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Abstract9

Cross-isobaric flow and Ekman pumping are investigated in a frictionally decaying10

vortex in a stratified atmosphere. Consistent with early work by Holton and others, it is11

found that the stratification limits the vertical penetration of the secondary circulation12

driven by friction, resulting in a more rapid spin down than is conventionally assumed.13

As a result the cross-isobaric flow and Ekman pumping are weaker and shallower than14

classical calculations would lead one to believe. The effect becomes stronger as the vor-15

tex becomes smaller. For vortices with horizontal scales of several hundred kilometers16

or less, the reduction is particularly pronounced, which raises questions about the effi-17

cacy of Ekman pumping in forcing convection in such vortices. The theory as it stands18

is limited to weak, linear vortices in which geostrophic balance holds approximately,19

though extensions of the analytical theory to stronger vortices may be possible.20

1 Introduction21

The idea that deep atmospheric convection may be forced by frictionally induced convergence22

and lifting in the atmospheric boundary layer (Ekman pumping) is a nearly uncontested23

staple of modern meteorological theory. Its modern application in idealized models appears24

to have originated in Charney and Eliassen (1949) and was used in the context of tropical25

meteorology by Charney and Eliassen (1964), Ooyama (1969), Holton et al. (1971), Charney26

(1971, 1973), Holton (1974), Wang (1988), Wang and Rui (1990), etc.27

The simple, most widely used version of the model was challenged by Raymond and28

Herman (2012). In this version, Charney and Eliassen (1964) assumed that the secondary29

circulation arising from surface friction would extend through most or all of the troposphere,30

which means that the time constant for global spin down would be large compared to the31

time required to bring the boundary layer alone to a halt by friction. Holton (1965) pointed32
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out a potential flaw in this argument, noting that the upward penetration depth of the sec-33

ondary circulation is limited by the stratification of the atmosphere. In particular, for a34

horizontal scale L of the boundary layer flow, and hence of the secondary circulation, the35

vertical penetration depth of this circulation scales as Z = fL/N , where f is the Coriolis36

parameter and N is the Brunt-Väisälä frequency. Thus, for small to mesoscale disturbances37

in the tropics where N/f ≈ 300 and L ≤ 300 km, Z ≤ 1 km, or much less than the depth38

of the troposphere, contrary to the assumption of Charney and Eliassen (1964). As a con-39

sequence, the time for spin down is small enough that the steady state idealization behind40

the usual Ekman pumping formula may be invalid. Raymond and Herman (2012) showed41

in a linearized, slab-symmetric model that this effect has major consequences for Ekman42

pumping in weak (i.e., linear) disturbances in the tropics with horizontal scales less than a43

few hundred kilometers.44

Aside from possible non-linearity, two situations could invalidate the analysis of Raymond45

and Herman (2012). First, if the boundary layer flow is driven directly by some external46

mechanism, then it could be maintained as a steady flow in the face of the rapid spin down47

tendency produced by surface friction. An example of this is the case in which surface48

temperature gradients drive the boundary layer, as envisioned by Lindzen and Nigam (1987).49

Spatial variations in these gradients could then result in quasi-steady regions of convergence50

and divergence. Though friction plays an important role in determining the structure of such51

convergence patterns, it is not correct to ascribe the convergence to the friction per se, as52

the prime mover in this case is the pattern of surface temperature gradient.53

The second possibility is that deep convection operates in a manner that can be idealized54

by an effective reduction in the Brunt-Väisälä frequency of the atmosphere. This would result55

in an increase in the penetration depth of the secondary circulation and a corresponding56

increase in its spin down time. Yano and Emanuel (1991), Emanuel et al. (1994), and Neelin57
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and Yu (1994), among others, have postulated such a model, with a typical reduction in the58

Brunt-Väisälä frequency to approximately 30% of its dry value.59

In their idealized model, Emanuel et al. (1994) assumed that convective inhibition is neg-60

ligible over the tropical oceans. Actual measurements of convective inhibition over the ocean61

(e.g., Raymond et al., 2003) show convective inhibition values that are undoubtedly much less62

than they are over, say, the American high plains in the spring, but are nevertheless large63

enough to play a significant role in tropical convective dynamics. Furthermore, Raymond64

