
Chapter 10

Baroclinic Instability

Baroclinic instability is the most important mechanism for generating weather in the middle
latitudes. It also plays a crucial role in the meridional transport of properties in the atmo-
sphere. In this chapter we first discuss an example of baroclinic instability, that developed
by Eady (1949). This instability mode arises from the interaction of upper and lower surface
Rossby modes. Following our discussion of the Eady model, we develop an interpretation of
surface potential temperature gradients as gradients in a thin sheet of potential vorticity at
a fixed potential temperature level near the surface. This interpretation shows that surface
Rossby waves are waves on a potential temperature gradient, just as internal Rossby waves.
We then introduce two general theorems pertinent to small amplitude disturbances on a zon-
ally symmetric flow in the atmosphere, the Charney-Stern necessary condition for baroclinic
instability and the non-interaction theorem for low Rossby number disturbances.

10.1 Eady problem
We now discuss the classic example of baroclinic instability developed by Eady (1949). Eady
analyzed instabilities in a flow on an f -plane with uniform zonal shear between upper and
lower bounding surfaces, using the Boussinesq approximation to the full fluid equations. The
upper lid has an effect similar to that of the tropopause.

We analyze the Eady problem using quasi-geostrophic theory in Boussinesq isentropic
coordinates on an f -plane. Figure 10.1 shows the base state for the Eady problem in geometric
and isentropic coordinates. In the former presentation the isentropic surfaces slope up to the
north, which reflects the horizontal buoyancy gradient related to the wind shear shown in
the right panel. In isentropic coordinates the isentropic surfaces are horizontal and the upper
and lower lids slope down to the north.

The zonally symmetric part of the Montgomery potential is taken to be

MZ = −fΛ(θ − θM)y (10.1)
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Figure 10.1: Base state for Eady problem. The left and center panels show the upper and
lower lids (solid lines) and the isentropic surfaces (dashed lines) in the y−z plane in geometric
and isentropic coordinates respectively. The right panel shows the ambient zonal wind.

where θM is the mid-point potential temperature as illustrated in figure 10.1. The ambient
zonal wind is

U(θ) = − 1

f

∂MZ

∂y
= Λ(θ − θM). (10.2)

Since we shall need the ambient winds at the upper and lower reference levels θT0 and θB0,
we define UT = Λ∆θ and UB = −Λ∆θ where ∆θ = θT0 − θM = θM − θB0. The shear of the
mean wind in geometric coordinates is S = ∂U/∂z = (∂U/∂θ)(∂θ/∂z) = ΛΓR. The potential
vorticity associated with the mean sheared flow is

qZ = q0

(
1

f 2
∇2
hMZ +

Γ2
R

N2

∂2MZ

∂θ2

)
= 0. (10.3)

Thus, the ambient potential vorticity in the interior of the flow is constant and equal to q0,
and no potential vorticity anomalies can be created by advection. The potential vorticity
advection equation dq/dt = 0 is thus trivially satisfied, and the dynamics of the system
is carried by the advection of potential temperature on the upper and lower lids. Surface
Rossby waves associated with these lids interact to produce barotropic instability in analogy
to baroclinic instability in the shallow water system.

The part of the Montgomery potential associated with any disturbance that develops is
M ′. Since no interior potential vorticity anomalies exist in this case, M ′ satisfies

1

f 2
∇2
hM

′ +
Γ2
R

N2
R

∂2M ′

∂θ2
= 0. (10.4)

Upper and lower boundary conditions on M∗ = MZ + M ′ in the case of no terrain (Φ∗T =
Φ∗B = 0) (

∂M∗

∂θ

)
T0

=
N2
R

Γ2
R

θ∗T

(
∂M∗

∂θ

)
B0

=
N2
R

Γ2
R

θ∗B (10.5)
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are evaluated on levels θT0 and θB0 respectively (see figure 10.1). We remind ourselves that
θ∗T = θT − θT0 and θ∗B = θB − θB0.

