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Abstract. Diurnal variations in hydroxyl (OH) in the strato-
sphere and mesosphere are analyzed using measurements
from the Aura Microwave Limb Sounder (MLS). The pri-
mary driver for OH diurnal variations is the ultraviolet actinic
flux that initiates the photochemical production of reactive
hydrogen species. The magnitude of this flux is governed
largely by changes in solar zenith angle (SZA) through-
out the day, and OH diurnal variations are well approxi-
mated by an exponential function of the secant of SZA. Mea-
sured OH concentrations are fit to a function of the form
exp[−βsec(SZA)], where the parameterβ is a function of al-
titude. We examine the magnitude ofβ and show that it is re-
lated to the optical depths of ultraviolet absorption by ozone
and molecular oxygen. Values ofβ from SLIMCAT model
simulations show the same vertical structure as those from
MLS and the average level of agreement between model and
measurements is 6%. The vertical profile ofβ from MLS can
be represented by a simple analytic formulation involving the
ozone and water vapor photodissociation rates. This formu-
lation is used to infer the altitude dependence of the primary
production mechanisms for OH: the reaction of excited-state
atomic oxygen with water vapor versus the direct photodis-
sociation of water vapor.

1 Introduction

Hydroxyl (OH) is a key reactive species for photochemical
reactions that regulate ozone throughout most of the strato-
sphere (∼20–55 km altitude) and mesosphere (∼55–90 km).
Catalytic cycles involving OH dominate the chemical loss
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of ozone in the upper stratosphere (McElroy and Salawitch,
1989) and in the lower stratosphere (Wennberg et al., 1994).
Reactions with OH and HO2 are also important in conver-
sions between reactive and stable forms of chlorine and nitro-
gen in the stratosphere (e.g., Dvortsov and Solomon, 2001).
The diurnal variation of hydroxyl is tightly linked to the in-
tensity of solar ultraviolet radiation (Wennberg, 2006 and ref-
erences therein), and therefore to the slant path absorption
of radiation through the overlying atmosphere, which varies
over the course of the day due to the changing elevation of
the sun.

The key production reactions for OH in the stratosphere
and mesosphere are

H2O+O(1D) → 2OH (R1)

H2O+hν → OH+H (R2)

while the loss is determined mainly through

OH+HO2 → H2O+O2 (R3)

It is convenient to define the odd hydrogen family,
HOx = OH + HO2 + H, so that the production of HOx from
Reactions (R1) and (R2) is equivalent to the production of
OH, provided that the ratios OH/HO2 and OH/H remain
approximately constant for the timescales of interest (e.g.,
Brasseur and Solomon, 2005). If a photochemical steady
state is assumed for the production and loss of HOx from Re-
actions (R1–R3), and if equilibrium is assumed among the
HOx species OH, HO2, and H, then the concentration of hy-
droxyl is determined by the following proportionality (Canty
and Minschwaner, 2002)
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[OH] ∝
√

k1[H2O][O(1D)]+JH2O[H2O] (1)

wherek1 is the rate constant for Reaction (R1),JH2O is the
photodissociation rate for H2O (Reaction R2), and square
brackets indicate concentrations of chemical species. The
square root dependence arises from a quadratic loss term for
HOx by Reaction (R3). The concentration of O(1D) is di-
rectly proportional to the photodissociation rate for ozone in
the Hartley band,JO3.

[O(1D)] ∝ JO3[O3] (2)

We thus have two photodissociation rates of interest – ozone
and water vapor. A general expression for the photodissocia-
tion rate contains an exponential function of the secant of the
solar zenith angle (SZA),

J =

∫
ελIλσλexp[−τλsec(SZA)]dλ] (3)

where sec(SZA)= 1/cos(SZA), andε, I , σ , andτ are the
quantum yields, solar irradiances, absorption cross sections,
and vertical optical depths which are all generally functions
of wavelengthλ. Note that Eq. (3) is valid only for the direct
solar radiation and neglects diffuse irradiance from cloud,
aerosol, or Rayleigh scattering. This diffuse component is
generally small above 30 km and for wavelengths shorter
than 320 nm (Meier and Anderson, 1982), conditions that
are relevant to the production of HOx in the mid-to-upper
stratosphere and mesosphere. Photolysis calculations indi-
cate a typical impact of 5–15% due to scattering on O(1D)
production near 30 km, but this decreases rapidly with in-
creasing altitude and is less than 1% above 50 km. Based on
these considerations and on the combination of Eqs. (1–3),
the dependence of OH on SZA should assume the form of an
exponential function of sec(SZA).