(1995) showed that surface heat and moisture fluxes were often more effective in reducing65

convective inhibition than lifting by the weak mesoscale vertical motions typical of oceanic66

regions. In such a situation, the initiation of deep convection by Ekman pumping may not67

occur at all, especially if the Ekman pumping is being weakened by the low-level spin down68

of the parent disturbance.69

One might argue that the low-level convergence produced by a pre-existing region of con-70

vection is a result of Ekman pumping; if the convection is in a statistically steady state, then71

the steady relationship between friction, pressure gradient, and Coriolis force characteristic72

of Ekman pumping must exist. However, this diagnostic relationship does not prove that the73

Ekman pumping “caused” the convection. If Ekman pumping in the absence of convection is74

insufficient to get the convection started in the first place, then the origin of the convection75

must be sought elsewhere.76

In modern numerical models of the atmosphere, no assumptions are made about the77

nature of frictionally-induced convergence, so the considerations raised here do not apply78

directly to the model results. However, they potentially apply to the interpretation of these79

results. Such interpretations may not matter to the producers of model forecasts, but they80

are important for understanding the physics of such models and attempts to make the models81

better. Thus, we believe that it is of practical as well as of theoretical importance to sort out82
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issues of causality in the frictional atmospheric boundary layer.83

As noted above, Raymond and Herman confined themselves to slab symmetry and to84

the frictional convergence in single spectral modes. The present paper extends this work85

to boundary layer flows in decaying, axisymmetric vortices. Axial symmetry is important86

because tropical cyclones are often idealized as being axisymmetric and frequently have Ek-87

man pumping, i.e., cloud base mass fluxes matched to frictionally converged mass, invoked88

as a forcing mechanism for convection, e.g., Charney and Eliassen (1964), Ooyama (1964,89

1969). Zhu et al. (2001) and Zehnder (2001) admit more complex convective closures in their90

minimal cyclone models, comparing pure Ekman pumping closures with schemes based on91

surface heat and moisture fluxes. Not surprisingly, significant differences in tropical cyclone92

development exist among their various alternatives.93

Mathematical tractability still limits us to the linear case, which imposes significant re-94

strictions on the direct comparison with tropical cyclone observations. Nevertheless, the95

results are interesting in their own right and can form the basis for future numerical calcu-96

lations not limited by the constraints of linearization.97

2 Model for spin down in axisymmetry98

The hydrostatic, rotating Boussinesq equations linearized about a state of rest in cylindrical99

coordinates (r, θ, z) for a stably stratified atmosphere in axisymmetry (∂/∂θ = 0) are100

∂u

∂t
− fv = −

∂π

∂r
+ Fr (1)

∂v

∂t
+ fu = Fθ (2)
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∂π

∂z
− b = 0 (3)

1

r

∂ru

∂r
+

∂w

∂z
= 0 (4)

∂b

∂t
+N2w = 0. (5)

The velocity vector in the radial, azimuthal and vertical directions is (u, v, w), the buoyancy101

perturbation is b, the kinematic pressure perturbation (the mean potential temperature times102

the Exner function) is π, f is the Coriolis parameter, and N is the Brunt-Väisälä frequency,103

assumed to be constant. Surface friction enters in the radial and azimuthal directions (Fr,104

Fθ) as a frictional force per unit mass, assumed to be linear in velocity and decreasing105

exponentially with height:106

Fr = −λus exp(−µz) (6)

Fθ = −λvs exp(−µz). (7)

The vector (us, vs) is the surface wind, λ = µCDU0 is the inverse of the spin down time scale,107

where CD ≈ 10−3 is the drag coefficient, U0 is a characteristic velocity, and µ−1 = hµ is the108

depth over which surface friction acts.109

The system of equations (1)-(5) can be combined into a differential equation for the time110

tendency of the kinematic pressure perturbation. Incorporating equations (6) and (7) leads111

to112
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(

∂2

∂t2
+ f 2

)

∂2πt

∂z2
+N2

1

r

∂

∂r

[

r

(

∂πt

∂r

)]

= (8)

−N2
1

r

∂

∂r

[

rλ

(

fvs +
∂us

∂t

)

exp(−µz)

]

,

where πt = ∂π/∂t. To solve equation (8), we use the initial condition that π(r, z) = πG(r)113

at all levels and assume that the surface wind (us, vs), surface pressure perturbation πs, and114

time tendency of kinematic pressure perturbation πt decay exponentially to zero with time115

according to us, vs, πs, πt ∼ exp(−σt), as in Raymond and Herman (2012). Substituting the116

above mentioned time dependence into (8) results in117

∂2πt

∂z2
+

N2

σ2 + f 2

1

r

∂

∂r

(

r
∂πt

∂r

)

= (9)

−
N2

σ2 + f 2

1

r

∂

∂r
[rλ (fvs − σus) exp(−µz)] .

