Physics 121 – August 31, 2017

Assignments:

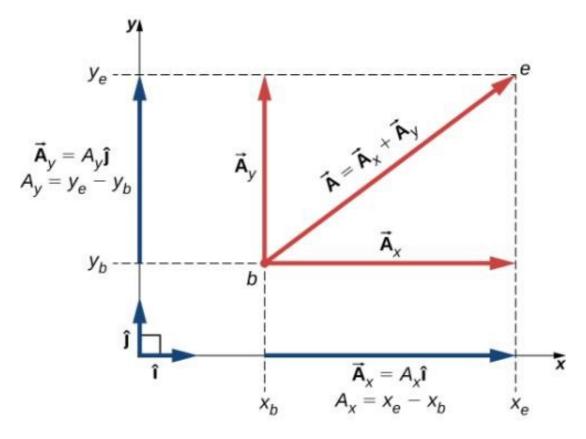
This week:

• Finish reading Chapter 2 of textbook (you can skip polar coordinates for now)

- Complete ETA Problem Set #2 by Sept 4 at 4 PM
- Chapter 2 written problems 38, 47, 50, 62, and 68, **due Sept 5 by 9:30 AM**
- Start reading Chapter 3 (linear motion concepts)

Vectors

1. Scalars are quantities that can be represented by a single number: mass, distance between two points, elapsed time, etc.


Note that scalars can be defined at some point (temperature at the origin of some coordinate system), or we might be talking about a **scalar field**, such as T(x,y,z) equals the temperature defined at all points (x,y,z) in this room.

2. Vectors are quantities that must carry two pieces of information: magnitude and direction. Examples are velocity, acceleration, and force.

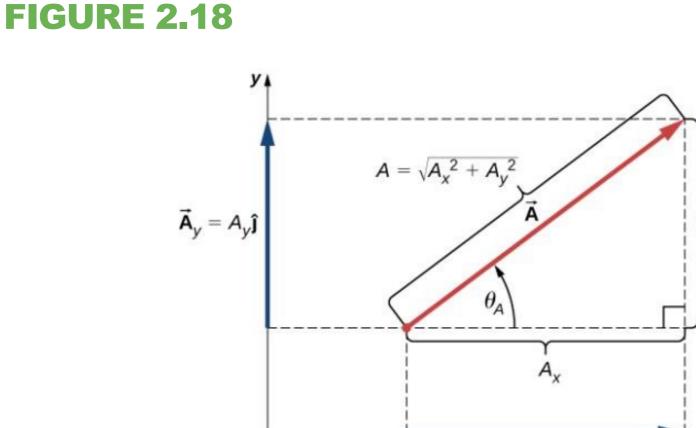
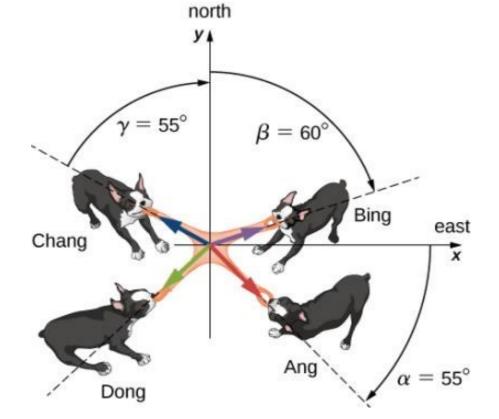

Note that vectors can also be defined at some point (or not), and they can also be used to define a **vector field**, such as the wind velocity (speed and direction) defined at all points in this room.

FIGURE 2.16

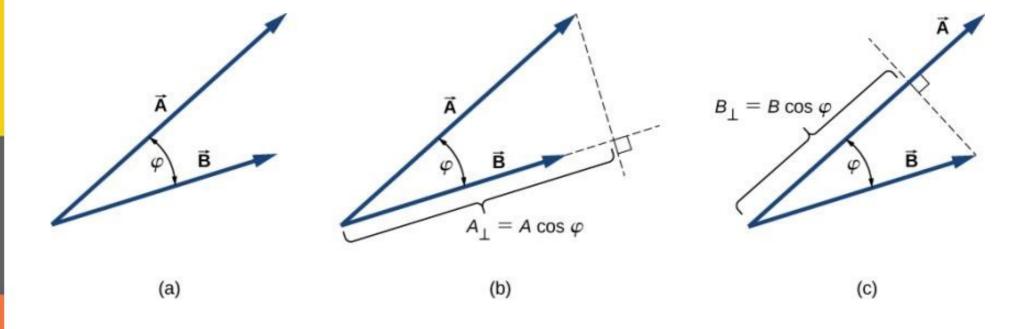
Vector \vec{A} in a plane in the Cartesian coordinate system is the vector sum of its vector xand y-components. The x-vector component \vec{A}_x is the orthogonal projection of vector \vec{A} onto the x-axis. The y-vector component \vec{A}_y is the orthogonal projection of vector onto the y-axis. The numbers A_x and A_y that multiply the unit vectors are the scalar components of the vector.



open**stax**"

Α,

For vector \vec{A} , its magnitude *A* and its direction angle θ_A are related to the magnitudes of its scalar components because *A*, *A_x*, and *A_y* form a right triangle.


 $\vec{\mathbf{A}}_{x} = A_{x}\hat{\mathbf{i}}$

open**stax**™

Four dogs play a tug-of-war game with a toy.

FIGURE 2.25

open**stax**™

The scalar product of two vectors.

FIGURE 2.27

- (a) The angle between the two vectors.
- (b) The orthogonal projection A_{\perp} of vector \vec{A} onto the direction of vector \vec{B} .
- (c) The orthogonal projection B_{\perp} of vector \vec{B} onto the direction of vector \vec{A} .