In this paper we characterize the OH diurnal variation
using data from the Microwave Limb Sounder (MLS) on
the Aura satellite (Waters et al., 2006). The daytime MLS
OH measurements have been analyzed previously in com-
parisons with balloon and ground-based observations (e.g.
Canty et al., 2006; Wang et al., 2008), but the OH diur-
nal variations implied by the MLS measurements have not
been examined in any detail. The issue of diurnal variability
is also relevant to recent measurements of mesospheric OH
from satellite instruments using ultraviolet techniques (En-
glert et al., 2008; Gattinger et al., 2006).

Our objectives are to characterize OH diurnal variations
as seen in the extensive OH dataset from MLS that spans
a wide range of latitudes and time, and to use the observa-
tions to test our understanding of the radiative processes that
drive the photochemistry of OH. We develop a simple pa-
rameterization that is capable of describing the OH diurnal
variation as a function of solar zenith angle. Examination of
the altitude dependence in this parameterization permits the

interpretation of the observations as they relate to the pho-
todissociation rates for ozone and water vapor.

2 OH diurnal variation

We use MLS v2.2 OH mixing ratios from Northern Hemi-
sphere summer months (July–September), when the smallest
values of SZA (∼18◦) are accessed due to the Aura orbital
characteristics. The pressure range for scientifically useful
daytime OH data is 32 hPa to 0.0032 hPa, but at the two low-
ermost pressure levels, i.e. 32 and 21 hPa, a day-night cor-
rection is required and the precision is not as good as it is
at higher altitudes (Pickett et al., 2008). This analysis is re-
stricted to pressures between 10 hPa (∼30 km) and 0.02 hPa
(∼76 km), where systematic errors in v2.2 OH densities are
8% or less. The upper pressure limit at 0.02 hPa was chosen
to avoid complications from the increasingly long lifetime of
HOx species in the upper mesosphere (Allen et al., 1984),
which are generally not in photochemical steady state.

Figure 1 shows two vertical profiles of OH obtained from
averaging July–September 2006 MLS measurements. One
OH profile is an average for all measurements obtained
within a SZA range 20◦–25◦, while the other profile is an av-
erage over the SZA range 65◦–70◦. Each vertical profile was
retrieved using a standard optimal estimation method em-
ploying a priori profiles as described by Pickett et al. (2008).
As the contribution of the a priori profile to the retrieved pro-
file is very small (less than one percent during the daytime
and over the pressure range of interest), the averages shown
here contain a negligibly small influence from the a priori.

Both vertical profiles in Fig. 1 show an OH maximum
in the stratosphere near 2 hPa (∼43 km), a minimum in the
lower mesosphere at 0.15 hPa (∼62 km), and a secondary
maximum in the mesosphere near 0.03 hPa (∼73 km). The
stratospheric maximum arises from a peak in HOx produc-
tion near 43 km from Reaction (R1), while the mesospheric
maximum is driven primarily by production from Reac-
tion (R2). As expected on the basis of Eqs. (1–3), the overall
OH concentration is largest when the SZA is smallest.

It should be noted that the OH data shown in Fig. 1 are
mean vertical profiles constructed from∼2000 individual
profiles within each SZA range, and the individual profiles
may be spread over a large range in latitude, longitude, and
local time. For example, the latitude and local time ranges
for the 20◦–25◦ profile are 5–45◦ N, and 13:00–14:00, re-
spectively. The corresponding ranges for the 65◦–70◦ profile
are much larger, 65◦ S–80◦ N in latitude and 06:00–15:00 in
local time.

