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Chapter 1 -- Introduction

Continuum mechanics is a theory of the kinematics and dynamics of material bodies

in the limit in which matter can be assumed to be infinitely subdividable. Scientists have

long struggled with the question as to whether matter consisted ultimately of an aggregate

of indivisible ‘‘atoms’’, or whether any small parcel of material could be subdivided

indefinitely into smaller and smaller pieces. As we all now realize, ordinary matter does

indeed consist of atoms. However, far from being indivisible, these atoms split into a

staggering array of other particles under sufficient application of energy -- indeed, much

of modern physics is the study of the structure of atoms and their constituent particles.

Previous to the advent of quantum mechanics and the associated experimental tech-

niques for studying atoms, physicists tried to understand every aspect of the behavior of

matter and energy in terms of continuum mechanics. For instance, attempts were made to

characterize electromagnetic waves as mechanical vibrations in an unseen medium called

the ‘‘luminiferous ether’’, just as sound waves were known to be vibrations in ordinary

matter. We now know that such attempts were misguided. However, the mathematical

and physical techniques that were developed over the years to deal with continuous distri-

butions of matter have proven immensely useful in the solution of many practical prob-

lems on the macroscopic scale. Such techniques typically work when the scale of a phe-

nomenon is much greater than the separation between the constituent atoms of the mate-

rial under consideration. They are therefore of great interest to geophysicists, astrophysi-

cists, and other types of applied physicists, as well as to applied mathematicians and engi-

neers. Indeed, the modern development of the subject has been largely taken over by

mathematicians and engineers.

This textbook develops the subject of continuum mechanics from the point of view

of an applied physicist with interests in geophysics and astrophysics. The subject of con-

tinuum mechanics is a vast one, and the above interests have guided the selection of

material. However, the basic subjects covered, i. e., elastic bodies and Newtonian fluids,

transcend the author’s particular interests, and are central to the full spectrum of applica-

tions of continuum mechanics.

The key mathematical concept in continuum mechanics is the tensor -- in no other

area of physics do tensors appear so naturally and ubiquitously. The main problem for
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the student is to connect the rather abstract mathematical notion of a tensor to the physics

of continuous media. To this end, the properties of tensors are developed in parallel with

the physical notions of stress and strain.

Certain mathematical preparation beyond elementary calculus is needed to master

continuum mechanics. The student should be familiar with vector analysis, including the

laws of Gauss and Stokes, and should have some understanding of matrix operations. In

addition, experience with the solution of elementary differential equations, such as the

harmonic oscillator equation, is essential.
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Chapter 2 -- The Notion of Stress

Atoms and molecules in liquids and solids are subject to two types of forces, namely

long range forces such as gravity, and short range, molecular bonding forces. In this

chapter we consider how short range forces are treated in continuum mechanics. This

gives rise to the notion of stress, a concept that is central to the subject. In order to under-

stand stress, we further need to develop the mathematical idea of a tensor. This we

believe is best done in coincidence with the development of the physical concepts.

Conceptual Model from Atomic Physics

Let us first consider a simple conceptual model of a crystalline solid in two dimen-

sions. Imagine a regular array of atoms or molecules tied together by springs as illus-

trated in figure 2.1. The springs simulate the intermolecular forces, and a state of equilib-

rium exists when none of the springs are stretched or compressed from their equilibrium

lengths. We are interested in the force acting across the line AB, which is just the vector

sum of the spring forces for those springs that cross AB. The nature of this force is most

easily appreciated by concentrating on just those springs attached to a single molecule,

indicated by the square in figure 2.1. Six springs, a, b, c, d, e, and f are attached to this

molecule, but only two of those, a and b, cross AB, and are therefore of current interest.

Figure 2.2 shows what happens when the molecule is displaced small amounts in

various directions with no displacements allowed in connecting molecules. If it is dis-

placed parallel to AB, spring a is compressed and spring b is stretched, and the net force

is such as to push the molecule back to its original position. This is called a shear dis-

placement. Similar restoring forces occur when the subject molecule is moved toward

(compression) or away from (extension) AB.

The point to be recognized here is that the direction of the restoring force is related

to the direction in which the molecule is displaced, and is unrelated to the orientation of

the line AB except insofar as the choice of AB determines which springs need to be con-

sidered in the calculation.

The restoring force is, of course, only part of the force acting on the molecule,

because we have not included the forces due to the other springs. Indeed, if we compute
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Figure 2.1.  Conceptual model of a crystalline solid.

instead the force across the line CD in figure 2.1, we may get quite different values for

the partial restoring force associated with a given displacement of the molecule, because

now springs a, e, and f must be considered. In fact, the net force acting on the molecule

across the line AB is almost completely independent of the force acting across CD if dis-

placements of the connected molecules are allowed. The meaning of ‘‘almost’’ in this

case will be explored more fully later in this chapter.

The sum of all the spring forces acting across AB is called the stress force across

that line. In three dimensions one would consider the stress force acting across a surface.
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Figure 2.2.  Relation between displacement and force on a molecule.

In continuum mechanics we are interested in the collective behavior of many atoms or

molecules, and consider the stress force across a surface to be the integral over the sur-

face of a stress force per unit area, or a traction, rather than a sum over discrete molecular

bonds. The traction may vary with position on the surface, but this only makes sense if
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the distance over which significant variation takes place is large compared to molecular

spacings. This is because the traction at a particular point is actually the sum of all the

spring forces through the surface within some distance of that point, divided by the area

on the surface encompassed by this sampling distance. The sampling distance must be

much larger than the molecular spacing for this averaging process to make sense, yet

much smaller than the distance over which traction varies significantly. It is this assumed

scale separation that makes continuum mechanics a significant simplification over explic-

itly computing the motion of every molecule in a complex system.

Traction Across Arbitrary Planes

We now drop our conceptual crutch of a crystalline solid, and think of matter as

being continuously distributed in space. We know, of course, that this is an approxima-

tion based on an assumed separation of scales between molecular structure and the phe-

nomenon of interest. The traction, or stress force per unit area across a surface, becomes

the central focus of our attention, irrespective of how it is related to phenomena at the

molecular level.

We now introduce a convention that is universal to modern continuum mechanics,

but is perhaps somewhat counterintuitive. Imagine a plane surface separating two

regions, labeled 1 and 2 in figure 2.3. The orientation of the surface is defined by a unit

normal vector n, shown as pointing into region 2 in the figure. However, a unit vector

pointing in the opposite direction could just as well have defined the orientation of the

surface. We take advantage of this ambiguity to ascribe additional significance to the

direction of n: If n pierces region 2, then the traction across the surface (illustrated by the

vector t in the figure) is considered to be the force per unit area exerted by region 2 on

region 1.  Thus, the pierced region does the acting.

The above arguments indicate that the traction vector generally varies even at a sin-

gle point as the orientation of the dividing surface is varied. Thus, an infinite number of

different tractions are possible at a single point, depending on the orientation of the sur-

face. However, it seems implausible that all these different tractions could be indepen-

dent, and in fact it is not true. It turns out that once the traction is specified at a particular

point across three mutually perpendicular surfaces (in three dimensions), the traction

across any other surface that passes through that point can be computed. This
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Figure 2.3. Illustration of the traction (t) and unit normal (n) vectors relative to

a surface cutting a continuous medium. The traction is the force per unit area

of region 2 acting on region 1.

computation leads naturally to the definition of a mathematical entity called a tensor --

the stress tensor in this case.

To prove this point, we turn to Newton’s second law. Imagine a chunk of matter in

the form of a tetrahedron obtained by cutting off the corner of a cube, as shown in figure

2.4. The Cartesian axes coincide with the edges of the cube, and outward unit normal

vectors −i, −j, −k, and n are shown for each of the four surfaces, along with their respec-

tive areas, Ax, Ay, Az, and A. If we assume that the tetrahedron is at rest and ignore long

range forces, then the total stress force on the body, which is the sum of the stress forces

acting across each surface must be zero:

t x Ax + ty Ay + tzAz + tA = 0, (2.1)

where the traction vectors tx, etc., are labeled by the surfaces on which they act. The x

surface is that surface normal to the x axis, etc. (Note in particular that the subscripts do
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Figure 2.4. Definition sketch of tetrahedron used to derive the traction across

an arbitrary surface from the tractions across three mutually perpendicular sur-

faces.

not indicate components of the traction vector in this case!) In setting the stress force

across each surface to the product of the traction vector and the area, we have assumed

that the traction varies insignificantly over the surface. As we will ultimately let the

dimensions of the tetrahedron approach zero, this is not a limiting assumption.

The areas of each face of the tetrahedron are related to the respective unit normals.

This may be appreciated by viewing the tetrahedron along one of its oblique edges, as

illustrated in figure 2.5. Here we see the tetrahedron from a point on a line defined by the

intersection of the y − z plane and the oblique surface. The x and oblique faces thus
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Figure 2.5.  View of tetrahedron of figure 2.4 along view line.

appear edge-on at an angle θx to each other. Since the area Ax is just the projection of

the area A onto the y − z plane, we have Ax/A = cosθx = i ⋅ n. Similar relationships hold

for the y and z surfaces. Solving equation (2.1) for the traction t across the oblique face

of the tetrahedron and eliminating the areas yields

t = − tx(i ⋅ n) − t y(j ⋅ n) − t z(k ⋅ n). (2.2)

This is precisely the desired result, as it shows how to compute the traction across an

arbitrarily oriented surface, assuming that the tractions are known across the three, mutu-

ally perpendicular coordinate planes. This oblique traction is defined across a surface

that is not precisely collocated with the intersection of the coordinate planes, but since we

have assumed that tractions don’t vary much with position, this is not a problem.
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We have derived equation (2.2) with the restrictions that no long range forces are

acting and that the tetrahedron is in static equilibrium. If the tetrahedron is allowed to be

very small, it turns out that even these restrictions can be lifted. This can be seen by esti-

mating the relative importance of various terms in the full expression of Newton’s second

law applied to the tetrahedron:

Σ Fstress+ Fbody = ma. (2.3)

The first term is everything included in equation (2.1), and for fixed values of the trac-

tions, scales as L2, where L is a typical linear dimension of the tetrahedron, such as its

diameter. What we mean here is that irrespective of the actual value of this term in the

equation, if the tetrahedron is reduced in linear dimension by a factor of 2, the value of

the term is reduced by a factor of 22 = 4. This is because the stress term contains areas,

which are typically the products of two lengths. If the diameter of the tetrahedron is

reduced by a factor of two without changing its shape, then these lengths will also be

reduced by this factor.

The acceleration term on the right side of equation (2.3) contains the mass m of the

tetrahedron, which is the average mass density times the volume. Assuming that the mass

density varies smoothly (if at all) through the material medium, we can see that this term

scales with L3, due to the presence of the volume. Thus, as L is allowed to become very

small, the ratio of the stress to the acceleration term goes as something/L. Irrespective of

what ‘‘something’’ is, this ratio will eventually become much larger than unity as L gets

smaller. Therefore, for very small L, the acceleration term can be safely ignored relative

to the stress term in this calculation.

A similar argument can be made about long range forces, symbolized here as Fbody.

This is because such forces typically also scale with the mass of the body in question.

Thus, for very small tetrahedrons, the previously imposed limitations are no longer appli-

cable, and equation (2.2) holds even in the presence of long range forces and accelera-

tions. A side effect of letting L become very small is that spatial variations in tractions

are then allowed as long as the variation is reasonably smooth.

The above analysis is valid whether the tetrahedron is a real object or simply part of

a larger material body set off by imaginary planes defining the tetrahedron’s faces. In the

former case, the tractions may be thought of as externally applied to the body by, say,

some type of laboratory apparatus. In the latter case, the tractions represent internal
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forces in which one part of a material body acts on another. In this case it is profitable to

think of the state of stress of the body as encompassing the values of the tractions on

three mutually perpendicular surfaces and their variations from place to place in the body.

A Mathematical Diversion

This book will not present the formal theory of Cartesian tensors. Instead, it will try

to show the physical motivation behind the mathematical concept, and give some notions

as to how tensors are used in derivations and computations. In order to ease the way, we

start with the notion of a dyadic product. This relates tensors back to the more familiar

concept of vectors.