Evaluating equations (1)-(2) at the surface and solving them for surface winds us and vs in118

terms of the surface pressure perturbation, we obtain:119

us = −
λ− σ

f 2 + (λ− σ)2
∂πs

∂r
(10)

vs =
f

f 2 + (λ− σ)2
∂πs

∂r
. (11)

Substituting these into (9), we find120
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∂2πt

∂z2
+

N2

σ2 + f 2

1

r

∂

∂r

(

r
∂πt

∂r

)

= (12)

−
N2λG(σ) exp(−µz)

σ2 + f 2

1

r

∂

∂r

(

r
∂πs

∂r

)

,

where121

G(σ) =
f 2 + σ(λ− σ)

f 2 + (λ− σ)2
. (13)

The solution to this equation can be written as the sum of homogeneous πht and in-122

homogeneous πit parts. For the homogeneous part we assume z dependence of the form123

πht ∝ exp(−mz), which allows the equation for πht to be written in the form124

∂2πht

∂r2
+

1

r

∂πht

∂r
+

(σ2 + f 2)m2

N2
πht = 0. (14)

This is an unscaled form of Bessel’s equation for the Bessel function of order zero. It has the125

solution126

πht ∝ J0(kr) (15)

where J0 is the zeroth order Bessel function and127

k =
(σ2 + f 2)1/2m

N
(16)

is the radial wavenumber k. Note that σ will be determined later.128

We write the full surface pressure distribution as a superposition of Bessel functions with129
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different radial wavenumbers k, i.e., in the form of an inverse Hankel transform130

πs =

ˆ

∞

0

D(k) exp(−σt)J0(kr)kdk (17)

with the expectation that this form will lead to an analytical solution to the full problem.131

The assumed time dependence exp(−σt) is included explicitly. Note that σ in general is a132

function of k. The inhomogeneous part of the solution for πt can therefore be written as an133

inverse Hankel transform as well,134

πit = exp(−µz)

ˆ

∞

0

C(k) exp(−σt)J0(kr)kdk, (18)

where C is proportional to D, but remains to be determined. The homogeneous part of the135

solution can then be written136

πht =

ˆ

∞

0

A(k) exp(−mz − σt)J0(kr)kdk (19)

where the inverse of the vertical penetration depth of secondary circulation m is obtained137

from (16):138

m(k) =
kN

(σ2 + f 2)1/2
. (20)

Putting these together results in139

πt(r, z) =

ˆ

∞

0

[C(k) exp(−µz − σt) + A(k) exp(−mz − σt)] J0(kr)kdk. (21)

We determine C(k) by noting that140

−σπs(r) = πt(r, 0), (22)
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which implies −σD(k) = C(k) + A(k), or141

C = −A− σD. (23)

Hence,142

πt =

ˆ

∞

0

[A(k) exp(−mz)− (A(k) + σD(k)) exp(−µz)] exp(−σt)J0(kr)kdk. (24)

Requiring zero buoyancy perturbation at the surface implies that143

(

∂πt

∂z

)

z=0

= 0, (25)

which yields A(k) = −σµD(k)/(µ−m) and hence144

πt =

ˆ

∞

0

σD(k)

[

m exp(−µz)− µ exp(−mz)

µ−m

]

exp(−σt)J0(kr)kdk. (26)

Plugging the solution (26) into the differential equation (12) leads to a dispersion relation145

that is identical to the one found using slab-symmetry in RH12:146

σ(k) =
λmG(σ)

m+ µ
. (27)

Finally, our solution for the kinematic pressure perturbation is obtained by integrating (26)147

in time and requiring that π = πs(r, 0) = πG(r) at t = 0:148

π =

ˆ

∞

0

D(k)