As discussed above, SZA is expected to be the dominant
influence in controlling OH concentrations, although from
Eqs. (1) and (2) there may also be important influences from
spatial or temporal variations in H2O and O3 concentrations.
In Fig. 1 and throughout the remainder of this analysis, we
filter the OH data at each pressure level by including only
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Figure 1:  Mean OH concentrations measured by MLS during the period July-

September 2006, obtained within SZA range of 20-25o (solid) and 65-70o (dotted curve),

plotted as a function of pressure (left axis) and approximate altitude(right axis).
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Fig. 1. Mean OH concentrations measured by MLS during the pe-
riod July–September 2006, obtained within SZA range of 20–25◦

(solid) and 65–70◦ (dotted curve), plotted as a function of pressure
(left axis) and approximate altitude(right axis).

those data for which the simultaneous MLS measurements
of H2O and O3 were within±20% of the mean value at that
pressure level. In this way, filtering by H2O and O3 helps
to isolate OH variations due to changing SZA. Assuming the
validity of the square-root dependence (Eq. 1), the±20% fil-
ter threshold corresponds to a maximum±10% OH variation
that may not be related to SZA effects.

Hydroxyl data for 2006 at the 2.15 hPa stratospheric max-
imum is shown in Fig. 2 as a function of solar zenith angle.
There are many more data points for the afternoon than for
the morning, which is related to the nature of the Aura satel-
lite orbit and to the H2O and O3 filtering processes (morning
data are primarily from the NH high latitudes where H2O
and O3 have a higher variability). We find that the morn-
ing averages are similar to afternoon averages at the same
SZA (i.e., a small diurnal asymmetry) at most of the levels
examined here, with typical morning-afternoon differences
of 2–3% throughout most of the stratosphere. A maximum
asymmetry of 6%, with afternoon larger than morning, oc-
curs near 0.02 hPa. Ground-based OH column measurements
also generally show larger column amounts in the afternoon
compared with the morning. Mills et al. (2003) found a 6%
asymmetry at 45◦ SZA (afternoon larger than morning) from
OH column measurements at the Table Mountain Facility,
which Li et al. (2005) showed was due to a∼30 min phase
lag about local noon arising from the finite lifetime of HOx in
the upper stratosphere and mesosphere. No seasonal differ-
ences were found in the diurnal asymmetry (Li et al., 2005).
On the other hand, Burnett et al. (1989) obtained a similar
mean OH column asymmetry favoring afternoon (7%) from
Fritz Peak Observatory, but they also found large seasonal
variations (∼27%) in the amplitude of the diurnal asymme-
try. During NH summer, the asymmetry favors afternoon by
3–5%.

Figure 2:  Hydroxyl concentrations measured by MLS (points) at the 2.15 hPa

pressure level during July-September 2006, as a function of solar zenith angle. Morning

values are shown to the left of the 0o line; afternoon values are to the right. Blue

diamonds (red x's) indicate mean values within 5o SZA bins for the morning (afternoon),

and the blue (red) curve shows the exponential function fit for morning (afternoon) as

discussed in the text..
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Fig. 2. Hydroxyl concentrations measured by MLS (points) at the
2.15 hPa pressure level during July–September 2006, as a function
of solar zenith angle. Morning values are shown to the left of the
0◦ line; afternoon values are to the right. Blue diamonds (red x’s)
indicate mean values within 5◦ SZA bins for the morning (after-
noon), and the blue (red) curve shows the exponential function fit
for morning (afternoon) as discussed in the text.

Figure 2 also displays mean values within 5◦ SZA bins,
along with a two-parameter fit using the equation

[OH] = [OH]oexp[−βsec(SZA)] (4)

The afternoon means in Fig. 2 are based on an average of
about 8000 data points; the standard deviation for each mean
is on the order of 5× 106 cm−3, which is about 25% of the
mean and is consistent with the precision of individual OH
measurements (∼10–15% at this level) plus the unfiltered
geophysical variability due to H2O and O3 (∼10%). The
fit parameters for Fig. 2 are [OH]o = 2.96× 107 cm−3 and
β = 0.30. Comparison of Eqs. (3) and (4) suggests thatβ is
related to the optical depth of the atmosphere at wavelengths
relevant for photolysis. In the following section we explore
the behavior ofβ in more detail.