Examination of equation (2.2) tempts one to rewrite it in a more efficient manner by

factoring out the common unit normal n:

t = ( − txi − t y j − t zk) ⋅ n. (2.4)

The resulting combinations such as txi are called dyadic products of vectors. They are

distinguished from dot and cross products by the absence of their respective operators, (⋅)

and (×). The meaning of an arbitrary dyadic product ab of two vectors, a and b, only

emerges when the dot product is taken with another vector, c:

(ab) ⋅ c = a(b ⋅ c); c ⋅ (ab) = (c ⋅ a)b. (2.5)

In other words, the dyadic ab yields a number times the vector a when dotted on the right

by another vector, and a number times the vector b when dotted on the left. Notice that

the results of dotting from the left and the right are different. Moreover, ab is not the

same as ba because the results of taking dot products from each side are different.

A dyadic is a special case of a tensor. Sums of dyadics are also tensors. The quan-

tity in parentheses in equation (2.4) is called the stress tensor, and we denote it in this

book as T. Thus, a shorthand way of representing equation (2.4) is

t = T ⋅ n, (2.6)

which means, ‘‘if you dot the stress tensor T on the right with a unit vector n, you get the

traction across the surface normal to n’’. Note that tx, ty, and tz are respectively recov-

ered by substituting − i, − j, and − k for n in equation (2.6).
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Since T (or any other tensor) is a sum of dyadics, the most general T may be

obtained by expanding all the tractions forming the individual dyadics into component

form, e. g., tx = txxi + t yxj + t zxk, where the first and second subscripts of each t respec-

tively represent the Cartesian component of the traction vector and the surface across

which the traction acts. Thus, tyz is the y component of the traction across the z surface,

i. e., that surface defined by the x − y plane. Therefore,

T = Txxii + T xyij . . . , (2.7)

where Txx = − txx, etc. We infer that the most general tensor in three dimensions has

three coordinate planes times three components each, or nine independent components.

Equation (2.7) has a structure reminiscent of the component representation of a vec-

tor, e. g., a = axi + ay j + azk. Just as the vector is the sum of the products of components

ax, ay, and az with their respective unit vectors i, j, and k, the stress tensor is the sum of

the products of the components Txx, Txy, . . ., with the unit dyadics ii, ij. . ..

There are two advantages in inventing the notion of a tensor and rewriting equation

(2.2) as (2.6). First, factoring out n separates elements related to the definition of the sur-

face across which the traction t is defined from those independent of this particular sur-

face. The latter elements make up the stress tensor, which may be thought of as repre-

senting the state of stress of the material. Second, even though T is constructed from

tractions defined across particular coordinate surfaces, it correctly suggests that tensors,

like vectors, can be thought of as entities that have meaning independent of one’s choice

of coordinate system. Thus, T may be resolved into components in any coordinate sys-

tem, and furthermore, the resulting components are the components of the corresponding

tractions across the coordinate surfaces of that coordinate system. This is easily verified

by applying equation (2.6) with n set respectively to the basis vectors of the new system.

Equations like (2.6) may be represented in two alternate forms of notation, namely

component notation and matrices. Each type of notation has its value. Dyadic notation is

compact and independent of coordinate system, component notation is somewhat more

general, and matrix notation facilitates computations. Therefore, all forms, as well as

ways of converting between them must be mastered.

In component notation, equations like (2.6) are expressed as sets of component

equations expressed in compact form. Referring back to its original form, given by equa-

tion (2.2), we see that it can be represented on a component by component basis as the
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three equations

tx = Txxnx + Txyny + Txznz

ty = Tyxnx + Tyyny + Tyznz (2.8)

tz = Tzxnx + Tzyny + Tzznz

where txx has been replaced by − Txx, etc. (Don’t confuse tx, ty, and tz, which are the

components of t, the traction across the oblique plane, with tx, etc., which are the traction

vectors across the coordinate axis planes in figure 2.4.) Replacing x, y, and z in the sub-

scripts by 1, 2, and 3, the above three equations can be represented as

ti =
3

j=0
Σ Tij n j , i = 1, 2, 3. (2.9)

Notice that the index j occurs twice on the right side of the above equation. This is a

general characteristic of this kind of equation, and arises from the fact that operations

involving sums are invariably dot products, which are the sums of the products of the

components of two vector-like objects. On the other hand, the free index i only occurs

once in each term. This gives us a way to distinguish whether a given index is summed,

and therefore allows us to simplify the notation by omitting the summation sign:

ti = Tij n j . (2.10)

This is generally called the Einstein convention, and is only broken a few places in con-

tinuum mechanics.  Such exceptions will be explicitly noted so as to avoid confusion.

It is important to remember that equations like (2.10) are scalar equations, so that

Tij n j = n jTij . This is unlike dyadic notation, where in general T ⋅ n ≠ n ⋅ T. The latter

dyadic expression would correspond to njT ji (= T ji n j ) in component notation. The trick

to converting rapidly between the two forms of notation is to order the variables in com-

ponent notation so that like summed indices are adjacent. Thus, the product of two ten-

sors in component notation, written as Sij Tki could be rewritten as TkiSij , since order

doesn’t matter in component expressions. It is then clear that this is equivalent to T ⋅ S in

dyadic notation.

Expressions like Sij Tik present a problem here, as no reordering will bring the two

instances of the summed index i adjacent to each other. We solve this problem by intro-

ducing the notion of the transpose of a tensor:
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T t
ij ≡ T ji . (2.11)

The transpose involves nothing more than interchanging Txy with Tyx, etc. Thus, the

above troublesome expression can be rewritten as Stji Tik , which is equivalent to the

dyadic St ⋅ T.

With component notation, more complicated expressions than discussed above can

easily be handled. For instance, one might imagine something like Aijk = BiC jk or

Rijkl = Aij Bkl + Cik D jl . Notice that there are no implied summations in either of these

expressions. Quantities like Aijk and Rijkl with three or more indices are also called ten-

sors, but are distinguished from each other by the notion of order, which is simply the

number of indices. Thus, Aijk is a third order tensor and Rijkl is a fourth order tensor.

The stress tensor Tij is a second order tensor. By extension we can call vectors first order

tensors and scalars zeroth order tensors. The dot product of two vectors ai and bi in com-

ponent notation is simply ai bi . Similarly, the dyadic product is ai b j . Notice that in the

first expression there are no free indices, as is to be expected of a scalar. The second has

two, since it is a second order tensor.

The trace of a second order tensor is simply the scalar obtained by summing the

diagonal components, i. e., Tii = Txx + Tyy + Tzz. In terms of dyadic notation, the trace

operation corresponds to turning dyadic products into dot products, i. e., Tr(ab) = a ⋅ b.

As an example, the trace of the stress tensor is related to the pressure: p = − Tii /3. This

corresponds to the common definition of pressure in a fluid at rest of the outward normal

force per unit area exerted by the fluid on its surroundings. In the case of a stress tensor

incorporating just pressure, no shear stresses exist and all three components of the normal

stress are equal. The minus sign occurs because a positive pressure corresponds to a state

of compressional stress. Though defined originally for fluids, the notion of pressure, as

defined above, has uses in other areas of continuum mechanics as well.

The unit tensor of second order, I, is equivalent to the Kronecker delta, δij , when

expressed in component notation. It takes on the value unity when i = j and is zero oth-

erwise. The Kronecker delta has the property that summation over any index simply

replaces that index with the other index of the Kronecker delta in the expression, e. g.,

Tij δ jk = Tik . In dyadic notation, I ⋅ T = T ⋅ I = T.

Symmetry is an important notion for tensors. This refers to how a tensor is changed

upon the interchange of two indices. For instance, if Tij = T ji , the tensor Tij is said to be
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symmetric. If, on the other hand, Tij = −Tji , then Tij is antisymmetric. If neither of these

relations holds, then Tij has no definite symmetry. The notion of symmetry obviously

doesn’t apply for tensors of order less than two. For higher order tensors, the two indices

interchanged need to be specified. For instance, we might have Aijk = Ajik = −Aikj , which

means that Aijk is symmetric with respect to interchange of the first and second indices,

but antisymmetric relative to interchange of the second and the third.

The most important third order tensor is the unit antisymmetric tensor of third order,

εijk . This tensor has the values ε123 = ε312 = ε231 = 1 and ε321 = ε132 = ε213 = −1. All

components with any two indices the same are zero. It is easy to verify that εijk is anti-

symmetric under the interchange of any two indices. Notice also that εijk doesn’t change

when the indices are cyclically permuted, i. e., i → j, j → k, and k → i.

The main use for εijk is to represent the cross product of two vectors in component

notation:

ci = εijk a j bk (2.12)

is equivalent to c = a × b. The identity

εijk εilm = δ jl δkm − δ jmδkl (2.13)

is useful in the proof of a number of vector relations involving cross products.

The matrix form of equations like (2.6) may also be deduced from equation (2.8):






tx

ty

tz






=





Txx

Tyx

Tzx

Txy

Tyy

Tzy

Txz

Tyz

Tzz











nx

ny

nz






. (2.14)

Second order tensors are equivalent to square matrices, while vectors are represented by

either row or column matrices.  The dot product of two vectors, a ⋅ b, is represented by




ax ay az








bx

by

bz






, (2.15)

while the dyadic product ab is






ax

ay

az









bx by bz


. (2.16)
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Like dyadic notation, matrix notation is limited to representing tensors of second order or

less. However, within this limitation, matrices provide an excellent way to organize

numerical computations.

We end our mathematical diversion by showing how to obtain the components of a

tensor in a new coordinate system that is rotated relative to the initial system. The easiest

way to proceed is by returning to dyadic notation, with unit vectors in the old and new

coordinate systems renamed (e1, e2, e3) and (e1′, e2′, e3′). Thus, a vector may be repre-

sented in terms of its components in either system as a = aiei = ai ′ei ′, where the Einstein

summation convention has been employed. Dotting a by ei ′ yields the ith component of a

in the primed coordinate system.  Applying this to the unprimed representation yields

ei ′ ⋅ a = ai ′ = (ei ′ ⋅ e j )a j = qij a j . (2.17)

The quantity qij = ei ′ ⋅ e j is the matrix of direction cosines between unit vectors of the old

and new coordinate systems, and is called the transformation matrix. Note that in spite of

its representation as a square matrix, qij is not a tensor. A tensor is a physical quantity

with different representations in different coordinate systems, whereas the transformation

matrix is a tool for converting vector and tensor components between such systems.

An expression similar to equation (2.17) may be obtained for tensors by dotting the

tensor from the left and the right with unit vectors of the new coordinate system:

ei ′ ⋅ T ⋅ e j ′ = Tij ′ = qik q jl Tkl . (2.18)

The generalization to tensors of arbitrary order is obvious, with one transformation

matrix for each order. For instance, a fourth order tensor would transform like

Rijkl ′ = qimq jnqkoqlp Rmnop. (2.19)

In converting component notation to matrix form, one uses the same rule as in con-

verting to dyadic form, namely reorder and transpose until like summed indices are adja-

cent. Thus, in matrix form, equation (2.18) becomes

[T ′] = [q][T ][qt ], (2.20)

where the matrices are not fully written out, but symbolized by the quantities inside the

square brackets. Higher order transformations like that in equation (2.19) can’t be repre-

sented by matrix operations.
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Equation (2.17) may be inverted to obtain the transformation matrix from the primed

to the unprimed coordinate system.  If q−1
ij is the matrix inverse of qij , then

ai = q−1
ij a j ′. (2.21)

However, by definition, q−1
ij = ei ⋅ ej ′ = ej ′ ⋅ ei = q ji = qt

ij , i. e., the inverse of the transfor-

mation matrix is simply its transpose.  This type of matrix is called an orthogonal matrix.

