PHYSICS 570 – Master's of Science Teaching

"Electricity"
Lecture 12 – Resistance and
Resistivity

Instructor – Richard Sonnenfeld mpsonnenfeld@gmail.com 575-835-6434

Ohm's Law-Poiseuille's Law

Ohm's law for electric current flow and Poiseuille's law for the smooth flow of fluids are of the same form.

$$F = \frac{P_1 - P_2}{R}$$

Poiseuille's law for fluids

 $I = \frac{V_1 - V_2}{B}$

Ohm's law for electric circuits

<u>Index</u>

<u>DC</u> <u>Circuits</u>

Water analogy to DC circuits

Current Law and Flowrate

With continuous circulation around the pipe system, the volume flowrate must be the same at any cross-section of the pipe system.

Conservation of liquid

charge flowrate =
$$\frac{\text{coulombs}}{\text{second}}$$
 = amperes

The electric current is the charge flowrate and it must be the same at any cross-section of the circuit. This is a general principle called the current law.

Conservation of charge

Hydraulic Analogy

http://en.wikipedia.org/wiki/Hydraulic_analogy

Mass of water (M) Charge (Q)

Flow Rate (F) (dM/dt)

Current (I = dQ/dt)

Water pressure (p)

Voltage (V)

Volume of Tank (ν)

Capacitance (C)

Resistance of hose (R) Resistance (R)

How should resistance depend on length and area of a wire?

How should resistance depend on length and area of a wire?

A narrow hose passes less water at a certain pressure difference than a large hose.

$$R \simeq \frac{1}{A}$$

A long hose passes less water at a certain pressure than a short hose.

$$R \simeq L$$

How should resistance depend on length and area of a wire?

A "frictiony" (rough on the inside) hose should carry less water than a smooth hose. Let's call "rho" the friction coefficient.

$$R \simeq \rho$$

Now put it all together.

$$R = \rho \frac{L}{A}$$

BONUS - SKIP IF YOU WANT:

Microscopic view of resistance

"Free electron gas" model (also called Drude model) of a metal.

You can derive Ohm's law by assuming a metal is a box full of loose electrons that bump into "scattering centers" every T

trillionth of a second.

n charges/unit volume, each charge q

This volume contains charge $\Delta Q = nALq$.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

$$\Delta Q = n A \vec{v}_d \Delta t q$$

$$I = n A q \vec{v}_d = n A q a \tau = \frac{n A q^2 \tau}{m} E$$

n charges/unit volume, each charge q

This volume contains charge $\Delta Q = nALq$.

Copyright © 2007 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

BONUS - Deriving Ohm's law

$$I = n A q v_d = n A q a \tau = \frac{n A q^2 \tau}{m} E$$

$$I = \frac{n A q^2 \tau}{m} \frac{V}{L}$$

$$V = I \frac{m}{n q^2 \tau} \frac{L}{A} \qquad R = \frac{m}{n q^2 \tau} \frac{L}{A}$$

$$\rho = \frac{m}{n q^2 \tau}$$

BONUS - Deriving Ohm's law

$$\rho = \frac{m}{n q^2 \tau}$$

Come on back... let's see what we learned

rho – resistivity ... a property of each material.

m – Mass of an electron

tau – Time between collisions

q – Charge of an electron

n – number of electrons per volume

$$R = \frac{m}{nq^2\tau} \frac{L}{A} \qquad \rho = \frac{m}{nq^2\tau}$$

Resistivity of common materials

$$R = \rho \frac{L}{A}$$
 V=IR Ohm's Law

Copper: $\rho = 1.7 \times 10^{-8} \Omega \cdot m$

Tungsten: $\rho = 5.7 \times 10^{-8} \Omega \cdot m$

Nichrome: $\rho = 1.1 \times 10^{-6} \Omega \cdot m$

Sea Water: $\rho = 2.0 \times 10^{-1} \Omega \cdot m$

Silicon: $\rho = 6.4 \times 10^2 \Omega \cdot m$

Glass: $\rho = 1.0 \times 10^{13} \Omega \cdot m$

Applied Resistivity

$$R = \rho \frac{L}{A}$$
 Copper: $\rho = 1.7 \times 10^{-8} \Omega \cdot m$

What is resistance of a 50 foot extension cord made of 14-gauge wire. 14-gauge wire is about 2 mm in diameter.

(Homework 12-1)

Applied Resistivity

$$R = \rho \frac{L}{A}$$
 Nichrome: $\rho = 1.1 \times 10^{-6} \Omega \cdot m$

You have a 1000 Watt toaster with nichrome wire. The wire is 0.5 mm in diameter. How long is it?

(Homework 12-2)

Jumper cables

$$R = \rho \frac{L}{A}$$
 Copper: $\rho = 1.7 \times 10^{-8} \Omega \cdot m$

You need to start a car with 15 foot jumper cables and you can only afford a 2 -V voltage drop through the cables. What should be the diameter of the copper? (The engine needs 500 Amps to crank over)

(Homework 12-3)