3 OH solar zenith angle dependence: theβ parameter

The analysis discussed above was carried out at all levels be-
tween 10 hPa and 0.02 hPa, where the observed mean OH-
SZA relationship was fit using Eq. (4) within 5◦ SZA bins
between 15◦ and 75◦ (extension to larger SZA complicates
the analysis because an adequate treatment of the radiative
transfer would require the inclusion of full spherical geome-
try). Figure 3 shows results for four pressure levels: near the
bottom of the MLS OH profile at 6.81 hPa, the stratospheric
maximum at 2.15 hPa, the lower mesospheric minimum at
0.146 hPa, and the mesospheric maximum at 0.046 hPa. At
each level, there are differences in the overall OH amount
as seen in the vertical profiles of Fig. 1. In addition, OH

www.atmos-chem-phys.net/11/955/2011/ Atmos. Chem. Phys., 11, 955–962, 2011



958 K. Minschwaner et al.: Part 1: Diurnal variability

Figure 3:  Hydroxyl concentrations at 6.81 hPa (black x's), 2.15 hPa (blue squares),

0.146 hPa (green diamonds), and 0.046 hPa (red *s) obtained from full-day

(morning+afternoon) averages within 5o solar zenith angle bins.  Corresponding dashed

curves show exponential function fits as described in the text.
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Fig. 3. Hydroxyl concentrations at 6.81 hPa (black x’s), 2.15 hPa
(blue squares), 0.146 hPa (green diamonds), and 0.046 hPa (red *s)
obtained from full-day (morning + afternoon) averages within 5◦

solar zenith angle bins. Corresponding dashed curves show expo-
nential function fits as described in the text.

at each level displays a different dependence on SZA as re-
flected in the steepness of the fits (β values are 0.28, 0.30,
0.20, and 0.37 at 6.81, 2.15, 0.146, and 0.046 hPa, respec-
tively). Values of [OH]o were also obtained from the fits
at each pressure level. The altitude dependence of [OH]o
closely follows the vertical profile of OH at the smallest SZA
([OH]o = 1.4, 3.0, 0.9, and 1.8× 107 cm−3 at 6.81, 2.15,
0.146, and 0.046 hPa, respectively; compare with the solid
profile in Fig. 1). It should be noted, however, that these val-
ues in fact correspond to OH concentrations extrapolated to
zero optical depth, which are never fully realized in the atmo-
sphere. From Fig. 3 we find the goodness of fit is poorer at
0.046 hPa than at other levels, and in general the fits become
progressively worse above the stratopause due to higher mea-
surement noise and possible influences from the increasingly
longer lifetime of HOx species. Nevertheless, Fig. 3 demon-
strates that the simple two-parameter fit of Eq. (4) can cap-
ture the observed diurnal variability of OH to within±5%,
provided that H2O and O3 are held relatively fixed and that
SZA is restricted to values less than 75◦.

Figure 4 displays vertical profiles ofβ obtained from MLS
data for the NH summers of 2004 through 2008. The pro-
files show remarkable consistency from year to year between
10 and 0.1 hPa. Some of the year-to-year differences above
0.1 hPa are likely due to the increasing level of noise but may
also be influenced by real temporal differences in solar irra-
diances or geophysical variability. The shape of theβ profile
contains two local maxima similar to the OH concentration
profile shown in Fig. 1, although the maxima do not occur
at precisely the same pressure levels. Table 1 lists the 5-year
average values ofβ and [OH]o at each pressure level.

Also shown in Fig. 4 is the vertical profile ofβ derived
from OH values simulated using the SLIMCAT 3-D chemical

Table 1. Mean values of the OH-SZA fit parametersβ and [OH]o
from MLS measurements during the NH summers of 2004–2008.

[OH]o×107

Pressure (hPa) β (cm−3)

10.00 0.226 1.05
6.81 0.302 1.50
4.64 0.289 1.81
3.16 0.341 2.48
2.15 0.303 2.97
1.47 0.194 2.45
1.00 0.134 2.10
0.681 0.105 1.57
0.464 0.095 1.34
0.316 0.131 1.12
0.215 0.172 1.07
0.147 0.196 0.94
0.100 0.198 0.93
0.0464 0.310 1.79
0.0215 0.257 1.37

transport model (Chipperfield, 1999, 2006). This simulation
used a 2.8×2.8 horizontal resolution, with 50 vertical levels
from the surface to about 60 km altitude, with OH fields in-
terpolated to the MLS measurement spatial sampling grid at
the nearest available model time step (always within 15 min).
Derivation of the SLIMCAT OH diurnal variation was car-
ried out using the same H2O and O3 screening method de-
scribed previously for the MLS data.