We note finally, that in constructing the qij matrix, a simple rule suffices:

[qij ] =




unit vector 1

unit vector 2

unit vector 3




, (2.22)

where unit vector 1 is a row of the matrix consisting of the components in the old coordi-

nate system of the first unit vector of the new coordinate system, etc. Multiplying [qij ] on

the right by a column vector is thus equivalent to dotting this vector by each of the three

unit vectors of the new coordinate system, the resulting numbers being the three entries of

the new column vector. The new vector is thus the old vector resolved in the new system

as expected.

The virtue of the above transformation rules is more in their existence than in their

actual usage. The point is, given these rules it is possible to show that properly consti-

tuted component expressions have the same form in all coordinate systems. For instance,

if we have ai ′ = Bij ′c j ′ in the primed reference frame, then this can be written

qik ak = qik Bklq jl q jmcm. From equation (2.22) and the fact that the coordinate axis unit

vectors are mutually orthogonal, it is easy to show that qjl q jm = δ jm, reducing the right

side of the above equation to qik Bklcl . Finally, multiplication of both sides by qij and

summation over i results in aj = B jl cl , which shows that (aside from the names of the

indices) the equations look the same in both coordinate systems. Thus, if a relationship

involving the components of vectors and tensors which is known to be valid in a particu-

lar coordinate system can be cast in proper component notation, this component form of

the relationship is the same in all coordinate systems.

The gradient, divergence, and curl operations are easily expressed in component

notation. For instance, the gradient operation F = ∇φ is expressed

Fi =
∂φ
∂xi

. (2.23)
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The rules of free and dummy indices are simply carried over from tensor algebra. Thus, i

is a free index in the above expression. The divergence D = ∇ ⋅ F is written

D =
∂Fi

∂xi
, (2.24)

while the curl A = ∇ × B is written usingεijk as in the cross product:

Ai = εijk
∂Bk

∂x j
. (2.25)

The tensor expression

A j =
∂Tij

∂xi
(2.26)

is sometimes written in dyadic notation as A = ∇ ⋅ T, i. e., the divergence of the tensor T.

Note that the variation ∂Tij /∂x j is difficult to write using dyadic notation, since summa-

tion over the second index of Tij implies dotting from the right with the gradient operator,

which would then imply that differentiation is applied not to T, but to what follows. This

shows the limitations of dyadic notation in more complex expressions.

Symmetry of the Stress Tensor

It turns out that the stress tensor is symmetric. This may be proven by examining

the torque imposed on a cube of material by the tractions on its six surfaces. We imagine

a small cube of material with edge length l, centered at the origin, as shown in figure 2.6.

If the cube is sufficiently small, variations in the stress tensor over the dimensions of the

cube will also be small, and we can approximate the tractions on each face of the cube by

the appropriate components of the stress tensor evaluated at the center of each face.

Thus, the z component of the torque about the center of the cube is

τz = 2Tyx(l/2)(l2) − 2Txy(l/2)(l2) = (Tyx − Txy)l
3, (2.27)

where the torque is computed as the force normal to the moment arm for each face (e. g.,

Tyxl
2) times the moment arm (l/2), summed over the appropriate faces. It is clear that if

body forces are absent and if the cube is static, the torque must be zero, and Tyx = Txy.

Similar arguments show that Txz = Tzx and Tzy = Tyz, proving that the stress tensor is

indeed symmetric under these conditions.
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−Tyy

−Txy

−Txx

Tyy

Txy

Tyx

Txx

y

l

l
x

−Tyx

Figure 2.6. Illustration of stress components on faces of a cube of material. In

order for angular momentum to be conserved, we must have Txy = Tyx.

When body forces or angular accelerations are present, scaling arguments similar to

those invoked in deriving equation (2.2) can be used. The equation relating torque τ and

angular momentum L may be written

τstress+ τbody =
dL
dt

. (2.28)

From equation (2.27), the first term scales as l3. Body torques depend on the body force

varying over the dimensions of the cube. The difference between the body force per unit

volume on one side of the cube and the other should scale as l. Combining this with the

moment arm (scales with l) and the computation of body force from body force density

(scales with l3) shows that the body torque scales as l5. The angular momentum contains

the moment of inertia, which scales as a volume (l3) times the square of a radius of gyra-

tion (l2), and therefore goes as l5 as well. As l becomes very small, both of these terms
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become unimportant relative to the torque due to stress, so it is clear that equation (2.28)

reduces to τstress= 0 in the limit of very small l. The above arguments therefore hold, and

the stress tensor is symmetric in all circumstances.

It turns out that for any symmetric, second order tensor, there is a coordinate system

in which the tensor is diagonal, i. e., all off-diagonal terms in the matrix representation

are zero. Physically, what this means for the stress tensor is that all tractions across coor-

dinate plane surfaces are normal, or perpendicular to the surface in this coordinate sys-

tem. This is easily shown from equation (2.6).

Let us see if we can take advantage of this idea to determine the so-called principal

axis coordinate system. If we impose the condition that the traction is parallel to the unit

normal to a surface, i. e., t =λn, then the unit normal is a candidate for defining a coordi-

nate axis in the principal axis system.  Combining this with equation (2.6) yields

λn = T ⋅ n, (2.29)

or recalling that I ⋅ n = n,

(T − λI) ⋅ n = 0. (2.30)

Writing this in matrix form






Txx − λ
Tyx

Tzx

Txy

Tyy − λ
Tzy

Txz

Tyz

Tzz − λ











nx

ny

nz






= 0 (2.31)

shows that the problem of determining n reduces to the solution of a set of homogeneous

linear equations. As long as the determinant of the square matrix in equation (2.31) is not

zero, the only solution is the uninteresting one, n = 0. However, setting this determinant

to zero results in a cubic equation for λ:

λ3 + I1λ2 + I2λ + I3 = 0, (2.32)

where I1, I2, and I3 are combinations of the components of T. This has three solutions,

λ(1), λ(2), and λ(3). In general, solutions to a polynomial equation can be either real or

complex, but it can be shown that they are all real solutions as long as Tij is symmetric.

Once the three values of λ, called principal values or eigenvalues, are known, it is

possible to solve equation (2.31) for the components of n. A unique solution does not

exist because the three equations are no longer linearly independent, but it is usually
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possible to determine, say, the ratios nx/nz and ny/nz. Since by definition n is a unit vec-

tor, n is determined up to an arbitrary sign by these ratios. (If nz = 0, simply use one of

the other components in the denominator.)

Imagine now that the eigenvectors n(1), n(2), and n(3) have been determined for each

eigenvalue. Can these be taken as the unit vectors of a new coordinate system? Only if

they are mutually perpendicular! However, this is easily shown as long as Tij is symmet-

ric. The symmetry of the stress tensor insures that

n(i) ⋅ T ⋅ n( j) = n( j) ⋅ T ⋅ n(i) (2.33)

is true for any two eigenvectors n(i) and n( j) . Using equation (2.29), this may be written

(λ(i) − λ( j))(n(i) ⋅ n( j)) = 0, (2.34)

which shows that any two eigenvectors are mutually perpendicular as long as the corre-

sponding eigenvalues are not equal. Taking this as given for a moment, we see that the

eigenvectors do indeed define the axes of a new coordinate system, generally called the

principal axes. From equation (2.29) it is clear that the eigenvalues are also the diagonal

components of the tensor in the principal axis reference frame.

Once the eigenvectors are calculated, it is easy to obtain the transformation matrix

from the original reference frame to the principal axis frame. From equation (2.22), we

see that the rows of this matrix are simply the components of each eigenvector.

Whenλ(i) = λ( j) , the eigenvalues are said to be degenerate. In this important special

case it turns out that all vectors in the plane defined by n(i) and n( j) are eigenvectors.

This is easily shown by substituting αn(i) + βn( j) for n in equation (2.29), whereα andβ
are arbitrary constants, since any n that satisfies this equation is by definition an eigen-

vector. Since all vectors in the plane are eigenvectors, it is easy to pick out two mutually

perpendicular vectors to define principal axes. The choice of principal axes is, of course,

not unique as it is in the nondegenerate case.

In the doubly degenerate case in which all three eigenvalues are equal, any vector at

all is an eigenvector, and any Cartesian coordinate system is a principal axis system. In

this case, the tensor is diagonal in all coordinate systems, with all diagonal components

equal, and can be represented as an eigenvalue times the unit tensor, T = λI.
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Two-Dimensional Case

In order to more firmly fix some of the above concepts in our mind, we now explore

a number of examples and special cases involving the stress tensor in two dimensions. In

this case we need to think of tractions as stress forces per unit length of a line rather than

per unit area of a surface.

Let us first look at a two dimensional example in which the stress tensor is diagonal

in the original coordinate system:

[T ] = 


Txx

0

0

Tyy



. (2.35)

In this case the tractions on the edges of a square (the two-dimensional analog of a cube)

are normal.  Figure 2.7a illustrates these tractions

a)

c) d)

−Tyy = Txx

Tyy = Txx

Txx′

Txy′

Txy′

−Tyy′

Tyy′

b)

−Txx

−Tyy = −Txx

−Txy′

−Txy′

Tyy = −Txx

−Txx

Txx Txx

−Txx′

Figure 2.7. Tractions on edges of a square in two different cases, a)

Tyy = −Txx, and b) Tyy = Txx, with Txy = Tyx = 0. When the square is rotated

by 45°, c) and d) show the transformed tractions.

for the special case in which Tyy = −Txx, in which case the tractions are trying to pull the
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x faces apart while they are trying to push the y faces together. Figure 2.7b shows an

alternate case in which Tyy = Txx.

The matrix corresponding to the transformation to a coordinate system rotated an

angleα counter-clockwise relative to the original frame is

[q] = 


cosα
− sinα

sin α
cosα



. (2.36)

Computing Tij ′ = qikTklq
t
lj yields

Txx′ = Txx cos2 α + Tyy sin2 α

Tyx′ = Txy′ = (Tyy − Txx) cosα sin α (2.37)

Tyy′ = Txx sin2 α + Tyy cos2 α .

Note that maxima occur in |Txy′| for α = 45°, 135°, 225°,. . ., except when Tyy = Txx. In

this case no off-diagonal term occurs for any α, which is to be expected, since this is a

completely degenerate case. Note also that when Tyy = −Txx, the normal stress compo-

nents Txx′ and Tyy′ disappear whenα = 45°. . .. Thus, for a square rotated 45° to the orig-

inal reference frame in this case, the tractions on the edges of the square are purely tan-

gential, i. e., they are shear tractions. Note, however, that it is incorrect to say that the

stress itself is ‘‘purely shear’’ or ‘‘purely normal’’ -- this terminology is only correct for

tractions across a particular surface. As figure 2.7 shows, the same stress tensor can gen-

erate shear tractions across surfaces with certain orientations and purely normal tractions

across others.

The primed stress components in equation (2.37) yield the tractions across surfaces

aligned with the coordinate axes of the primed reference frame. For instance, the traction

across the x′ surface is given by (Txx′, Txy′). An alternate way to derive these tractions is

to apply equation (2.6) to the tensor in the original reference frame. For instance, to get

the traction in the above example, take n = i′ = cosα i + sin α j. We get for the x and y

components of the traction (Txx cosα , Tyy sin α ).

Inspection shows an apparent discrepancy -- the components of the traction vector

derived in the two different ways don’t agree. However, the discrepancy is resolved when

we realize that the first set of vector components are relative to the primed frame, whereas

the second are relative to the unprimed frame. Transformation of the second set to the
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primed frame yields equivalent results.

Boundary Conditions

So far we have only considered the traction across a surface inside a continuous

medium. If the surface is placed so that it is coincident with the boundary of the medium

with the unit normal pointing outward, equation (2.6) has a slightly different interpreta-

tion. Since the normal points outward, our convention states that the traction is the force

per unit area applied by the external world to the surface of the medium. In this case

equation (2.6) becomes

tapplied = T ⋅ n|surface . (2.38)

In other words, the stress tensor at the surface is constrained by the value of the applied

stress there. Since equation (2.38) represents three conditions, three of the six indepen-

dent components of stress are fixed at the surface. In the case of a free surface, the

applied traction and the corresponding tensor components are zero.

Problems

1. When n = i in equation (2.4), the result is t = − tx. Determine the region on which the

traction t is acting, and explain the origin of the minus sign in the above equation.

