and the linear }, g g

Speed of a Wave on a String Under Tension

The speed of a pulse or wave on a string under tension can be found with the equation

[Fz (16.8)

vl = iT

where Fy is the tension in the string and u is the mass per length of the string.



In general, the speed of a wave 1in a medium 1s proportional to the
square root of the ratio of elastic to inertial properties:

Speed of Compression Waves in a Fluid

The speed of a wave on a string depends on the square root of the tension divided by the mass per length, the linear density.
In general, the speed of a wave through a medium depends on the elastic property of the medium and the inertial property
of the medium.

_ , elastic property

|1,r| [I= .
| inertial property

The elastic property describes the tendency of the particles of the medium to refumn to their initial position when perturbed.
The inertial property describes the tendency of the particle to resist changes in velocity.

The speed of a longitudinal wave through a liquid or gas depends on the density of the fluid and the bulk modulus of the
fluid,

v=1E (16.9)

Here the bulk modulus is defined as B = — AL, where AP is the change in the pressure and the denominator is the ratio

m

v
wave that travels through a fluid or a solid. The speed of sound in air with an atmospheric pressure of 1.013 x 10° Pa

of the change in volume to the initial volume, and p = 55 is the mass per unit volume. For example, sound is a mechanical

and a temperature of 20°C is vy = 343.00 m/s. Because the density depends on temperature, the speed of sound in air

tenends o ihe iz This seill be i Lip derail in Sound