{

1−
m exp(−µz)− µ exp(−mz)

m− µ
[1− exp(−σt)]

}

J0(kr)kdk. (28)

10



The initial state of the flow is therefore unsheared in the vertical with arbitrary radial struc-149

ture. Setting z = 0 reduces this to the assumed surface pressure perturbation (17).150

The buoyancy and vertical velocity are obtained from (3) and (5):151

b =

ˆ

∞

0

D(k)
mµ [exp(−µz)− exp(−mz)]

m− µ
[1− exp(−σt)] J0(kr)kdk (29)

w = −

ˆ

∞

0

D(k)
σmµ [exp(−µz)− exp(−mz)]

N2 (m− µ)
exp(−σt)J0(kr)kdk. (30)

Using the identity152

1

r

∂rJ1(kr)

∂r
= kJ0(kr), (31)

where J1 is the Bessel function of order one, plus the mass continuity equation (4), we get153

an equation for the radial velocity component:154

u = −

ˆ

∞

0

D(k)
σmµ [µ exp(−µz)−m exp(−mz)]

N2 (m− µ)
exp(−σt)J1(kr)kdk. (32)

The azimuthal velocity component is obtained from (1):155

v =
1

f

[

λus exp(−µz) +
∂u

∂t
+

∂π

∂r

]

, (33)

where156

∂π

∂r
= −

ˆ

∞

0

D(k)

{

1−
m exp(−µz)− µ exp(−mz)

m− µ
[1− exp(−σt)]

}

J1(kr)k
2dk, (34)

and157

11



∂u

∂t
=

ˆ

∞

0

D(k)
σ2mµ [µ exp(−µz)−m exp(−mz)]

N2 (m− µ)
exp(−σt)J1(kr)dk. (35)

Equation (33) can be written explicitly with help of (32), (34), and (35), but is not shown158

here due to its complexity.159

3 Results and interpretation160

We first analyze the surface winds derived in the previous section by invoking a simplified161

form of the dispersion relation. We then present computations of the radial structure of the162

radial and vertical winds for a specified radial distribution of surface pressure, given this163

simplified analysis.164

3.1 Surface wind analysis165

Our primary circulation is a rotating disturbance on which frictionally induced cross-isobaric166

flow acts, creating a secondary circulation. Friction is assumed to have an exponential decay167

in z: Fr,θ ∝ exp(−z/hµ) where we call hµ = 1/µ the surface friction depth. The charac-168

teristics of secondary circulation of interest in this analysis are the penetration depth of the169

secondary circulation hm = 1/m and the cross-isobaric wind u.170

We simplify our system of equations by assuming a typical tropical boundary layer in a171

weakly disturbed region where winds are not too strong, i.e., λ ≪ f . We note that G(σ) ≤ 1172

for spin down times σ−1 greater than the rotational time scale f−1, which constrains σ ≤ λ173

for all positive real values of m.2 Since λ ≪ f , G(σ) ≈ 1, resulting in m(k) ≈ Nk/f and174

σ(k) ≈ λm/(m+µ). The penetration depth of our secondary circulation is then hm ≈ fL/N ,175

2Solving the transcendental system (13), (20), and (27) reveals 6 distinct complex pairs of σ(k) and m(k).
Only one pair is positive real with σ(k) ≤ λ for all values of k. The other pairs will be explored in a future
work.
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where L is the horizontal scale of the primary disturbance, L = 1/k. Thus, the secondary176

circulation depth increases in proportion to the horizontal scale of the disturbance.177

We now compare the surface radial wind us predicted by our model with that for the178

steady state surface wind uss arising from classical Ekman pumping analysis. From (10) and179

(11) we infer that180

us = −

(

λ− σ

f

)

vs = −
λ

f

(

µ

m+ µ

)

vs. (36)

Neglecting the time derivative in (2) corresponds to setting σ = 0 in (36), so the steady state181

radial velocity is just182

uss = −

(

λ

f

)

vss = −
λ

f 2 + λ2

∂πs

∂r
, (37)

where we have inferred the steady tangential surface wind vss by setting σ = 0 in (11):183

vss =
f

f 2 + λ2

∂πs

∂r
. (38)