2. Write the pair of equations

b1a11 + b2a21 = 0

b1a12 + b2a22 = 0

in matrix form and in component notation.

3. Write




a11

a21

a12

a22






b11

b21

b12

b22




= 0

in component notation and as individual equations.

4. Convert the following component notation expressions to matrix form. (Assume two

dimensions.) a) Aij B j . b) Aij Bi . c) Bi Aij . d) Aij B jk . e) qik q jl Tkl .

5. Write the matrix corresponding to the following dyadic: 3ii + 2ij − 4ji + kk.
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45°

x

y

Figure 2.8.  See problem 6.

6. Referring to figure 2.8, the traction of the −x domain on the +x domain is 5i + 3j, and

the traction of the −y domain on the +y domain is 3i − 2j. Find the traction of the

unhatched domain on the hatched domain.  Be careful of signs.

7. Show that a second order tensor may be split into a symmetric and an antisymmetric

part. For the three dimensional case, indicate how many independent components there

are in each part.

8. Consider the unprimed and primed coordinate systems shown in figure 2.9. a) Find

the transformation matrix, qij = ei ′ ⋅ e j . b) Using the results of part a, find the primed

components of the vector A, where the unprimed components are Ax = 1 and Ay = −1. c)

Using the results of a, find the primed components of the tensor T, whose unprimed com-

ponents are




1

0

0

2


.

9. Show that Ci = εijk A j Bk represents the cross product C = A × B.
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x

y

x′

y′

α

Figure 2.9.  See problem 8.

10. Show that εijk ai b j ck equals the determinant






ax

bx

cx

ay

by

cy

az

bz

cz






.

11. Reduce the expression (A × B) × (C × D) to a simpler form using equation (2.13).

12. In a particular reference frame a tensor has the components





0

−1

0

−1

0

0

0

0

2




.

a) Find the eigenvalues of this tensor, and write the matrix representing the tensor in the

principal axis reference frame. b) Find the eigenvectors. c) Find the transformation

matrix from the original reference frame to the new reference frame using the results of b.

d) Using the results of c, transform the components of the tensor from the original refer-

ence frame to the principal axis frame, and verify that the results agree with the results of

a.
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13. Repeat the above problem for the tensor





0

−1

0

−1

0

0

0

0

1




.

14. Sketch plots of Txx′, Txy′, and Tyy′ as a function ofα from equation (2.37) for the

case when Txx = 1 and Tyy = −1. Note particularly where the maxima and minima occur.

15. A continuous medium is confined to z < 0 and the stress in the medium is given by

the stress tensor

Tij =





αx2

βxy

δz2

βxy

0

0

δz2

0

− γy2






,

whereα, β, γ, and δ are constants. Find the distribution in the x − y plane of the traction

applied to the medium across the surface defined by z = 0.
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Chapter 3 -- Budgets, Fluxes, and the Equations of Motion

In this chapter we consider how the stress in a medium is related to the motion of

the medium. In other words, we develop the continuum mechanics analog to Newton’s

second law. We do this initially by considering the imbalance between stress forces on

the opposing faces of a cube due to the variation of stress with position. It becomes clear

from this analysis that net stress forces on parcels of material are only non-zero if the

stress varies from place to place. We then introduce the notion of a budget of a quantity,

starting with the mass budget. The conservation of mass makes this idea particularly easy

to understand. The budget for momentum is then discussed, and the budget notion is

used to solve some classic problems in mechanics that involve open systems. The

momentum budget is then invoked to develop the application of Newton’s second law to

continuum mechanics in a different way. Finally, we show how this law changes in an

accelerated coordinate system and illustrate this with the examples of a rotating frame

and the Lagrangian reference frame, in which the coordinate system deforms with the

material medium.

Equation of Motion

In the previous chapter we showed that for a small parcel, the stress forces on indi-

vidual faces of the parcel tend to dominate the contributions from body forces and accel-

eration in Newton’s second law. This fact was used in deriving the notion of a stress ten-

sor. Under these circumstances, it makes sense that if the stress tensor varies smoothly

through the material medium, the imbalance in the total stress force due to this variation

would be of the same order as the acceleration and body forces. Remember that there

would be no imbalance if the stress tensor were constant.

This notion is verified by recalling that the stress force on individual faces of a par-

cel goes as l2, where l is a typical dimension of the parcel, whereas body forces and

acceleration go as l3. The difference between tractions across two surfaces of the same

orientation, but separated by a distance l should go as l. Multiplying by the surface area

of the parcel, which scales as l2, results in a stress force imbalance that scales with l3,

which is the same as for body forces and acceleration.
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l

l
l2t(x + l)

l2t(x)

Figure 3.1. Definition sketch for computing the force imbalance on a cube.

On the left side of the cube, the force is

l2t(x) = −l2[Txx(x)i + Txy(x)j + Txz(x)k], while on the right side, it is

l2t(x + l) = l2[Txx(x + l)i + Txy(x + l)j + Txz(x + l)k].

Figure 3.1 shows how to compute the imbalance in the stress forces on a cube of

side l. For simplicity, only tractions on the positive and negative x surfaces are shown.

The traction on the positive x face is actually T ⋅ i. However, the symmetry of the stress

tensor allows this to be written i ⋅ T = Txxi + Txyj + T xzk. Combining this with the trac-

tion on the negative face gives the net force on these surfaces:

Fnet x = l2[(Txx(x + l) − Txx(x))i + (Txy(x + l) − Txy(x))j +

(Txz(x + l) − Txz(x))k]. (3.1)

Multiplying and dividing by l and recognizing that the differences divided by l approxi-

mate x derivatives leads to

Fnet x ≈ l3

∂Txx

∂x
i +

∂Txy

∂x
j +

∂Txz

∂x
k


=

l3i
∂
∂x

⋅ (Txxii + T xyij + T xzik) = l 3i ⋅
∂T
∂x

, (3.2)

where the last step recognizes that terms like i ⋅ Tyxji are zero.

Similar terms can be derived for the stress forces on the y and z faces, resulting in

the net stress force

Fstress= l3

i

∂
∂x

+ j
∂
∂y

+ k
∂
∂z




⋅ T = l 3∇ ⋅ T. (3.3)
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The approximation in equation (3.2) becomes an equality when l becomes very small.

Thus, the net stress force on a small parcel equals the divergence of the stress tensor

times the volume of the parcel.

In order to complete our conversion of Newton’s second law to continuum form, we

note that the mass of the parcel m = l3ρ whereρ is the mass density. We also write the

body force in terms of the body force per unit mass, B, and the density: Fbody = l3ρB. If

a is the parcel acceleration, then Newton’s second law, ma = Fstress+ Fbody, becomes

ρa = ∇ ⋅ T + ρB (3.4)

upon canceling the parcel volume, l3.

Mass Budget

In continuum mechanics we often deal with open systems, in which mass, momen-

tum, and energy flow freely in and out of the system. The machinery of ordinary particle

mechanics is ill-equipped to deal with this kind of situation, and classical analyses of

open systems like rockets and conveyor belts have an ad hoc flavor to them. One way of

handling these flows is to think in terms of budgets for the respective quantities. In other

words, we equate the net flow of a quantity into a system plus the net creation rate of the

quantity to the time rate of change of the quantity within the system. The momentum

budget is perhaps the most crucial to our studies, but we begin with the mass budget

because it is simpler and has considerable importance in its own right.

Before considering the mass budget, we need to show how physical variables are

represented in continuum mechanics. We first discuss the velocity of a material medium.

Imagine that the material forming the continuum of interest is moving with velocity

v(x, t), where x is the position vector, and t is time. This functional form implies that the

material velocity varies from place to place, and at a given place can vary with time. Fur-

thermore, this type of description loses track of individual parcels of material -- v(x0, t) is

the velocity of parcels passing through the point x = x0 as a function of time -- different

parcels are located at this point at different times. This is called the Eulerian description

in continuum mechanics.

Note that the trajectory of any given parcel may be recovered by integrating the

equation



-33-

dx
dt

= v(x, t), (3.5)

with x set to the initial position of the parcel at the initial time. Though simple in princi-

ple, this is often difficult to do analytically in practice, because both the dependent and

independent variables appear on the right side of the equation.

Streamlines are imaginary lines in space that are everywhere tangent to the velocity

field. They are sometimes useful for visualizing the flow. When a flow is steady (i. e., v

is not a function of time), parcel trajectories coincide with streamlines. However, when

the flow depends on time, this is not necessarily true. The difference between trajectories

and streamlines in this case can be quite striking, as shown by problem 3 at the end of this

chapter.

Given the Eulerian way of representing variables, we now proceed with our exposi-

tion of the mass budget. Since mass is neither created or destroyed in everyday phenom-

ena, we are left with a balance between inflow and increase with time. The trick is to be

able to compute the net flow of mass through a surface. To do this we need to understand

the flux of a quantity. Representing the mass density, ρ(x, t), in Eulerian form, we define

the mass flux asρv. The meaning of this quantity becomes clear when we dot it with

nδAδt, where δA is the area of a surface element with unit normal n, and δt is a short

time interval. As illustrated in figure 3.2, a volume v ⋅ nδAδt flows through the surface

element in δt. Thus,ρv ⋅ n is the mass per unit area per unit time flowing through the sur-

face normal to n. If v is normal to the surface, then v and n are parallel, andρv ⋅ n = ρ|v|.

Thus, the magnitude of the mass flux is the mass per unit area per unit time flowing in the

direction of the velocity vector.

From the above analysis we compute the rate at which mass flows out of a surface

∂Γ that encloses the volume Γ:

Rate of mass outflow =
∂Γ
∫ ρv ⋅ ndA =

Γ
∫ ∇ ⋅ ( ρv)dV . (3.6)

The conversion from a surface integral over ∂Γ to a volume integral over Γ was per-

formed using Gauss’s law. The mass within volume Γ is simply the volume integral of

density, so mass conservation can be expressed as

d

dt
Γ
∫ ρdV =

Γ
∫

∂ρ
∂t

dV = −
Γ
∫ ∇ ⋅ ( ρv)dV , (3.7)
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v

|v|δt

δA

n

Figure 3.2. Sketch of flow through a surface element δA with unit normal n.

The volume of the parallelepiped, δAn ⋅ vδt, equals the volume of fluid passing

through the surface element in time δt. The fluid velocity is v.

where the minus sign occurs because the last integral represents outward

∂ρ
∂t

> 0

a) b)

∂ρ
∂t

= 0

Figure 3.3. Illustration of a) divergent (actually, convergent) and b) nondiver-

gent flow.

flow. This balance is expressed in two examples in figure 3.3. In figure 3.3a there is net

mass flow into a volume, and mass density must on the average be increasing within the
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volume. In figure 3.3b there is as much mass flowing out as in, and the average density

remains constant.

Placing the two terms in equation (3.7) under a single integral yields

Γ
∫ 


∂ρ
∂t

+ ∇ ⋅ ( ρv)

dV = 0, (3.8)

from which we deduce that the integrand itself must be zero:

∂ρ
∂t

+ ∇ ⋅ ( ρv) = 0. (3.9)

This is because Γ is an arbitrary volume, and may be shrunk down to a tiny sphere over

which the integrand doesn’t vary much. In this case the integral reduces to the integrand

times the volume of the sphere, which may be canceled, resulting in equation (3.9).

Equation (3.9) represents, in Eulerian form, the conservation of mass in the medium

of interest.  An alternative form may be derived by expanding the second term:

∂ρ
∂t

+ v ⋅ ∇ ρ + ρ∇ ⋅ v = 0. (3.10)

A commonly used shorthand for this representation is

dρ
dt

+ ρ∇ ⋅ v = 0, (3.11)

where the total time derivative is to be interpreted as a derivative following a parcel in the

material. The sense of this may be understood by expanding the total derivative using the

chain rule:

dρ
dt

=
∂ρ
∂t

+
dx

dt

∂ρ
∂x

+
dy

dt

∂ρ
∂y

+
dz

dt

∂ρ
∂z

=
∂ρ
∂t

+
dx
dt

⋅ ∇ ρ. (3.12)

The correspondence follows if dx/dt = v. This serves to emphasize that even though v is

represented as a function of x and t, it is the velocity of the parcel that happens to be at x

at time t.

