Physics 121 – August 28, 2017

Assignments:

This week:

• Finish reading Chapter 2 of textbook (you can skip polar coordinates for now)

- Complete ETA Problem Set #2 by Sept 4 at 4 PM
- Chapter 2 written problems 38, 47, 50, 62, and 68
- Start reading Chapter 3 (linear motion concepts)

Expert TA:

https://www.theexpertta.com/Login.aspx

Things to note:

- Sometimes "numerical" answer, sometimes
 "expressions" answer, sometimes a combination of both
- 2. Work things out on paper.
- 3. Take advantage of feedback and hints.

Finishing up from last time: Scale analysis is an important skill

Base Quantity	Symbol for Dimension
Length	L
Mass	Μ
Time	Т
Current	I
Thermodynamic temperature	Θ
Amount of substance	Ν
Luminous intensity	J

Table 1.3 Base Quantities and Their Dimensions

Physicists often use square brackets around the symbol for a physical quantity to represent the dimensions of that quantity. For example, if r is the radius of a cylinder and h is its height, then we write [r] = L and [h] = L to indicate the dimensions of the radius and height are both those of length, or L. Similarly, if we use the symbol A for the surface area of

This OpenStax book is available for free at http://cnx.org/content/col12031/1.5

Vectors

1. Scalars are quantities that can be represented by a single number: mass, distance between two points, elapsed time, etc.

Note that scalars can be defined at some point (temperature at the origin of some coordinate system), or we might be talking about a **scalar field**, such as T(x,y,z) equals the temperature defined at all points (x,y,z) in this room.

2. Vectors are quantities that must carry two pieces of information: magnitude and direction. Examples are velocity, acceleration, and force.

Note that vectors can also be defined at some point (or not), and they can also be used to define a **vector field**, such as the wind velocity (speed and direction) defined at all points in this room.

When we use the parallelogram rule four times, we obtain the resultant vector $\vec{R} = \vec{A} + \vec{B} + \vec{C} + \vec{D} + \vec{E}$, which is the green vector connecting Tallahassee with Gainesville.

Clicker question

Given three vectors,
$$\mathbf{A} = (1.5) \mathbf{i} + (0.7) \mathbf{j}$$
,
 $\mathbf{B} = (-3.2) \mathbf{i} + (1.7) \mathbf{j}$, $\mathbf{C} = (1.2) \mathbf{i} + (-3.3) \mathbf{j}$

The sum of these three vectors is another vector, $\mathbf{D} = \mathbf{A} + \mathbf{B} + \mathbf{C}$. In which quadrant does **D** lie?