Taking the ratio of us to uss and employing the definitions of hµ and hm results in184

us =
hm

hm + hµ
uss. (39)

Since Ekman pumping is related to the cross-isobaric flow u, we conclude that185

hµ ≪ hm ⇒ us ≈ uss ⇒ normal Ekman pumping (40)

hµ ≫ hm ⇒ us ≪ uss ⇒ suppressed Ekman pumping. (41)

Assuming that hm = fL/N with f = 3×10−5 s−1 and N = 10−2 s−1 and taking a plausible186

tropical boundary layer value of hµ = 600 m, we find that hm ≈ 300 m for L = 300 km while187
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hm ≈ 2900 km for L = 3000 km. Thus at the smaller scale, us ≈ (1/3)uss, while us ≈ uss for188

the larger scale. The steady state assumption for the cross-isobaric flow is therefore poor for189

scales smaller than several hundred kilometers.190

3.2 Comparison with steady state case aloft191

The steady state solutions for u and w aloft are relatively simple to compute from (2) and192

(4):193

usteady = uss exp(−µz) (42)
194

wsteady = −
1

µr

∂russ

∂r
(43)

where uss(r) is the steady surface radial wind defined above. However, the full solutions,195

as represented by (30) and (32) are non-local and require the specification of the surface196

pressure as a function of radius at the initial time t = 0, which we assume to have the form197

πs(r, 0) = πG(r) = −
p′

ρ0 [1 + (r/L)2]
(44)

where p′ is the initial pressure deficit in physical units at the center of the vortex, ρ0 is the198

air density, and L is the scaling radius scaling the pressure anomaly. Since πs = πG at time199

t = 0, we invert (17) to obtain D(k),200

D(k) =

ˆ

∞

0

πG(r)J0(kr)rdr, (45)

from which the full u(r, z, t) and w(r, z, t) may be computed using (30) and (32). The asso-201

ciated integrals are computed numerically and the validity of these computations is verified202

by showing that the inverse Hankel transform of a function followed by the corresponding203

forward transform returns the original function to acceptable accuracy.204
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We select values of p′ such that the maximum tangential wind at t = 0 and z = 0205

equals 5 m s−1 for values of L shown in table 1. The maximum wind occurs at radius206

r = rmax = L/31/2 and we let f = 3 × 10−5 s−1, λ = 8.3 × 10−6 s−1, and ρ0 = 1.2 kg m−3.207

The same simplified assumptions about the forms of m and σ used above are employed here.208

The third column in table 1 gives the ratio of radial Coriolis force fv to the centrifugal209

force v2/r at the radius of maximum winds. A large value of this ratio means that geostrophic210

balance in the tangential flow (as assumed here) is a good approximation. As table 1 shows,211

geostrophic balance is a good approximation for the assumed maximum tangential wind of212

5 m s−1 for L equal to 3000 km and 1000 km, marginal for 300 km, and poor for 100 km.213

The rightmost column shows the vertical scale hm of the secondary circulation.214

Figure 1 shows the actual radial surface winds for the decaying vortex and for the steady215

state approximation to these winds at time t = 0 for the cases listed in table 1. The actual216

radial winds are always less than the steady state approximation, with a significant deficit217

for the L = 300 km and L = 100 km cases. The radius of maximum radial inflow is also218

slightly greater for the actual winds in comparison to the steady state.219

Figure 2 shows the vertical velocity profile in the secondary circulation at a radius of220

r = L/10 for the cases of table 1. The vertical velocity for the decaying vortex is significantly221

less than that arising from the steady state assumption particularly at levels above the pen-222

etration depth of the secondary circulation in the decaying case. Furthermore, the elevation223

of maximum upward motion decreases drastically as L decreases, reflecting the decrease in224

the penetration depth hm.225
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4 Conclusions226

The idea of Ekman pumping as a forcing mechanism for convection in the tropics is deeply227

embedded in the conceptual structure of tropical meteorology. The classical formulation228

of Ekman pumping assumes that the free tropospheric secondary circulation induced by229

surface friction has a time scale for spin down that is long compared to the spin down230

time of an isolated boundary layer. As a consequence of this, the time derivatives in the231

horizontal components of the momentum equation are ignored in the boundary layer, resulting232

in the classical expression for the cross-isobaric flow there and the associated vertical motion233