The governing equations for θ∗T and θ∗B are

∂θ∗T
∂t

+ ugT0
∂θ∗T
∂x

+ vgT0
∂θ∗T
∂y

= 0 (10.6)

∂θ∗B
∂t

+ ugB0
∂θ∗B
∂x

+ vgB0
∂θ∗B
∂y

= 0. (10.7)

Inserting the geostrophic winds at the upper and lower reference levels, eliminating θ∗T and
θ∗B using equation (10.5), splitting M∗ into the zonal part MZ and the disturbance part M ′,
and finally linearizing in primed quantities yields

∂

∂t

(
∂M ′

∂θ

)
T0

+ Λ∆θ
∂

∂x

(
∂M ′

∂θ

)
T0

− Λ
∂M ′

T0

∂x
= 0 (10.8)

and
∂

∂t

(
∂M ′

∂θ

)
B0

− Λ∆θ
∂

∂x

(
∂M ′

∂θ

)
B0

− Λ
∂M ′

B0

∂x
= 0. (10.9)

Between equations (10.4), (10.8), and (10.9), our governing equations for the Eady problem
are complete.

Let us try a solution of the form

M ′ = A exp [i(kx− ωt) +m(θ − θM)] +B exp [i(kx− ωt)−m(θ − θM)] . (10.10)

Substitution in equation (10.4) tells us that

m =
kNR

fΓR
, (10.11)

while equations (10.8) and (10.9) result in(
(c+ Λ∆θ + Λ/m)e−m∆θ −(c+ Λ∆θ − Λ/m)em∆θ

(c− Λ∆θ + Λ/m)em∆θ −(c− Λ∆θ − Λ/m)e−m∆θ

)(
A
B

)
= 0. (10.12)

Setting the determinant of the matrix to zero to get the dispersion relation yields

c = ±(UT − UB)

[(
1

κ
− 1

2

)2

− coth(κ)− 1

κ

]1/2

(10.13)

after some algebra, where we have recognized that 2Λ∆θ = UT − UB and have defined the
dimensionless horizontal wavenumber

κ = 2m∆θ = Lk (10.14)
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Figure 10.2: Plot of the non-dimensional growth rate ν vs. the non-dimensional wavenumber
κ for the Eady mode.
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Figure 10.3: Filled color plot of η′ and contour plot of vg for the Eady model with κ = 2 and
E = 0.2. Solid contours show positive values of vg (toward the north) while dashed contours
show negative values. Zero vg is shown by the thick solid line.
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where L = 2NR∆θ/(fΓR). Taking NR = 10−2 s−1, ∆θ = 25 K, f = 10−4 s−1, and ΓR =
5× 10−3 K m−1, then L = 103 km.

Since coth(κ) > 1 for positive κ, equation (10.13) is guaranteed to produce imaginary
values of c for a range of κ values around κ = 2. Thus, we have an unstable disturbance
which grows in amplitude with time. This is the simplest example of baroclinic instability.
We define the dimensionless growth rate ν as a function of κ

ν =
κcI

UT − UB
=
{
−(1− κ/2)2 + κ[coth(κ)− 1]

}1/2 (10.15)

and plot the results in figure 10.2. The growth rate has a short-wavelength cutoff at κ ≈ 2.4
and peaks near κ ≈ 1.6. There is no long-wavelength cutoff in the Eady mode.

As in the barotropic instability mode studied in the previous chapter, symmetry implies
that |A| = |B|. Setting A = E exp(iφ) and B = E exp(−iφ) where E is real, equation (10.12)
informs us that

A

B
= exp(2iφ) = −κ− 2 + iν

κ+ 2 + iν
exp(κ), (10.16)

from which we conclude that

φ =
1

2
arctan

(
4ν

κ2 + ν2 − 4

)
. (10.17)

Figure 10.3 shows M ′ and v′g, the patterns of Montgomery potential and meridional
geostrophic wind associated with a disturbance with wavenumber κ = 2 in the Eady model.
The maximum amplitudes of these variables occur adjacent to the upper and lower bound-
aries, reflecting their character as a superposition of upper and lower surface waves. The
upper wave is lagged to the west of the lower wave, so constant phase surfaces tilt to the
west with height. As expected from geostrophic dynamics, southerly winds occur to the east
of low values of M ′ and northerly winds occur to the west. The downward tilt to the north
of constant geopotential surfaces in isentropic coordinates (or the upward tilt of isentropic
surfaces; see figure 10.1) allows slantwise ascent of parcels with positive buoyancy, as occurs
with symmetric instability. This in fact is one of the primary sources of energy for baroclinic
instability.