The overall shape of the SLIMCATβ profile agrees with
MLS, and the mean difference between the two profiles is
6%. In the middle and upper stratosphere, there are large
gradients inβ which are related to the vertical distribution
of ozone. Here, maximum differences between SLIMCAT
and MLS can approach 30%. In the mesosphere, the SLIM-
CAT simulations are not suitable for a detailed comparison
because of the proximity to the model top and uncertainties
in the driving winds in that region. In the lower stratosphere,
the SLIMCAT value ofβ increases substantially and is in ex-
cellent agreement with the value obtained from a fit to the
OH data of Hanisco et al. (2001) as shown in Fig. 4. For
this data point, a mean pressure of 65 hPa was adopted for
the ER-2 aircraft measurements and the OH-SZA relation-
ship presented by Hanisco et al was fit to an accuracy of
±10% within the SZA range 15◦–75◦ using Eq. (4) and a
β value of 0.59. A similar result is obtained from a fit to OH
measurements analyzed by Salawitch et al. (1994).

4 Implications for photodissociation

The agreement between the SLIMCAT modeled and MLS
observed OHβ parameter indicates that the model can
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Figure 4:  Vertical profiles of the OH-SZA fit parameter β from MLS measurements

during the NH summer of 2004 (blue), 2005 (cyan), 2006 (green), 2007 (orange), and

2008 (red).  Dashed curve shows the corresponding β from simulations of the SLIMCAT

model for 2005.  Solid triangle indicates β value derived from a fit to the aircraft OH

measurements by Hanisco et al (2001).
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Fig. 4. Vertical profiles of the OH-SZA fit parameterβ from MLS
measurements during the NH summer of 2004 (blue), 2005 (cyan),
2006 (green), 2007 (orange), and 2008 (red). Dashed curve shows
the correspondingβ from simulations of the SLIMCAT model for
2005. Solid triangle indicatesβ value derived from a fit to the air-
craft OH measurements by Hanisco et al. (2001).

realistically simulate the radiative transfer processes and
photochemistry involved in the production of HOx. However,
certain aspects of the OH diurnal behavior raise questions
that deserve closer scrutiny. The physical processes that de-
termineβ at a given pressure level are not particularly clear,
nor is the reason thatβ varies between 0.1 and 0.3 in the
stratosphere and mesosphere. If the SZA dependence is in-
deed governed by the slant path absorption of the overlying
atmosphere, we might expect thatβ should monotonically in-
crease with increasing pressure (decreasing altitude), rather
than displaying two local maxima.

For the highly simplified case whereε = 1, andI , σ andτ

are independent ofλ, then

J = J∞exp[−τsec(SZA)] (5)

whereJ∞ is the photodissociation rate at the top of the atmo-
sphere. In this case, the OHβ parameter is directly related to
the optical depth for photodissociation,

β = 0.5τ (6)

where the factor of 0.5 arises from the square-root depen-
dence of OH onJ (Eq. 1). Now the optical depth is generally
a monotonic function of altitude,z, since it is calculated in
the general case by

τ(z) =

∞∫
z

σn(z)dz (7)

wheren(z) is the number density of absorbers. Thusτ (and
β) must increase monotonically with decreasing altitude (or
at least, remain constant), independent ofn(z) and in oppo-
sition to the behavior shown in Fig. 4.

The reasons for the complex altitude dependence of the
OH β are threefold. First, theβ profile in the mesosphere
is due primarily to HOx production from water vapor pho-
todissociation, while the profile in the stratosphere results
from HOx production initiated by ozone photodissociation.
Second, theβ profile for water photodissociation contains a
maximum near 70 km (0.05 hPa) around a transition from the
Lymanα to the O2 Schumann-Runge (S-R) spectral regions.
Third, theβ profile for ozone photodissociation has a local
maximum near 40 km (∼3–4 hPa) that is related to the shape
of the Hartley band ozone cross section, and to the fact that
the primary source of atmospheric opacity in this spectral re-
gion is ozone itself.

