
Chapter 4

Gravity Waves in Shear

4.1 Non-rotating shear flow
We now study the special case of gravity waves in a non-rotating, sheared environment.
Rotation introduces additional complexities in the already complex mathematics of shear,
and consideration of this case will be delayed. The case of sheared, non-rotating gravity
waves is quite interesting in its own right. In order to simplify the analysis, we use the
linearized Boussinesq equations with f = 0.

We assume an ambient horizontal wind in the x direction U which is a function of height
alone, so that the total x wind is u = U(z) + u′ where u′ is a small perturbation about this
base state. As rotation is neglected, we need not consider the y component of the wind, as it
is completely decoupled from the dynamics of a non-rotating wave exhibiting slab symmetry
in the x − z plane. We also assume that the buoyancy takes the form of a base state plus
perturbation

b = b0(z) + b′ =

ˆ
N2dz + b′ (4.1)

with a similar assumption for the kinematic pressure π = π0(z)+π
′. The base state kinematic

pressure π0 is in hydrostatic balance with b0. Note that the Brunt-Väisälä frequency N(z) is
not necessarily constant in this case. Since the vertical velocity has no base part, there is no
need to separate it into base plus perturbation.

The z dependence of U introduces complications into the linearization of the velocity:

v ·∇v = (Ui+ v′) ·∇(Ui+ v′) ≈
(
U
∂u′

∂x
+
dU

dz
w, U

∂w

∂x

)
. (4.2)

The advection term in the buoyancy equation is somewhat simpler:

v ·∇b = (Ui+ v′) ·∇(b0(z) + b′) ≈ U
∂b′

∂x
+N2w. (4.3)
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(Verify these expansions to your satisfaction.) The resulting linearized governing equations
are

∂u′

∂t
+ U

∂u′

∂x
+
dU

dz
w +

∂π′

∂x
= 0 (4.4)

∂w

∂t
+ U

∂w

∂x
+
∂π′

∂z
− b′ = 0 (4.5)

∂u′

∂x
+
∂w

∂z
= 0 (4.6)

∂b′

∂t
+ U

∂b′

∂x
+N2w = 0. (4.7)

Assuming that all dependent variables exhibit x and t dependence in the form of a plane
wave exp [i(kx− ωt)], some algebra produces a single, second-order differential equation in
w

∂2w

∂z2
+m2w = 0, (4.8)

where
m2(z) =

1

c− U
d2U

dz2
+

N2

(c− U)2
− k2 (4.9)

is the square of the spatially varying vertical wavenumber m, and where c = ω/k. This is
called the Taylor-Goldstein equation. The fact that m depends on z makes this equation
analytically soluble in exact form in only a few special cases.

4.2 WKB approximation
Asm depends on z, analytic solutions to equation (4.8) are only possible in special cases. The
WKB method provides approximate solutions which are valid in regions where the fractional
change in m over a vertical wavelength 2π/m is small. In this method we try solutions of
the form

w(z) = A(z) exp

(
±i
ˆ
mdz

)
(4.10)

where A(z) is determined by substitution into equation (4.8), which yields after some ma-
nipulation

d2A

dz2
± i

(
2m

dA

dz
+
dm

dz
A

)
= 0. (4.11)

If A and m vary significantly on a vertical scale of Z, then the first term in this equation
scales as A/Z2, whereas the second and third scale as mA/Z. The ratio of the latter to the
former is

mA/Z

A/Z2
= mZ. (4.12)
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Z � 2π/m is the assumed condition for the validity of the WKB approximation, which
(neglecting the numerical factor 2π) is equivalent to mZ � 1, i.e., the second and third
terms of equation (4.11) greatly exceed the first term. Dropping the first term results in a
simple solution for equation (4.11):

A =
C

m1/2
(4.13)

where C is a constant. Thus, we have

w(x, z, t) =
C

m1/2
exp

[
±i
ˆ
mdz + i(kx− ωt)

]
. (4.14)