10.2 Alternate interpretation of boundary conditions
We now show that a thin layer of potential vorticity just above the θ = θB0 surface can mimic
the effect of a potential temperature perturbation at that surface. Imagine that we add such
a layer to q∗, resulting in a total flow-associated potential vorticity

q∗T = q0IB(x, y, t)δ(θ − θB0 − ε) + q∗ (10.18)
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where ε is tiny, and set the potential temperature perturbation θ∗B0 to zero at θB0. The
diagnostic equation for M∗ in the Boussinesq case becomes

1

f 2
0

∇2
hM

∗ +
Γ2
R

N2
R

∂2M∗

∂θ2
=
q∗T
q0

. (10.19)

Integrating equation (10.19) in θ over a thin layer surrounding θB0 + ε results in

Γ2
R

N2
R

[(
∂M∗

∂θ

)
+

−
(
∂M∗

∂θ

)
−

]
= IB. (10.20)

The “+” and “−” indicate the evaluation of ∂M∗/∂θ just above and below the level θ = θB0+ε.
Since the potential temperature perturbation at the actual surface is zero, equation (10.5)
tells us that (∂M∗/∂θ)− = 0. However, if we set

IB = θ∗B, (10.21)

then (∂M∗/∂θ)+ is equal to (∂M∗/∂θ)B0 and the new surface boundary condition is(
∂M∗

∂θ

)
B0

=
N2
R

Γ2
R

IB. (10.22)

Note that a layer of potential vorticity at the surface is subject to the same governing
equation as the surface potential temperature perturbation θ∗B:

∂IB
∂t

+ vgB0 ·∇hIB = 0. (10.23)

Thus, the time evolution of the system can be considered to be contained totally within the
potential vorticity conservation equation without recourse to a separate potential temperature
equation at the boundary.

In the case of an upper lid, as occurs in the Eady problem, (∂M/∂θ)+ = 0 and (∂M/∂θ)−
is identified with (∂M∗/∂θ)T0 in equation (10.5). The relationship between the upper bound-
ary potential temperature perturbation θ∗T and the layer potential vorticity IT therefore has
a minus sign,

IT = −θ∗T , (10.24)

and the upper boundary condition is(
∂M∗

∂θ

)
T0

= −N
2
R

Γ2
R

IT . (10.25)

In the Eady problem the potential temperature at both the upper and lower boundaries
decreases with increasing y. Thus, the lower boundary potential vorticity decreases to the
north while the potential vorticity at the upper boundary increases to the north.
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10.3 Rossby waves and the mean flow
Jeffreys (1933) was perhaps the first to point out that midlatitude cyclones are likely to play
an important role in determining the general circulation of the atmosphere. This is a complex
problem of long-standing interest, and it is one which is not completely solved to this day.
There are two aspects to this problem, determining the conditions under which dynamic
instability (primarily barotropic and baroclinic instability) give rise to cyclone waves, and
determining the effect of these waves on the mean zonal flow. Here we can only touch on
this subject, outlining some of the most basic ideas.

We first develop the linearized quasi-geostrophic governing equations in Boussinesq isen-
tropic coordinates for an arbitrary (but balanced) zonal-mean flow pattern on a beta-plane.
We start by assuming that

M =M0(θ) +MZ(y, θ) +M ′ = M0(θ) +M∗

σ =σ0 + σZ + σ′ = σ0 + σ∗

qg =q0(1 + βy/f0) + qZ(y, θ) + q′ = q0(1 + βy/f0) + q∗

Φ =Φ0(θ) + ΦZ(y, θ) + Φ′ = Φ0(θ) + Φ∗

ug =U(y, θ) + u′g

vg =v′g (10.26)

where a subscripted zero indicates the base state of a variable, the subscripted Z indicates
the zonally symmetric part associated with the flow, and the prime indicates the non-zonally-
symmetric disturbance. A superscripted asterisk indicates the zonal and perturbation parts
taken together. The base state potential vorticity q0 = f0/σ0 is constant, as is the base state
density σ0. Geostrophic balance tells us that

U = − 1

f0

∂MZ

∂y
(10.27)

while the relationship between Montgomery potential and geopotential yields

ΦZ = −θR
∂MZ

∂θ
. (10.28)

Cross-differentiation of equations (10.27) and (10.28) and elimination of MZ gives us the
thermal wind relationship for the zonal flow

1

θR

∂ΦZ

∂y
= f0

∂U

∂θ
. (10.29)

while the definition of potential vorticity gives us

qZ
q0

= − 1

f0

∂U

∂y
− Γ2

R

θRN2
R

∂ΦZ

∂θ
=

1

f 2
0

∂2MZ

∂y2
+

Γ2
R

N2
R

∂2MZ

∂θ2
. (10.30)
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The disturbance Montgomery potential satisfies