Figure 5 shows the average profile of OHβ from MLS NH
summer measurements (a mean of the five profiles shown in
Fig. 4), along with two calculated profiles ofβJ : one profile
is derived fromJH2O alone, and the other is based solely on
JO3. In these calculations,J -values were determined using
a radiative transfer model (Minschwaner et al., 1993) and a
midlatitude summer reference atmosphere (Anderson et al.,
1986). The solar zenith angle dependencies of

√
J (cf. Eq. 1)

were then fit to functions of exp[−βJ sec(SZA)]. As seen in
Fig. 5, eachβJ profile contains a local maximum that appears
to match up with the OHβ profile. This indicates that the
two local maxima in the OHβ profile are in fact related to
the individualβJ maxima forJH2O in the mesosphere and
JO3 in the stratosphere. We now examine in more detail why
the individualβJ are peaked about these maximum values in
the mesosphere and stratosphere.

Figure 6 shows two calculations for water vapor pho-
tolysis: one considering solely the Lymanα wavelengths
(∼121 nm) (Lewis et al., 1983), and one that includes both
Lymanα and S-R band photolysis (175–200 nm) (Siskind et
al., 1994). In both cases the atmospheric opacity is due pri-
marily to molecular oxygen, but the mean O2 optical depth
is larger for Lymanα than for S-R band wavelengths at the
same altitude. Similarly, the mean H2O cross section is larger
at Lymanα wavelengths. The net effect is that the photolysis
of H2O is dominated by Lymanα at high altitudes (smaller
τ) and by S-R band wavelengths at lower altitudes (larger
τ) (Nicolet, 1984). This shift in dominance between the
two spectral regions (Lymanα above 70 km, S-R band be-
low 70 km) leads to an inflection in theJH2O profiles and a
subsequent transition to a smaller mean optical depth (and
value ofβJ ). In fact this transition is driven by the changes
in optical depths of the atmosphere with altitude.

For ozone, the situation would appear simpler since there
is just one spectral region of interest; however, the fact that
ozone itself is the principal absorber adds complexity to
Eq. (3). In this case we have competing effects from two
terms in the wavelength integral of Eq. (3): the cross section
term σ and the transmission term exp[−τsec(SZA)]. Con-
sidering an idealized case where the cross section is repre-
sented by a triangular function in wavelength, it is easily
shown that theJ -value contains a subtle inflection at the level
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Revised Figure 5 for Minschwaner et al., ACP  

 

 

Fig. 5. Meanβ from 2004–2008 MLS OH NH summer measure-
ments (solid), along with derived values ofβ from ozone photodis-
sociation (dashed) and water vapor dissociation (dotted), assuming
a square-root dependence on HOx production as described in the
text.

where the mean optical depth is unity, i.e.,τ(z) = σN(z) ' 1,
whereN(z) is the vertical column abundance of absorbing
molecules. Above this level, photolysis is dominated by ab-
sorption at larger values ofσ (near the peak of the triangu-
lar function), whereas below this level, photolysis occurs at
smaller values ofσ (in the wings of the triangle). Corre-
spondingly, there is a shallow maximum in the gradient of
the SZA dependence at this level as the photodissociation
transitions from larger to smaller values ofσ . For the re-
sults shown in Fig. 5, the maximum inβJ for ozone occurs
near 3 hPa where the inputN(z) is 3.6×1017 cm−2 and the
mean ozone cross section is 3.1×10−18 cm2, giving a mean
optical depth of 1.1 which is in reasonable agreement with
the above discussion. Furthermore, the valueβJ = 0.4 at this
maximum (Fig. 5) would imply a mean optical depth of 0.8
(Eq. 6), which is also close to unity and in agreement with
this approximate description.

Figure 7 shows a comparison between the mean OHβ

from MLS and a simulated profile ofβ based on a linear
combination of the calculatedJH2O and JO3, raised to the
power of 0.45. The fact that a reduced exponent from 0.5 to
0.45 produces a better fit to the observedβ profile is most
likely related to deviations from the exact square root depen-
dence in Eq. (1) that arise from neglecting small contribu-
tions from (i) linear HOx loss terms, and (ii) HOx production
mechanisms other thanJH2O andJO3 (i.e., production mech-
anisms that are not photolysis driven and therefore tend to
flatten the OH diurnal variation).