When dρ/dt = 0 for a material, the material is said to be incompressible. In this

case equation (3.11) reduces to ∇ ⋅ v = 0. Note that an incompressible medium may have

variations in density from parcel to parcel. Imagine, for instance, a river flowing into the

ocean. Both the fresh water from the river and the salt water of the ocean are essentially

incompressible, but they have different densities. The density field thus varies from place
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to place in this circumstance, but individual parcels retain their initial density, and the

divergence of the velocity field is zero.

Momentum Budget

The budget for momentum is more complicated than that for mass for two reasons.

First momentum is a vector, so the flux of momentum is a second order tensor. Second,

external forces as well as the material transport of momentum enter the balance. Thus, a

verbal statement of the momentum budget of some system is that the rate of change of

momentum in the system equals the rate of inflow minus the rate of outflow via mass

transport, plus the total external force on the system. Consideration of certain classical

physics problems helps us to better understand the notion of a momentum budget. The

problem of an accelerating rocket is particularly illuminating.

M

vr

ve − vr

R

Figure 3.4. Sketch of a rocket moving to the right with speed vr . The rocket

has mass M , and is losing mass at the rate R via an exhaust with exhaust veloc-

ity ve.

Figure 3.4 shows a rocket with mass M and speed vr . Both of these quantities are

changing with time. In particular, the mass of the rocket is decreasing at a rate

R = − dM /dt as a result of the expulsion of exhaust gas. The exhaust velocity of the gas
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is ve relative to the rocket, so that in the rest frame the gas is leaving the rocket at speed

ve − vr . The momentum per unit time leaving the dashed box surrounding the rocket is

therefore − R(ve − vr ). We assume that all this is occurring in free space so that there are

no external forces acting on the rocket. The momentum budget is thus a balance between

the rate of increase of momentum in the box, which is mainly the momentum of the

rocket, Mvr , and the rate of flow of momentum out of the box:

d(Mvr )

dt
= R(ve − vr ). (3.13)

Expansion of the left side by the product rule leads to the cancelation of the term − Rvr

on both sides, leaving the classical formula

M
dvr

dt
= Rve. (3.14)

The right side of the above equation is normally interpreted as the thrust force of the

rocket. However, in our interpretation the thrust is totally a consequence of the export of

momentum in the exhaust stream -- no external ‘‘thrust’’ force is acting. This duality in

the interpretation of the momentum budget in open systems persists in the continuum

mechanics description. The applicability of each interpretation depends on exactly how

the open system is defined -- i. e., where the dashed line is located in figure 3.4. If this

line follows the inside of the rocket’s combustion chamber rather than cutting straight

through the exhaust stream, as illustrated in figure 3.4, the pressure force of the exhaust

gas on the combustion chamber would constitute the external force that delivers the

thrust. Furthermore, the fuel and oxidizer entering the chamber would do so with very

little momentum in the reference frame of the rocket. Thus, even though this mass is

exiting the system (by crossing the dotted line), it contributes little to the momentum bud-

get, and the balance is primarily one between the pressure force on the combustion cham-

ber and the rate of change of the rocket’s momentum.

This example illustrates how important it is to carefully define what is inside and

what is outside the system to which Newton’s second law is to be applied. Minor

changes in this definition change the way in which various physical effects are treated.

Some ways of defining a system result in easier calculations than others. For instance, it

is easier to compute the rocket’s thrust in terms of the velocity of the gas passing through

the dashed rectangle in figure 3.4 than it is to integrate the detailed pressure distribution
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of the exhaust gas over the complicated inner surface of the combustion chamber. How-

ever, any consistent way of defining a system should lead to a correct description of the

phenomenon of interest, such as the rocket thrust in the above example. The danger is in

deriving terms of the momentum budget based on an inconsistent view as to what is

included in the system. For instance, including both the pressure force on the combustion

chamber and the momentum flux of the exhaust gas after it has left the combustion cham-

ber in the momentum budget could result from an inconsistent definition of the system

boundary, and would be incorrect.

We now translate the momentum budget to a form applicable to continuous media.

The equation for momentum may be developed in the same way as the equation for mass.

The flux of mass is the mass density ρ times the fluid velocity v. Similarly, the bulk flux

of any quantity is simply its density times the velocity. The density of momentum isρv,

which coincidentally is also the mass flux. The momentum flux is therefore ρvv. Note

that this is a second order tensor, because we have taken the product between the momen-

tum density to be the dyadic product. This is the second example of a general rule, which

states that the flux of a tensor of order n is a tensor of order n + 1.

The momentum per unit time being carried out of a volume Γ by the material flow is

∂Γ
∫ ρvv ⋅ ndA =

Γ
∫ ∇ ⋅ ( ρvv)dV , (3.15)

where Gauss’s law is used as in equation (3.6). The time rate of change of momentum in

volume Γ is therefore

d

dt
Γ
∫ ρvdV =

Γ
∫

∂ρv
∂t

dV = −
Γ
∫ ∇ ⋅ ( ρvv)dV + F, (3.16)

where F is the sum of the stress and body forces on the volume. From equation (2.6), the

stress force is

Fstress=
∂Γ
∫ T ⋅ ndA =

Γ
∫ ∇ ⋅ TdV , (3.17)

where Gauss’s law has again been invoked. The body force is simply the volume integral

of the body force per unit volume,ρB:

Fbody =
Γ
∫ ρBdV . (3.18)
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Combining equations (3.16)-(3.18) and applying the logic used in the previous sec-

tion yields

∂ρv
∂t

+ ∇ ⋅ ( ρvv) = ∇ ⋅ T + ρB. (3.19)

Comparison of this result with equation (3.4) suggests that the left side of equation (3.19)

is just the density times the parcel acceleration. Product rule expansion of the left side

and slight rearrangement yields

ρ

∂v
∂t

+ v ⋅ ∇v 


+ 

∂ρ
∂t

+ ∇ ⋅ ( ρv)

v. (3.20)

Comparison with equation (3.9) shows that the last two terms vanish by virture of mass

continuity. Furthermore the first two terms reduce to ρdv/dt, which is nothing more than

the parcel acceleration. The equivalence of equations (3.4) and (3.19) is thus proved, and

equation (3.19) can be written

ρ
dv
dt

= ρ
∂v
∂t

+ ρv ⋅ ∇v = ∇ ⋅ T + ρB. (3.21)

The two forms of this equation are useful in different circumstances.

Accelerated and Non-Cartesian Coordinate Systems

Equation (3.21) is nothing more than an expression of Newton’s second law, and as

such is valid only in an inertial reference frame. Sometimes it is desirable to work in an

accelerated reference frame, in which case it is necessary to modify this equation. Two

instances of accelerated reference frames are commonly seen. Sometimes it is useful to

view the motion of a continuum in a reference frame that is rotating at a uniform rate

about a fixed axis. The flow of the atmosphere and the oceans on the rotating earth is one

example. Another example occurs when the coordinate system itself is fixed to the mate-

rial of the continuum, and thus moves, accelerates, and deforms with the material. This is

commonly called the Lagrangian reference frame in contrast to the Eulerian frame,

which remains fixed in space.

Figure 3.5 shows how a vector A, at rest in a reference frame which rotates with fre-

quency |Ω|, moves relative to an external observer. The axis of rotation is defined by the

vector Ω, which makes an angle θ with A. In time δt the component of A normal to Ω

rotates through an angle δφ= Ωδt = δA/(A sinθ). Therefore,
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A

A′

θ

δA

ΩΩ

δφ= |ΩΩ|δt

Figure 3.5. Definition sketch for relating the components of a vector in station-

ary and rotating reference frames.

δA/δt = ΩA sinθ = |Ω × A|. Invocation of the right-hand rule shows that δA is in the

direction of Ω × A, so the vector law

dA
dt

= Ω × A (3.22)

holds. If A is changing in the rotating frame, the effect on dA/dt is additive, i. e.,

dA
dt

= 

dA
dt


 r

+ Ω × A. (3.23)

We now apply equation (3.23) to the acceleration:

d2x
dt2

=
d

dt







dx
dt


 r

+ Ω × x




=



d2x
dt2


 r

+ 2Ω × 

dx
dt


 r

+ Ω × (Ω × x). (3.24)
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If we redefine v as the velocity in the rotating frame, v ≡ (dx/dt)r , then equation (3.21)

becomes (dropping the subscripted r in the time derivative)

ρ
dv
dt

= ∇ ⋅ T + ρB − 2ρΩ × v − ρΩ × (Ω × x). (3.25)

The extra components of the acceleration that result from being in a rotating reference

frame have been placed on the right side of equation (3.25) to show that they can be inter-

preted as body forces. The term − 2Ω × v is the Coriolis force per unit mass, while

− Ω × (Ω × x) is the centrifugal force per unit mass. These two forces are often called

inertial forces to distinguish them from such things as gravity and Coulomb attraction

which are commonly thought to arise from fundamental physical processes rather than

one’s choice of reference frame. The Coriolis force in particular plays a fundamental role

in atmospheric and oceanic circulations.

We now examine how equation (3.21) is modified when a Lagrangian reference

frame is chosen. Imagine a transformation from Cartesian coordinates x = (x, y, z) to a

new coordinate system X = (X , Y , Z ) that deforms with the material. In general,

X = X(x, t), where t is time. We may imagine that X is the location of each parcel at time

t = 0, i. e., X(x, 0) = x. Thus, parcels are labeled by their initial position. This vector

relationship may in principle be inverted to obtain x = x(X, t). The total time derivative

of x may then be written in component notation as

dxi

dt
=

∂xi

∂t
+

∂xi

∂X j

dX j

dt
. (3.26)

However, the second term on the right side of equation (3.26) vanishes because

dX j /dt = 0. This follows from the original definition of the (X , Y , Z ) coordinate system;

since it moves with the material medium, the medium cannot move relative to the coordi-

nate system, and the parcel velocity is zero in this reference frame. A second application

of this logic shows that the acceleration simply reduces to ∂2x/∂t2, i. e., the v ⋅ ∇v term of

equation (3.21) disappears.

Such simplification in one part of equation (3.21) is unfortunately accompanied by

additional complications in another part. The complication arises because the stress, T,

will generally be defined as a function of X rather than x. Thus, a change of variables

needs to be performed in the term ∇ ⋅ T. Furthermore, it is incorrect to simply apply the

chain rule to the component form of the divergence of the stress tensor, ∂Tij /∂x j . This is
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because in the derivation of the component form from the more fundamental dyadic form,

the spatial derivatives of unit vectors were ignored. This is justified in a Cartesian coordi-

nate system in which unit vectors are constants. However, in general a Lagrangian coor-

dinate system will not remain Cartesian, and the spatial variations in unit vectors must be

considered.

The theory of tensors in arbitrary coordinate systems is beyond the scope of this

book, and readers interested in this subject are referred to the book by McConnell (1957).

Many problems using the Lagrangian approach are expressable in terms of coordinate

systems that are locally orthogonal, i. e., the coordinate lines at each point are mutually

perpendicular. Polar and spherical coordinates are well known examples of orthogonal

coordinate systems. Problems in such systems can be approached with somewhat less

theoretical work. Batchelor (1967) derives numerous useful relations for such coordinate

systems.

In the Lagrangian representation, equation (3.11) is not a useful way to express mass

conservation. An alternative method is to consider how the volume of a parcel changes

with time. Suppose a parcel is initially a tiny cube of side l, with edges parallel to the

coordinate axes. After some time it will in general be deformed into a parallelepiped

with edges defined by the vectors ∆x(1), ∆x(2), and ∆x(3). The volume of this paral-

lelepiped will be

∆V = ∆x(1) ⋅ ∆x(2) × ∆x(3) = εijk ∆x(1)
i ∆x(2)

j ∆x(3)
k . (3.27)

The edge vectors may be expressed in terms of the original edge vectors ∆X(I )
i

(I = 1, 2, 3) by the transformation

∆x(I )
i =

∂xi

∂X j
∆X(I )

j . (3.28)

(Recall that X = x at time t = 0.) Since the edges of the cube are aligned with the coordi-

nate axes at t = 0, we have ∆X(1)
i = lδ1i, etc., and the volume of the parcel at time t is

∆V = ∆V0εijk
∂xi

∂X1

∂x j

∂X2

∂xk

∂X3
, (3.29)

where ∆V0 = l3 is the initial volume of the parcel.

