Name: \qquad
ID \#: \qquad

Physics 221 - Fall 2019 \star Homework \star Chapter 4 \& 5-A

1) Which of the following are approximately inertial reference frames (lets say have accelerations $<1 \% \mathrm{~g})$?
a) the classroom
b) a turbulence-free airplane that is traveling at constant speed and direction
c) a turbulence-free airplane that is traveling at constant speed but turning upward
d) a rapidly spinning park merry-go-round
e) a satellite orbiting the Sun at Mars' radius
2) Space-time conversions: What is:
a) one foot in nano-seconds?
b) one second in meters?
c) one year in meters

3) 4.7

4) 5.8
5) 5.10
6) You are standing still in a reference frame, S. An object has stationary coordinates, $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ $=(25,20,0)$ meters, as measured in a frame, S^{\prime}, moving at $u=0.6 c$, with respect to (your) S frame. Assume the coordinate systems align and have the same origin at $t=t^{\prime}=0$ and that u is in the x-direction.
a) Use the Lorentz transformations:

$$
\begin{aligned}
x^{\prime} & =\gamma(x-u t) \\
y^{\prime} & =y \\
z^{\prime} & =z \\
t^{\prime} & =\gamma\left(t-\frac{u x}{c^{2}}\right)
\end{aligned}
$$

to calculate the coordinates of the object measured in (your) S frame at time $t^{\prime}=$ $1.0 \times 10^{-5} \mathrm{~s}$ (measured in the S^{\prime} frame).
b) What is the S^{\prime} coordinates of the object at the same t^{\prime} as in a)?