The coefficients to the linear combination shown in Fig. 7
can be used to derive the relative contribution ofJH2O and
JO3 to the total production of odd hydrogen,PHOx , through-
out the stratosphere and mesospherePHOx ∝ FH2OJH2O +

(1−FH2O)JO3 whereFH2O is the relative fraction of HOx
production that is due to the photolysis of water vapor. Fig-

Figure 6:  Photodissociation rates for water vapor for Lyman α wavelengths (top) and

for Lyman α plus the S-R band spectral region (bottom).  In both plots, the solid, dashed,

and dotted curves correspond to SZA values of 0o, 30o and 60o, respectively.
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Fig. 6. Photodissociation rates for water vapor for Lymanα wave-
lengths (top) and for Lymanα plus the S-R band spectral region
(bottom). In both plots, the solid, dashed, and dotted curves corre-
spond to SZA values of 0◦, 30◦ and 60◦, respectively.

Figure 7:  Mean β from 2004-2008 MLS OH measurements (solid), along with the

best-fit β profile using a linear combination of ozone and water vapor photodissociation

raised to the power of 0.45 (dashed). The dotted curve shows the implied relative

contribution of water vapor photodissociation to the total production of HOx (FH2O, as

described in the text).
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Fig. 7. Meanβ from 2004–2008 MLS OH measurements (solid),
along with the best-fitβ profile using a linear combination of
ozone and water vapor photodissociation raised to the power of
0.45 (dashed). The dotted curve shows the implied relative con-
tribution of water vapor photodissociation to the total production of
HOx (FH2O, as described in the text).

ure 7 demonstrates that the observed OHβ profile is very
well simulated by a simple linear combination of two pho-
tolysis rates,JH2O andJO3, and that the relative contribution
of each photolysis process to HOx production is tightly con-
strained by the observations. Below about 1 hPa (∼47 km),
the production of HOx occurs primarily throughJO3 and
Reaction (R1), while above about 0.06 hPa (∼67 km), HOx
production is mainly fromJH2O (Reaction R2). Both of
these processes are important in the region between these two
levels.
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5 Conclusions

Diurnal variations of OH in the stratosphere and meso-
sphere as observed by MLS are well described by expo-
nential functions of the secant of SZA. This dependence
is remarkably consistent from year to year between 2004
and 2008, provided that H2O and O3 are approximately
constant and the SZA is restricted to angles less than 75◦.
The OH diurnal variation is fit to a function of the form
[OH] = [OH]oexp[−βsec(SZA)], where [OH]o and β are
altitude-dependent fit parameters. The vertical profile ofβ

is determined by the vertical profiles of photodissociation of
water vapor and ozone, and by their relative contributions to
the total production of HOx.

For water vapor, diurnal variations in the photodissocia-
tion rate are controlled by the penetration of the solar flux
in the Lymanα and S-R band spectral regions, with both
of these effects governed by the molecular oxygen column
abundance. A transition in water vapor photodissociation
from Lymanα to S-R band spectral regions between 70 and
75 km altitude is clearly demonstrated by the observed OH
variation with SZA.

For ozone, variations in the photodissociation rate with al-
titude and solar zenith angle are set primarily by the shape
of the Hartley band ozone cross section and by the fact that
atmospheric opacity is dominated by ozone absorption. This
leads to a local maximum in the stratosphere for the mean
optical depth relevant to ozone photolysis.

The overall shape of theβ profile can be used to quantify
the relative importance of the photodissociation of ozone and
water vapor to HOx production. Water vapor photolysis gen-
erally dominates above about 0.2 hPa (∼60 km), while ozone
photolysis is most important below this level.

The characterization of OH diurnal variability presented
here will be useful for future studies of hydroxyl and the use
of MLS OH for testing our understanding of key photochem-
ical processes in the stratosphere and mesosphere. In partic-
ular, the next phase of investigation will utilize these results
to better define the relationship between OH and the HOx
source gases H2O, O3, and CH4.
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