The terms involving εijk and the partial derivatives form the determinant of ∂xi /∂X j .

This determinant is also known as the Jacobian of the transformation x = x(X, t).
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Writing equation (3.29) in terms of the density, ρ = ∆M /∆V , and the initial density

ρ0 = ∆M /∆V0, where ∆M is the mass of the parcel, mass conservation in the Lagrangian

frame becomes

ρ0

ρ
= det


∂xi

∂X j



. (3.30)

Problems

1. If the tensor T is symmetric, show that n ⋅ T = T ⋅ n for any n.

2. Given the stress tensor

Tij =





αx2

βxy

0

βxy

0

0

0

0

−γy2






in a medium of density ρ, where α, β, and γ are constants, find the acceleration vector at

each point in the medium.  (Assume no body forces.)

3. Given a flow field v = (C cosωt, C sinωt, 0), where C andω are constants, and t is

time, find the trajectory of a parcel starting at x = (x0, y0, 0). Sketch the flow field at

t = 0 and at t =π/2ω. Sketch the trajectory of a parcel starting at the origin at t = 0.

4. The density of water near the mouth of a river varies in space and time as

ρ = A + B tanh(χ/d) where χ = x + d cos(ωt) due to periodic tidal effects. The down-

river direction is given by positive x, and t is time. A, B, d, and ω are constants. Assum-

ing that the flow is purely upstream and downstream, and that water is incompressible,

determine the flow speed in the river as a function of x and t. Hint: Set dρ/dt = 0 and

solve for vx.

5. Solve the conveyor belt problem using momentum flux methods (see figure 3.6). In

other words, a conveyor belt moves along at a speed v. Mass (say, coal or wheat) falls

onto the conveyor belt at a rate R. Determine the force required to keep the conveyor belt

moving at speed v.

6. Given the flow field v = (Cx/r3, Cy/r3, Cz/r3), where r2 = x2 + y2 + z2 and C is a con-

stant, determine the acceleration of parcels at each point in space. Also, determine

whether the flow is incompressible.
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F

R

v

Figure 3.6.  See problem 5.

7. Derive an expression for the divergence of a vector, ∇ ⋅ V, in polar coordinates. Pro-

ceed by setting V = Vr er + Vθeθ, where er and eθ are respectively the unit vectors in the r

andθ directions and Vr and Vθ are the vector components in these directions. The gradi-

ent operator is

∇ = e r
∂
∂r

+ eθ
1

r

∂
∂θ

in polar coordinates. Finally, use er = i cosθ + j sinθ and eθ = − i sinθ + j cosθ to com-

pute the derivatives of er and eθ with respect to r andθ.

8. Consider the Lagrangian representation of a uniformly expanding gas, with the parcel

position x at time t given as x = (1 + t/τ)X, where τ is a constant and x = X at t = 0.

Determine the parcel velocity as a function of X for all parcels. Solve for X in terms of x,

and combine with the above results to obtain the velocity field as a function of x. Finally,

if the density of the gas is uniformly ρ0 at t = 0, find its density at later times.
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Chapter 4 -- Kinematics in Continuum Mechanics

In this chapter we learn how to describe the motion of continuously distributed mat-

ter, independent of what is causing the motion. Central to this discussion is the displace-

ment vector, u(X, t) ≡ x(X, t) − X. Since x is the position of a parcel whose position at

time t = 0 is X, the displacement u is simply the movement of the parcel since the initial

time.

Of particular interest is the variation in the displacement of neighboring parcels. If

all parcels moved together, all displacements would be the same. This would correspond

to a uniform translation of the entire body. The differences in displacement between

neighboring parcels are related to more interesting things like rotation and deformation of

the body.

In this chapter we first show how small displacements in the neighborhood of some

point decompose into a combination of a translation plus a rotation plus a strain. We then

show that the components of the so-called strain tensor are subject to certain conditions

called the compatibility conditions. Finally, we consider the case of a continuously

deforming fluid, in which the rate of displacement of parcels, or the velocity field, is of

interest.

Small Displacements

Figure 4.1 illustrates the relationship between two parcels, A and B, as they move to

their new positions, A′ and B′. The initial positions of the parcels are given by the vec-

tors XA and XB, while their final positions are indicated by xA and xB. The displacement

vectors are uA and uB. The position of parcel B relative to parcel A isδX = XB − XA at

the initial time and δx = xB − xA at the later time. Simple substitution shows that

δx = δX + (uB − uA).

If parcel displacements vary smoothly over some small region, and if

|uB − uA| << |δX| for all pairs of parcels in the region, then a first order Taylor series

expansion about some reference parcel yields a good approximation to the variation in u

over the region. Changing now to component notation,
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B

A′

B′

uA

uB

xA

XB

δX

δx

X A

A

xB

Figure 4.1.  Relationship between the displacements of two parcels, A and B.

ui (X j ) ≈ ui (X0 j) +
∂ui

∂X j
δX j , (4.1)

where now δX j = X j − X0 j is the position of an arbitrary parcel relative to the reference

parcel, X0 j . The condition |uB − uA| << |δX| is called the small deformation approxima-

tion, and is satisfied in many, but not all situations. In this book we will restrict our atten-

tion to this case.  Spencer (1980) gives an extensive discussion of finite deformations.

The second order tensor ∂ui /∂X j is called the deformation tensor. It has no particu-

lar symmetry, but can be split into symmetric and antisymmetric parts,

∂ui

∂X j
=

1

2



∂ui

∂X j
+

∂u j

∂Xi




+
1

2



∂ui

∂X j
−

∂u j

∂Xi




≡ Eij + Rij . (4.2)

The symmetric part, Eij , is called the strain tensor, while the antisymmetric part, Rij , is

called the rotation tensor. The displacement in a small neighborhood thus becomes

ui = u0i + Eij δX j + Rij δX j , (4.3)

where u0i is shorthand for ui (X0 j), the displacement of the reference parcel.

The origin of the name "rotation tensor" is clear once the properties of antisymmet-

ric tensors are understood. Antisymmetric tensors in three dimensions have a close rela-

tionship with vectors, since they have three independent components, just as vectors do.
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If A ij is an arbitrary antisymmetric tensor, its components can be related to those of a vec-

tor, ai , by Aij = −εijk ak. (Recall thatεijk is defined in the context of the cross product in

chapter 2.) The vector ai is called the dual vector of the antisymmetric tensor Aij . Note

that the relation between these two quantities can be inverted, since

εijl Aij = −εijl εijk ak = −2al . The reduction ofεijl εijk can be computed using equation

(2.13), plus the properties of the Kronecker delta.

Imagine now a displacement field with u0i = 0 and Eij = 0. If θi is the dual vector to

Rij , then the displacement field becomes

ui = Rij δX j = −εijk θkδX j , (4.4)

or in vector notation, u =θ × δX.

Reference to the section on accelerated coordinate systems in chapter 3, and particu-

larly to figure 3.5, shows that displacements in this case take the form of a small, rigid

body rotation. Note especially that equation (3.22) rewritten as dA = (Ωdt) × A is analo-

gous to equation (4.4) if dA = u, Ωdt =θ, and A =δX. Thus, the axis of rotation, which

passes through the reference parcel, is defined by θ, and the angle through which the

body rotates is |θ|.

The meaning of the strain tensor, Eij is best understood by reference to its effect on

the dot product between two vectors embedded in the material medium. Figure 4.2 illus-

trates three points, A, B, and the reference point, O. The two vectors of interest are the

respective displacements of the points A and B from O. The change in the dot product of

these two vectors is

δxA ⋅ δxB − δX A ⋅ δXB = (δX A + uA − uO) ⋅ (δXB + uB − uO) − δX A ⋅ δXB

= 

δXAi +

∂ui

∂X j
δXAj





δXBi +

∂ui

∂Xk
δXBk




− δXAiδXBi

= δXAi



∂ui

∂X j
+

∂u j

∂Xi
+

∂uk

∂Xi

∂uk

∂X j



δXBj

≈ 2δXAi Eij δXBj , (4.5)

where the approximation of leaving out the nonlinear term in the third line is justified by

the small deformation assumption.  In dyadic notation this becomes
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A

B

O

A′

B′

O′
uO

uA

uB

δxA

δxB

δXB

δX A

Figure 4.2.  Displacement of three points, A, B, and O.

δxA ⋅ δxB = δX A ⋅ δXB + 2δX A ⋅ E ⋅ δXB. (4.6)

Two examples serve to illustrate the meaning of this relationship. If

δX A = δXB = ln and δxA = δxB = l′n′, where n and n′ are unit vectors, and where

l′ = l + δl, then equation (4.6) becomes

l ′2 = l2(1 + 2n ⋅ E ⋅ n). (4.7)

By the small deformation approximation, l and l′ won’t differ by very much, so

l ′2 ≈ l2 + 2lδl. Therefore, equation (4.7) reduces to

δl

l
= n ⋅ E ⋅ n. (4.8)

In other words, n ⋅ E ⋅ n is the fractional change in length of a line segment embedded in

the material medium with initial orientation defined by n. This fractional change in

length is refered to as the unit extension in the n direction. In the special case in which,

for instance, n = i, the combination n ⋅ E ⋅ n reduces to Exx. Thus, the diagonal compo-

nents of E are the unit extensions along the respective coordinate axes.

The second example in the use of equation (4.6) is when δX A andδXB are normal to

each other. If |δX A| = |δXB| = l, and |δxA| = l + δl A while |δxB| = l + δl B, then equation

(4.6) becomes
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(l + δl A)(l + δl B) cos(π/2 − α) = 2l2nA ⋅ E ⋅ nB, (4.9)

where the angle α measures the deviation of δxA andδxB from orthogonality, and where

nA and nB are unit vectors in the directions of the two vectors. By the small deformation

approximation, the changes in the vector lengths are fractionally small, and the change in

the angle between the vectors is small as well. Thus, |α| << 1, and the small angle

approximation yields cos(π/2 − α) ≈ α. Equation (4.9) therefore becomes

α = 2nA ⋅ E ⋅ nB. (4.10)

The angle α is the decrease fromπ/2 of the angle between the two vectors under the

influence of the deformation. If, for instance, nA = i and nB = j, then α = 2Exy. The off-

diagonal terms of the strain tensor are thus related to changes in the angles between vec-

tors initially aligned with the coordinate axes.

We now examine the change in volume of a small cubical parcel of material under

the influence of a deformation field. The rotation part of the deformation does not influ-

ence the volume, since solid body rotations do not change the size and shape of objects.

The effect of the strain tensor is to change the lengths of the edges of the cube and to

skew the cube slightly into the shape of a parallelepiped.

If the initial diameter of the cube is l, the vectors representing three nearly perpen-

dicular edges of the resultant parallelepiped can be written δxA = (l + δl A)nA,

δxB = (l + δl B)nB, and δxC = (l + δlC)nC. The volume of the parallelepiped is

V = (δxA × δxB) ⋅ δxC =

(l + δl A)(l + δl B)(l + δlC)(nA × nB) ⋅ nC. (4.11)

To first order in small quantities, this reduces to V = l3 + l2(δl A + δl B + δlC). The triple

product of unit vectors remains unity to first order, since all of the deviations from unity

occur in the form of 1 − cos(β) ≈ β2/2, where β is a small angle. The fractional change in

volume of the cube is thus δV /V = (δl A + δl B + δlC)/l.