(Ekman pumping).234

Holton (1965) showed that the vertical scale of the secondary circulation resulting from235

surface friction is limited by the stable stratification of the free troposphere, resulting in a236

free tropospheric spin down time much smaller than is normally assumed. This result implies237

that the momentum equation time derivatives cannot be ignored for a decaying vortex in the238

derivation of the cross-isobaric flow in the boundary layer. As a consequence, the classical239

Ekman pumping equation is incorrect and the vertical motion can actually be much smaller240

than estimated by classical theory.241

Raymond and Herman (2012) put numbers to this result for a zonal jet structure periodic242

in the meridional direction and found that the actual cross-isobaric flow and secondary cir-243

culation are much shallower and weaker than the classical result for lateral jet scales of order244

several hundred kilometers or less. We extend this analysis to axisymmetric vortices with245

arbitrary radial structure, with similar consequences. A particularly interesting result illus-246

trated here is that the vertical velocity is not only weaker than the classical Ekman pumping247

result, but it also exhibits a vertical scale that decreases with vortex size. This reflects the248

vertical scale of the secondary circulation.249
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These results are applicable, at least approximately, to weak tropical waves with radial250

scales of several hundred kilometers. They are technically limited to weak disturbances251

because of the linearization of the governing equations about a state of rest.252

We point out that the current results would be modified in the direction of the classical253

Ekman pumping result if the disturbances of interest were coupled to moist convection in254

a manner that results in a reduction of the effective Brunt-Väisälä frequency. However,255

we argue in the introduction of this paper that such a model for the interaction of moist256

convection with the boundary layer flow is oversimplified. Our experience in the tropics257

argues for a much looser relationship between weak, large-scale vertical motion and moist258

convection, a relationship in which it is easier to separate cause from effect. If convection259

exists in association with frictionally modulated convergence in the boundary layer, then the260

convection cannot be thought of as being caused by this convergence unless the convergence261

would have existed initially in the absence of the convection. Unless this is so, the convergence262

is more likely to be a consequence of the convection rather than vice versa, and what is naively263

perceived as convection being forced by Ekman pumping in fact often is not.264

This result is important, since it gives us a completely different conceptual picture of265

the forcing of moist convection in the tropics than exists in tropical meteorology today. An266

incorrect picture can lead us to causally incorrect choices in such things as the construction267

of cumulus parameterizations in large-scale atmospheric models.268

A technical limitation of the current results and those of Raymond and Herman (2012) is269

that associated with the linearization of the governing equations. Overcoming this limitation270

is needed to extend the results to more realistic situations such as the behavior of convection271

in a developing tropical cyclone.272

Another limitation is that the primary circulation (vortical or linear in structure) must273

actually spin down in the absence of deep convection. In other words, the circulation must274
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not have an external energy source exclusive of deep convection that keeps frictional dissipa-275

tion from spinning it down. An example in which such an energy source exists is a circulation276

driven by gradients in sea surface temperature. In such a circulation, boundary layer con-277

vergence modulated by friction may coexist with deep convection, but one cannot argue that278

friction causes this convection; the sea surface temperature gradient is the prime mover here.279
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L (km) p′ (hPa) (fv)/(v2/rmax) hm (km)
3000 8.40 10.4 9.0
1000 2.80 3.46 3.0
300 0.84 1.04 0.9
100 0.28 0.35 0.3

Table 1: Parameters used in the numerical computations and the resulting value of hm. L is
the scaling radius for the initial pressure distribution. The pressure deficit at the center of the
distribution p′ is chosen so that the maximum tangential wind is 5 m s−1. The next column
shows the ratio of Coriolis force to centrifugal force at the radius of maximum wind r =
rmax = L/31/2. The rightmost column is hm, the vertical scale of the secondary circulation.
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Figure 1: Surface radial velocity (solid) and corresponding steady state radial velocity (dot-
ted) profiles for the initial radial distributions of perturbation pressure given in table 1. An
inward velocity is taken as positive here.
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Figure 2: Vertical velocity (solid) and corresponding steady state vertical velocity (dotted)
profiles at time t = 0 and radius r = L/10 corresponding to the cases illustrated in figure 1.
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