By convention, if m2 is real and positive, we take the positive root for m, which implies
an upward trace velocity for the wave. If m2 is real and negative, a positive imaginary part
of m means that w decays in amplitude as z increases, whereas if the imaginary part of m is
negative, w decays downward. The WKB approximation fails where m2 changes sign. This
typically occurs where |U − c| and k2 are both large, i.e., for short horizontal wavelengths
and large differences between the horizontal trace speed and the wind. This type of failure is
related to the existence of reflections of upward-moving waves into downward-moving waves
and vice versa. WKB does not handle wave reflection correctly. Surprisingly, WKB yields an
adequate solution in many cases near the singularity which occurs in the Taylor-Goldstein
equation when |U − c| = 0. We discuss this case later.

4.3 Non-interaction theorem (part 1)
Eliassen and Palm (1961) showed that the vertical flux of horizontal momentum by steady,
vertically propagating gravity waves is constant with height. This so-called non-interaction
theorem is an important predecessor to a large class of theorems applicable to a broad range
of atmospheric disturbances. In the limited case of non-rotating gravity waves it is relatively
easy to prove and provides significant insight into the dynamics of these waves.

The vertical flux of the x component of the momentum due to gravity waves in the
Boussinesq approximation is

Fp =
ρR
L

ˆ L

0

Re(ũ′)Re(w̃)dx (4.15)

where ρR is the usual constant reference density, Re indicates the real part of a complex
function, and L = 2π/k is the horizontal wavelength of the gravity wave in question. The
dependent variables with the tilde indicate the inclusion of the full space and time depen-
dence, i.e., ũ′ = u′(z) exp [i(kx− ωt)] and w̃ = w(z) exp [i(kx− ωt)]. Using the fact that
Re(w̃) = (w̃+ w̃∗)/2, etc., where the superscripted asterisk indicates the complex conjugate,
and carrying out the integration, we find that

Fp =
ρR
4

(u′w∗ + u′∗w) . (4.16)
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To proceed further, we use the continuity equation (4.6), which tells us that

u =
i

k

∂w

∂z
. (4.17)

Substitution into equation (4.16) results in

Fp =
iρR
4k

(
∂w

∂z
w∗ − w∂w

∗

∂z

)
. (4.18)

Finally, differentiation with respect to z leads to

∂Fp

∂z
=
iρR
4k

(
∂2w

∂z2
w∗ +

∂w

∂z

∂w∗

∂z
− ∂w

∂z

∂w∗

∂z
− w∂

2w∗

∂z2

)
=
iρR
4k

(
−m2ww∗ +m∗2ww∗

)
=
iρR
4k

(
m∗2 −m2

)
|w|2. (4.19)

If m2 is real, then we conclude that ∂Fp/∂z = 0.
This is called the non-interaction theorem because steady, non-damped waves pass verti-

cally through a sheared environment without extracting or depositing momentum. However,
they remove momentum from levels where they are formed (by whatever mechanism) and
deposit it where they are absorbed. A similar but simpler analysis shows that steady, non-
damped gravity waves transport no buoyancy.

4.4 Shear instability
If the wind shear is sufficiently strong, the ambient profile may break down into an instability.
An easy way to get a physical feel for this process is to consider the energetics of a parcel
displaced vertically from its equilibrium level. The energy required per unit mass to lift a
parcel from from its equilibrium level a distance δz is just the integrated work against the
negative buoyancy force, or N2δz2/2. However, in an environment with environmental shear
dU/dz, the parcel will acquire a velocity relative to the flow at its new level of (dU/dz)δz,
assuming that its absolute velocity is unchanged in the lifting process. The kinetic energy
relative to the flow at its new level, which perhaps might be available to effect the lifting,
is (dU/dz)2δz2/2. The ratio of the energy required for lifting to the kinetic energy made
available by the lifting is a dimensionless number called the Richardson number:

J =
N2

(dU/dz)2
. (4.20)