If the cube were initially aligned with the coordinate axes, the fractional change in

volume could be written

δV

V
= Exx + Eyy + Ezz = Eii , (4.12)

since Exx = δl A/l, etc. For an arbitrarily oriented cube, one could define a coordinate
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with appropriately aligned axes, and we would have δV /V = Eii ′ in this coordinate system

as well. However, as we showed in chapter 2, components of a tensor in different coordi-

nate systems are related by Eij ′ = qik q jl Ekl , where qij is the transformation matrix

between the coordinate systems. Thus, Eii ′ = qik qil Ekl = Ekk. The last equality is by

virtue of the relationship qik qil = δkl , which follows directly from equation (2.22).

Hence, Eii has the same value in any coordinate system, and is equal to the fractional

change in volume of a small, arbitrarily oriented cubical parcel. As indicated in chapter

2, the sum of the diagonal components of a second order tensor is called the trace of the

tensor, so

δV

V
= tr(E). (4.13)

The part of the displacement field associated with the strain tensor is simply called

the strain. If the strain tensor is diagonal in a particular coordinate system, a cube with

edges aligned with the coordinate axes becomes a rectangular parallelepiped after being

strained, i. e., the angles between edges remain 90°. Only the lengths of edges are

changed. This is called normal strain. However, if off-diagonal terms of the strain tensor

are non-zero, then not only the lengths of edges are changed, but also the angles between

them. When angles change, the cube is said to have been subject to shear strain.

Note that the concepts of normal and shear strain are dependent on the choice of

coordinate system. Figure 4.3 shows two cubes rotated 45° to each other, both subject to

the same strain tensor, with Exx = Eyy = 0 in the unprimed frame and Exy′ = Eyx′ = 0 in

the primed frame. In the unprimed frame the x − y face of the cube is deformed into a

diamond, while the same face of the cube aligned with the primed frame becomes a rec-

tangle. To show that the above statements about the unprimed and primed components of

E are consistent, note that the transformation from the unprimed frame to the primed

frame yields (in two dimensions)




2−1/2

−2−1/2

2−1/2

2−1/2





0

Exy

Exy

0





2−1/2

2−1/2

−2−1/2

2−1/2



=




Exy

0

0

−Exy




= 


Exx′
0

0

Eyy′



, (4.14)

showing that Exx′ = Exy and Eyy′ = −Exy. Therefore, it is important to specify the coordi-

nate system when discussing the normal and shear components of strain.
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y

x

x′
y′

Figure 4.3.  Effect of strain on two squares rotated 45° relative to each other.

Compatibility Conditions

Given a displacement field, it is easy to compute the strain tensor. However, the

inverse process involves solving a set of partial differential equations. Furthermore, not

all symmetric tensors can be strain tensors. This is most easily illustrated in the two

dimensional case in which

Exx =
∂ux

∂X
, Eyy =

∂uy

∂Y
, Exy = Eyx =

1

2


∂ux

∂Y
+

∂uy

∂X



. (4.15)

In this case, three functions of x and y are derived from only two functions, ux(X , Y ) and

uy(X , Y ). Therefore, Exx, Eyy, and Exy are not independent of each other. It is easily ver-

ified that

∂2Exy

∂X∂Y
=

1

2





∂2Exx

∂Y2
+

∂2Eyy

∂X2




. (4.16)

This is called a compatibility condition, and any candidate strain tensor in two dimen-

sions must satisfy equation (4.16). If it does not, it is impossible to obtain a consistent set

of solutions for the displacement field from integrating equations (4.15).

In the three dimensional case, the situation is somewhat more complicated. Six

independent strain components (recall that the strain tensor is symmetric) are derived

from three displacement components. One would therefore expect three compatibility

conditions rather than one, and indeed, satisfaction of equation (4.16) and the two
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additional equations

∂2Exz

∂X∂Z
=

1

2


∂2Exx

∂Z2
+

∂2Ezz

∂X2



(4.17)

and

∂2Eyz

∂Y∂Z
=

1

2





∂2Eyy

∂Z2
+

∂2Ezz

∂Y2





(4.18)

are required.  However, in addition, the three conditions

∂2Exx

∂Y∂Z
=

∂
∂X



−

∂Eyz

∂X
+

∂Ezx

∂Y
+

∂Exy

∂Z



, (4.19)

∂2Eyy

∂Z∂X
=

∂
∂Y



−

∂Ezx

∂Y
+

∂Exy

∂Z
+

∂Eyz

∂X



, (4.20)

∂2Ezz

∂X∂Y
=

∂
∂Z



−

∂Exy

∂Z
+

∂Eyz

∂X
+

∂Ezx

∂Y



(4.21)

need to be satisfied as well. Equations (4.19)-(4.21) are not completely independent of

equations (4.16)-(4.18). Note that differentiating equation (4.19) with respect to Y and

equation (4.20) with respect to X , and adding, yields the Z derivative of equation (4.16).

However, all six equations need to be satisfied in order to insure that a consistent dis-

placement field can be derived from the strain field.

The displacement field derived from a given strain field in general is not unique.

However, any two solutions for the displacement field should differ at most by a transla-

tion and a rigid rotation. This follows because any other difference would be reflected as

a difference in the strain field itself.

One final point needs to be made. With the small deformation approximation,

∂/∂xi ≈ ∂/∂Xi . We sometimes find it convenient to replace one by the other when the

small deformation approximation is valid. Thus, for instance, we might write the strain

tensor as

Eij =
1

2



∂ui

∂x j
+

∂u j

∂xi




(4.22)

in some situations.
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Continuous Motion -- Strain and Rotation Rates

Sometimes, particularly in the case of fluids, it is desirable to work in terms of the

rate of displacement rather than the displacement itself. The time rate of change of dis-

placement is simply the parcel velocity field,

v(X, t) =
δt → 0
lim 


u(X, t + δt) − u(X, t)

δt



. (4.23)

We can arbitrarily set the time origin at t, which makes u(X, t) = 0, and u(X, t +δt) arbi-

trarily small. Thus, the small deformation approximation is automatically satisfied in this

case.

The analogs to the strain and rotation tensors in this case are the strain rate tensor,

Dij =
1

2



∂vi

∂x j
+

∂v j

∂xi




, (4.24)

and the rotation rate tensor,

Ωij =
1

2



∂vi

∂x j
−

∂v j

∂xi




. (4.25)

The use of lower rather than upper case spatial variables in the above equations is inten-

tional. Since only times very near the reference time, t, are considered, we can assume

that x = X for the purposes of this derivation. The reference time can, of course, be

moved around at will.

The dual vector of Ωij is

−
1

2
εijk Ωij = −

1

4
εijk




∂vi

∂x j
−

∂v j

∂xi




= −
1

2
εkij

∂vi

∂x j
. (4.26)

This is simply (∇ × v)/2. The last step in the derivation of the above equation results

from εkij ∂v j /∂xi = −εkji∂v j /∂xi = −εkij ∂vi /∂x j . The vorticity, which is defined ω = ∇ × v,

and plays an important role in fluid mechanics, is thus twice the dual vector of the rota-

tion rate tensor. By analogy with the rotation tensor R, the dual of the rotation rate tensor

defines the direction and speed of the rigid body rotation of a small parcel. The magni-

tude of the vorticity vector is thus twice the local rigid body rotation rate.
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Problems

1. For the displacement field u(X) =βY i, do the following: a) Compute the rotation ten-

sor and the angle through which small parcels are rotated. b) Compute the strain tensor

and the angle which a small square initially aligned with the coordinate axes in the x − y

plane is skewed from square. c) Compute the principal axes and eigenvalues of the strain

tensor. What angles do the principal axes make with respect to the original coordinate

axes? d) What are the unit extensions in the directions of the principal axes? e) What is

the fractional change in volume of a small parcel as a result of the deformation? f) What

condition is required to make the small deformation approximation valid?

2. Repeat problem 1 for the displacement field u =βX.

3. A rectangular parallelepiped with respective x, y, and z dimensions a, b, and c, is

stretched uniformly δa in the x direction,δb in the y direction, andδc in the z direction.

a) Determine the strain tensor. b) Determine the exact fractional change in volume

assuming that δa is not small compared to a, etc. c) As the unit extensionsδa/a, etc.,

become small, show that this is well approximated by Eii .

4. For the strain tensor

ε




2

1

0

1

−3

3

0

3

1





where |ε| << 1, find the unit extension in the direction defined by the vector (3 1 − 1).

5. For the strain tensor defined in problem 4, find the change caused by the strain in the

angle between the two vectors with initial directions (3 1 − 1) and (1 0 3).

6. Show that the strain tensor

Eij = 


2αY

αX

αX

2βY



satisfies the compatibility conditions, and then integrate equations (4.15) to obtain a dis-

placement field consistent with Eij .

7. Repeat problem 6 for the strain tensor

Eij = 


0

αY +βX

αY +βX

0


.
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8. If v(x, t) represents the velocity field in a fluid, show that ∇ ⋅ v is the fractional time

rate of change of the volume of a small fluid element. Show also that it is minus the frac-

tional time rate of change of density and compare with equation (3.11).

References
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Chapter 5 -- Elastic Bodies

Most solid materials behave somewhat like a spring as long as the applied forces are

sufficiently small.  Figure 5.1 shows how a rectangular parallelepiped

l

l′

d ′
d

F F
x

z

Figure 5.1. Deformation of a rectangular parallelepiped under the influence of

uniform normal tractions on the left and right ends.

of length l, width (into the page) w, and depth d is deformed by normal forces F distrib-

uted uniformly over the left and right ends. The result is a somewhat longer and skinnier

parallelepiped of dimensions l′ × w′ × d ′, with l′ > l, w′ < w, and d ′ < d. As with a

spring, Hooke’s law holds, i. e., the amount of stretch is proportional to the applied

stretching force:

F ∝ l′ − l ≡ δl (5.1)

In addition the parallelepiped shrinks or stretches in the lateral dimensions in proportion

to the applied force:

F ∝ − (w′ − w) ≡ − δw F ∝ − (d ′ − d) ≡ − δd . (5.2)

Equations (5.1) and (5.2) can be represented in a form that is independent of the

actual dimensions of the parallelepiped by converting the force to applied traction and the

extensions and contractions to strain components. The fractional changes in dimension

of most materials are small as long as the forces are such that the material isn’t perma-

nently deformed or broken. Thus, the small deformation approximation holds, and

Exx = δl/l, E yy = δw/w, and Ezz = δd/d. In the computation of the traction applied to the
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ends of the parallelepiped, it doesn’t matter whether the old or new area is used, i. e.,

Txx = F /(wd) ≈ F /(w′d ′).

Rewriting equations (5.1) and (5.2) in terms of stress and strain,

Txx = EYExx νTxx = − EYEyy νTxx = − EYEzz , (5.3)

we have introduced the proportionality constants dependent upon the material, EY, called

Young’s modulus, and ν, called Poisson’s ratio. Poisson’s ratio relates the (negative) unit

extension in the directions transverse to the applied traction to the unit extension in the

direction of the traction:

ν = −
Eyy

Exx
= −

Ezz

Exx
. (5.4)

Implicit in this is the assumption that the characteristics of the material medium do

not change with direction -- otherwise it is conceivable that Eyy might differ from Ezz,

requiring two different values of ν for the two transverse directions. This assumption of

an isotropic medium is approximately valid for many, but by no means all materials.

Metals tend to be isotropic unless they are specially treated, but wood, for instance,

behaves very differently along different axes. Many composite materials that consist of

strong, but brittle fibers embedded in a supporting matrix are highly anisotropic by

design. Fiberglas is an example of such a material.

Hooke’s law implies that a deformed body returns to its original shape when the

applied force is released. Beyond a certain limit on the stress, called the elastic limit, all

real materials begin to deform in an irreversible manner. This is called plastic deforma-

tion. Beyond plastic deformation, the material eventually breaks. Repeated cycling of

applied forces, even within the elastic limit, can cause some materials to break as well.

This is the phenomenon of fatigue. Other materials work harden or anneal under

repeated cycling, i. e., become more or less brittle. These phenomena are beyond the

scope of this book, and we shall consider only the behavior of isotropic solid materials

within their elastic limit.