1

f 2
0

∇2
hM

′ +
Γ2
R

N2
R

∂2M ′

∂θ2
=
q′

q0

. (10.31)

The linearized potential vorticity advection equation is(
∂

∂t
+ U

∂

∂x

)(
∇2
hM

′ +
∂2M ′

∂ξ2

)
+

(
∂Q

∂y

)(
∂M ′

∂x

)
= 0 (10.32)

where
Q = f0 (βy/f0 + qZ/q0) (10.33)

is proportional to the part of the potential vorticity associated with the beta effect and the
zonal mean flow. In equation (10.32), q′/q0 has been eliminated using equation (10.31). As
usual, the velocity has been replaced by the geostrophic velocity and the notation has been
simplified by defining a scaled potential temperature ξ which has the units of length stretched
by NR/f0:

dθ =
f0ΓR
NR

dξ. (10.34)

Unlike the shallow water case, there is no natural length scale analogous to the Rossby radius
in the continuously stratified situation, so we do not non-dimensionalize the general governing
equations. A Rossby radius appears only after the vertical scale of the problem is set.

We now assume a plane wave structure in the zonal direction exp [i(kx− ωt)] and further
define the trace speed in the x direction c = ω/k. Substituting into equation (10.32) results
in

∂2M ′

∂y2
+
∂2M ′

∂ξ2
− µ2M ′ = 0 (10.35)

where
µ2 =

1

c− U
∂Q

∂y
+ k2. (10.36)

This is the analog to the Taylor-Goldstein equation for small, quasi-geostrophic perturbations
on a zonally symmetric flow. Note that in terms of the scaled potential temperature ξ, the
relationship between perturbation Montgomery potential M ′ and isentropic density σ′ is

∂2M ′

∂ξ2
= −f 2

0

σ′

σ0

(10.37)

while the relationship between M ′ and the perturbation geopotential Φ′ is

∂M ′

∂ξ
= − f0ΓR

NRθR
Φ′. (10.38)

These follow from the unscaled relations given in the chapter on quasi-geostrophic theory.
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Figure 10.4: The orientation of the ∂Q/∂y = 0 line determines whether the resulting insta-
bility is barotropic or baroclinic.

10.3.1 Conditions for instability

The quasi-geostrophic equivalent to the Miles-Howard theorem is the Charney-Stern theorem
(Charney and Stern 1962). We multiply equation (10.35) by the complex conjugate of the
Montgomery potential perturbation M ′∗ and integrate in y and ξ, noting first that

ˆ ∞
−∞

M ′∗∂
2M ′

∂y2
dy =

ˆ ∞
−∞

[
∂

∂y

(
M ′∗∂M

′

∂y

)
−
∣∣∣∣∂M ′

∂y

∣∣∣∣2
]
dy (10.39)

and ˆ T

B

M ′∗∂
2M ′

∂ξ2
dξ =

ˆ T

B

[
∂

∂ξ

(
M ′∗∂M

′

∂ξ

)
−
∣∣∣∣∂M ′

∂ξ

∣∣∣∣2
]
dξ (10.40)

where B and T are the values of ξ corresponding to θB0 and θT0. We chose the limits of
integration for these two equations such that the first terms on the right sides vanish. In the
y integration one must extend the limits into quiescent regions in which M ′ vanishes. We
have chosen to carry the integration all the way to ±∞. For the ξ integration the artifice
of replacing surface potential temperature anomalies by surface potential vorticity anomalies
causes the first integral on the right to vanish as the actual surface boundary condition in
this case is ∂M ′/∂θ ∝ ∂M ′/∂ξ = 0. If there is an upper lid, a similar condition exists there.
Otherwise, the integral has to be carried to high enough altitudes that M ′ = 0.

The result is
ˆ ∞
−∞

dy

ˆ T

B

dξ

[∣∣∣∣∂M ′

∂y

∣∣∣∣2 +

∣∣∣∣∂M ′

∂ξ

∣∣∣∣2 +

(
1

c− U
∂Q

∂y
+ k2

)
|M ′|2

]
= 0, (10.41)

which has imaginary part

cI

ˆ ∞
−∞

dy

ˆ T

B

dξ

(
1

|c− U |2
∂Q

∂y

)
|M ′|2 = 0. (10.42)
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In order for equation (10.42) to be satisfied with non-zero M ′, either cI = 0, in which case
there is no instability, or ∂Q/∂y must change sign within the domain of integration, making
the integrand non-positive-definite. The latter condition is thus a necessary condition for
instability to exist.