If Ri < 1, the available kinetic energy exceeds the potential energy which needs to be over-
come, and the lifting might happen spontaneously.
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This is a very crude argument. However, Miles (1961) and Howard (1961) developed a
necessary (but not sufficient) condition for instability to occur. (See also Kundu 1990.) Their
argument, which unsurprisingly is called the Miles-Howard theorem, follows from the Taylor-
Goldstein equation (4.8). It is first necessary to make a change of variables w = (c−U)1/2χ.
Introducing subscript notation for vertical derivatives, e.g., Uz = dU/dz, Uzz = d2U/dz2,
etc., we find that

wzz = (c− U)1/2χzz − (c− U)−1/2Uzχz −
(

U2
z

4(c− U)3/2
+

Uzz

2(c− U)1/2

)
χ. (4.21)

Substituting this and equation (4.9) in equation (4.8), multiplying by (c−U)1/2, and simpli-
fying results in

[(c− U)χz]z +

[
N2 − U2

z /4

c− U
+
Uzz

2
− k2(c− U)

]
χ = 0 (4.22)

where we have combined the two terms (c − U)χzz − Uzχz to form the first term of this
equation.

The next step is to multiply by the complex conjugate of χ and integrate vertically over
the domain, assuming that w, and hence χ, is zero at the top and bottom of the domain.
This is necessary in order to perform an integration by parts on the first term:

ˆ
χ∗ [(c− U)χz]z dz = −

ˆ
(c− U)|χz|2dz. (4.23)

The result is

−
ˆ

(c− U)|χz|2dz +
ˆ [

(c∗ − U)N
2 − U2

z /4

|c− U |2
+
Uzz

2
− k2(c− U)

]
|χ|2dz = 0, (4.24)

where we have also written (c− U)−1 = (c∗ − U)/|c− U |2.
Finally, we take the imaginary part of equation (4.24), splitting c into real and imaginary

parts, c = cr + ici, and noting that c∗ = cr − ici:

−ci
ˆ [
|χz|2 +

(
N2 − U2

z /4

|c− U |2
+ k2

)
|χ|2

]
dz = 0. (4.25)

If N2 ≥ U2
z /4, then the integral is positive definite and we must have ci = 0. Instability exists

when the imaginary part of ω is positive, resulting in exponential growth in the amplitude
of a disturbance. This is precluded if ci = 0. Hence no instability can occur if N2 ≥ U2

z /4.
Expressing this in terms of the Richardson number, we find that

J =
N2

U2
z

<
1

4
(4.26)
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somewhere in the vertical domain is necessary (but not sufficient) for instability to occur. In
this case the integrand in equation (4.25) is not positive definite and a positive value for the
integral cannot be guaranteed.

In practice, the Richardson number must be less than 1/4 in a region where cr − U is
small in order to amplify the effect of this region of negative integrand on the integration.
A level where cr = U is called a critical level, and it is clear from this analysis that critical
levels are likely to play an important role in unstable modes of a sheared mean flow.
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4.6 Questions and problems
1. Derive equation (4.8) from equations (4.4)-(4.7).

2. Prove that steady, non-damped gravity waves transport no buoyancy vertically.

3. Show by direct substitution in equation (4.16) that the WKB solutions obey the non-
interaction theorem.

4. Use the results of your solution for upward-propagating gravity waves from the last
chapter to determine the upward flux of horizontal momentum in these waves. Where
does this momentum come from?

5. Consider a parallel, stratified shear flow with N constant and U = Sz with the shear
S constant. Note that the Richardson number in this case is J = N2/S2.
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(a) Obtain solutions to the Taylor-Goldstein equation (4.8) for the limit in which k2
is small enough to be ignored. Don’t worry about boundary conditions. Hint: Try
w = (c− Sz)X where X is to be determined.

(b) Determine how the character of the solutions change as the Richardson number
changes from J > 1/4 to J < 1/4.

(c) Compare your solutions to WKB solutions to this problem. When are they ap-
proximately the same?