Figure 10.4 shows the difference between barotropic and baroclinic instability. In the
former, the line of zero ∂Q/∂y is vertical whereas in the latter it is horizontal. Intermediate
cases give rise to mixed barotropic-baroclinic instability. In the case of the Eady mode,
∂Q/∂y = 0 throughout the interior of the domain. Positive ∂Q/∂y exists in the upper
boundary sheet of potential vorticity, whereas negative ∂Q/∂y exists in the lower boundary
sheet.

10.3.2 Non-interaction theorem (part 2)

We now develop the quasi-geostrophic equivalent of the non-interaction theorem discussed
earlier in the context of non-rotating, stratified, shear flows. Since knowing the distribution
of potential vorticity allows us to determine everything about the flow in quasi-geostrophic
theory, it is useful to examine the zonally averaged meridional eddy flux of potential vorticity.
Using the same techniques as applied to part 1 of the non-interaction theorem, we assume
variables have the form of a single mode with x and t dependence exp [i(kx− ωt)] and write
the meridional flux of potential vorticity as

Fq =
1

L

ˆ L

0

Re(vg)Re(q′)dx =
1

4

[
vgq
′∗ + v∗gq

′] (10.43)

where a superscripted asterisk indicates a complex conjugate and L is initially the zonal
wavelength of the disturbance being analyzed, but is subject to reinterpretation below. Us-
ing equation (10.31) for the potential vorticity perturbation q′ as well as the coordinate
transformation implied by equation (10.34) we find that

q′ =
q0

f 2
0

(
∂2M ′

∂y2
+
∂2M ′

∂ξ2
− k2M ′

)
=

q0M
′

f 2
0 (c− U)

(10.44)

where the last step employs equations (10.35) and (10.36). Combining this with the definition
of vg

vg =
1

f0

∂M ′

∂x
(10.45)

results in
Fq =

ikq0

f 3
0

[
1

c∗ − U
− 1

c− U

]
|M ′|2 = −kq0cI |M ′|2

f 3
0 |c− U |2

(10.46)

where as before cI is the imaginary part of the phase speed c of the disturbance.
We conclude from equation (10.46) that the meridional flux of potential vorticity due to a

linear disturbance which is neither growing nor decaying is zero. Thus, stable Rossby waves
propagate meridionally without affecting the mean state of the atmosphere.
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The above analysis is only valid for a single Fourier mode in the zonal direction as it
stands. However, a superposition of two Fourier modes with wavenumbers k1 and k2 results
in cross terms between the modes with x dependence of exp [i(k1 − k2)x] in equation (10.43).
Increasing L so that it is an integer number of both wavelengths λ1 = 2π/k1 and λ2 = 2π/k2

causes these cross terms to disappear. By extension, multiple modes with wavenumbers kj
may be superimposed if the integration range is set to the circumference of the globe. In this
case equation (10.46) becomes

Fq = − q0

4f 3
0

∑
j

kjcjI |M ′
j|2

|cj − U |2
(10.47)

where the subscript j labels the modes over which the sum is made. The conclusion is the
same as for a single mode; if all modes have zero growth rate, the total meridional flux of
potential vorticity due to eddies is zero.
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10.5 Questions and problems
1. Compute the meridional flux of potential vorticity for the Eady mode. Hint: Treat

the upper and lower surface potential temperature distributions as potential vorticity
distributions. Comment on the meridional heat transport of the Eady mode.

2. Using the theory developed in section 10.3, find the dispersion relation and the spatial
form of u′g, vg, andM ′ for a Rossby wave with assumed structure exp [i(kx+ ly +mξ − ωt)].
Assume that U = 0 but that β 6= 0. Do not apply upper or lower boundary conditions.
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3. Compute the meridional flux of potential vorticity for the above Rossby wave.

4. Redo the non-interaction theorem without substituting equations (10.31) and (10.34)
into equation (10.44) for the potential vorticity perturbation.

(a) Show that Fq can be written in the form

Fq = −∂Ey
∂y
− ∂Eξ

∂ξ

and determine the components of the vector E = (Ey, Eξ). This vector is called
the Eliassen-Palm flux. The Eliassen-Palm flux will only be non-zero when there
is wave growth or decay or nonlinear behavior.

(b) Further show that Ey is proportional to the meridional flux of zonal momentum
and that Eξ is proportional to the meridional flux of geopotential.

(c) Compute the Eliassen-Palm flux for the Eady mode.