The above example shows the effect of applied normal forces. When tangential

forces are applied to a rectangular parallelepiped, as in figure 5.2, the parallelepiped takes

on a nonrectangular form, with the angle α defining the deviation from rectangularity.

The tangential traction on the top and bottom surfaces is Txz = F /(lw), where w is the
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α
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z

l

Figure 5.2. Deformation of a rectangular parallelepiped under the influence of

shear tractions.

dimension of the parallelepiped normal to the page. From equation 4.10, α = 2Exz, and

within the elastic limit, Txz ∝ E xz. This is usually written

Txz = 2µExz , (5.5)

whereµ is a proportionality constant called the shear modulus of the material.

Omitted from figure 5.2 for clarity are the tangential forces on the left and right ends

of the parallelepiped. The stress tensor is symmetric, i. e., Txz = Tzx, and applied trac-

tions are required to match the stress tensor on the ends as well as the top and bottom of

the parallelepiped.

The above examples illustrate particular instances of the general stress-strain rela-

tionship for isotropic elastic media, which we develop in the next section. Following that,

we derive formulae for the potential and kinetic energies in an isotropic elastic medium.

Stress-Strain Relationship for an Isotropic Medium

Hooke’s law behavior implies that there is a linear relationship between the compo-

nents of stress and the components of strain. The most general linear, homogeneous rela-

tionship between stress and strain components consists of six equations, one for each of

the stress components. (There are six rather than nine in three dimensions due to the
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symmetry of the stress tensor, which makes three of the possible nine equations redun-

dant.) Each of the stress equations in turn contains linear contributions from each of the

six independent strain components. (Recall that the strain tensor is also symmetric.) The

result is 36 independent coefficients characterizing the material.

In reality, even the most anisotropic elastic medium can be characterized by fewer

than 36 constants, and in an isotropic medium the number of independent constants

reduces to two. We now see how this comes about. First, for an isotropic medium, the

principal axes of the stress and strain tensors will be coincident. This is equivalent to

saying that a rectangular parallelepiped of material subject to applied forces normal to its

surfaces retains its rectangular shape, as illustrated in figure 5.1 -- in other words, normal

forces don’t result in the type of shear deformation shown in figure 5.2.

Since the principal axes of stress and strain coincide, and since an isotropic material

has the same characteristics in all directions, no generality is lost by writing the stress-

strain relationship in the principal axis coordinate system. In these coordinates all off-

diagonal terms are zero, leaving only the three diagonal components of stress and strain.

This reduces the 36 independent coefficients to nine, as shown below:

Txx = AExx + BEyy + CEzz

Tyy = DExx + FEyy + GEzz (5.6)

Tzz = HExx + IEyy + JEzz

Further reductions follow from ideas of symmetry. Since the material is isotropic,

the relationship between normal stress and strain in the same direction should be the same

in all directions, which implies that A = F = J . Furthermore, relationship between a nor-

mal stress in one direction and normal stress in another direction should also be indepen-

dent of the two directions, which results in B = C = D = G = H = I . Equation (5.6) thus

becomes

Txx = AExx + BEyy + BEzz

Tyy = BExx + AEyy + BEzz (5.7)

Tzz = BExx + BEyy + AEzz
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We rewrite equation (5.7) as

Txx = (A − B)Exx + B(Exx + Eyy + Ezz)

Tyy = (A − B)Eyy + B(Exx + Eyy + Ezz) (5.8)

Tzz = (A − B)Ezz + B(Exx + Eyy + Ezz)

because this is easily recognized to correspond to the component notation form of the ten-

sor equation

Tij = (A − B)Eij + Bδij Ekk. (5.9)

Since equation (5.9) is valid in the principal axis coordinate system, and since it is a ten-

sor equation, it is equally valid in any coordinate system. Thus, in a non-principal axis

system in which off-diagonal terms are non-zero, we see that, for instance,

Txz = (A − B)Exz, which by comparison with equation (5.5) shows that (A − B) = 2µ.

We conventionally write equation (5.9) in terms of the so-called Lam´e constants, λ, and

the previously defined shear modulus, µ:

Tij = λδij Ekk + 2µEij . (5.10)

Given the strain tensor, E, equation (5.10) shows how to compute the stress tensor,

T. Sometimes we need the reverse relationship in which the strain tensor is computed in

terms of the stress tensor. In order to invert equation (5.10), we need to calculate the

trace of the strain tensor, Ekk, in terms of the stress tensor. This is easily done by taking

the trace of the entire equation,

Tkk = (3λ + 2µ)Ekk, (5.11)

and solving for Ekk. Combining this and equation (5.10) results in

Eij =
1

2µ
Tij −

λ
2µ(3λ + 2µ)

δij Tkk. (5.12)

This is conventionally written in terms of the Poisson ratio and Young’s modulus as

Eij = −
ν

EY
δij Tkk +

(1 +ν)

EY
Tij , (5.13)

which shows that the Lam´e constants are related to the Poisson ratio and Young’s modu-

lus by
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ν
EY

=
λ

2µ(3λ + 2µ)
(5.14)

and

(1 +ν)

EY
=

1

2µ
. (5.15)

The characteristics of an isotropic, elastic medium may be expressed either in terms of λ
andµ or in terms ofν and EY.

For the special case shown in figure 5.1, in which Txx is the only non-zero stress

component, equation (5.13) reduces to

EYExx = Txx (5.16)

and

EYEyy = EYEzz = − νTxx, (5.17)

which agrees with the analysis of this case in the beginning of this chapter.

It is important to distinguish between this situation, in which the y and z faces of the

parallelepiped are allowed to move in response to normal tractions applied to the x faces,

and the one in which the lateral faces are constrained not to move. In the latter case,

Eyy = Ezz = 0, but the corresponding normal stresses, Tyy and Tzz are nonzero. This is

because additional tractions must be applied to the lateral faces to keep them from mov-

ing in response to applied tension or compression in the x direction.

When the lateral faces are constrained, equation (5.10) shows that

Txx = (λ + 2µ)Exx (5.18)

Tyy = Tzz = λExx =
λ

λ + 2µ
Txx. (5.19)

In the unconstrained case, the ‘‘stif fness’’ of the material, i. e., amount of stress required

per unit strain is simply EY, while in the constrained case it is λ + 2µ. By manipulating

equations (5.14) and (5.15) it is possible to show that

λ + 2µ =
EY(1 − ν)

(1 +ν)(1 − 2ν)
=

EY

1 − ν2


1 +

ν2

1 − 2ν



> EY, ν ≤ 1/2 . (5.20)
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Thus, when the parallelepiped is laterally constrained, it is stiffer under stretching and

compression than when the lateral faces are free.

The limit ν = 1/2 is interesting to explore. Taking the trace of equation (5.13)

results in

EYEkk = (1 − 2ν)Tkk. (5.21)

Recall that Ekk is the fractional change in volume of a small parcel of material. This is

normally expected to be positive under tensional stresses, i. e., Tkk > 0, and negative

under compressional stresses. Thus, ν < 1/2. The limitν = 1/2 implies no change in vol-

ume regardless of the stress, and therefore corresponds to the case of an incompressible

material. Note that in the above example an incompressible material has infinite stiffness

to normal stresses if the lateral faces are constrained.

From chapter 2, the pressure is defined as p = −Tii /3. From equations (5.18) and

(5.21) it is clear that the pressure is linearly related to the fractional change in volume of

an isotropic elastic medium by

p = − kEii , (5.22)

where the bulk modulus, k, can be related to the Poisson ratio and Young’s modulus:

k = EY/[3(1 − 2ν)]. (5.23)

Energy in Isotropic Elastic Media

As shown in elementary mechanics texts, a spring with spring constant κ exhibits

restoring force F = −κx when stretched x from equilibrium, and stores potential energy

U = κx2/2. A similar quadratic dependence on deformation exists for elastic media. In

this section we develop expressions for both the kinetic and elastic potential energies of

an isotropic elastic medium.

The expression for kinetic energy of an elastic medium is particularly simple in the

small deformation approximation. In this case the velocity of parcels in the Eulerian rep-

resentation, v = du/dt, may be approximated by ∂u/∂t, since parcels don’t move very far

from their initial position. The vector u is the parcel displacement from its initial posi-

tion, and the approximation amounts to ignoring v ⋅ ∇u, which is quadratic in u, and thus

negligible as long as |u| is sufficiently small. In this case the kinetic energy is simply the
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volume integral of the kinetic energy density:

K = ∫
ρ
2

|v|2dV . (5.24)

The potential energy takes somewhat more effort to derive. We begin by noting that

the work due to external forces on a body can be divided into a contribution due to body

forces and to tractions on the body. The incremental work due to body forces associated

with a small change in the displacement δui is simply

δWbody = ∫ δui ρ Bi dV , (5.25)

where the integral is over the volume of the body and Bi is the body force per unit mass.

The incremental work due to the applied tractions is in the form of an integral over the

surface of the body:

δWtrac = ∫ δui Tij n j dA, (5.26)

where Tij n j = ti is the applied traction. Equation (5.26) may be converted to a volume

integral over the material using the divergence theorem:

δWtrac = ∫
∂

∂x j
(δuiTij ) dV = ∫ 


∂δui

∂x j
Tij + δui

∂Tij

∂x j



dV . (5.27)

Combining the work from the two contributions results in

δW =δWbody + δWtrac = ∫




∂δui

∂x j
Tij + δui



∂Tij

∂x j
+ ρBi






dV . (5.28)

The terms within parentheses are simply the right side of equation (3.21), which is the

equation of motion, and therefore equal ρ(dvi /dt). Setting this toρ(∂vi /∂t) by the small

deformation approximation, and relating the change in the displacement to a the velocity

field over time interval δt, δui = viδt, equation (5.28) becomes

δW = ∫




∂δui

∂x j
Tij +

ρ
2

∂|v|2

∂t
δt




dV , (5.29)

where vi vi = |v|2.

Assuming that the density is constant, the second term on the right side of equation

(5.29) reduces to δ(ρ|v|2/2), or the change in the kinetic energy density. In the first term

the δ and the differentiation may be interchanged. From equation (4.2),
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∂ui /∂x j = Eij + Rij , and since Rij Tij = 0 due to the antisymmetry of Rij , the first term may

be written δEij Tij . Note that we have differentiated the displacement ui with respect to

x j rather than Xj , because with the small deformation approximation, the two differ only

negligibly.

The first term may be further simplified using the stress-strain relationship, equation

(5.10):

δEij Tij = δEij (λδij Ekk + 2µEij ) =

λ δEii Ekk + 2µδEij Eij =

δ(λE2
kk + 2µEij Eij )/2 =

δ(Eij λEkkδij + 2µEij Eij )/2 = δ(Eij Tij )/2. (5.30)

Combining all this, and interchanging the δ and the integration (possible because the inte-

gration volume is assumed to remain constant), the incremental work due to external

forces may be written

δW =δ ∫ (Eij Tij + ρ|v|2)/2 dV . (5.31)

Since it was possible to extract the δ from the the integral, equation (5.31) is a per-

fect differential, and the total work, made up of a sum of increments of work, can be

expressed in terms of the stress, strain, and velocity fields, independent of of how this

state was reached:

W = ∫ (Eij Tij + ρ|v|2)/2 dV . (5.32)

By conservation of energy, work done on a parcel of material must be reflected in an

increase in the sum of kinetic, potential, and internal energies of the material. The second

term is simply the kinetic energy as defined in equation (5.24). We identify the first term

as the elastic potential energy,

U = ∫ Eij Tij /2 dV , (5.33)

and note that conversion to internal energy doesn’t occur in the idealization of an elastic

body.
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We now apply equation (5.33) to a few simple cases of uniform stress and strain.

For example, when normal tractions are applied to the ends of a parallelepiped of length

l, width w, and height h, Txx = EYExx from equation (5.3). If the other surfaces of the

cube are free, all other components of the stress tensor are zero, and other components of

the strain tensor don’t enter the expression for energy, which is simply

U = lwhEYE2
xx/2 = EYwhδl2/2l, (5.34)

where δl = lE xx is the amount the parallelepiped is stretched in the x direction. The

‘‘spring constant’’ of the parallelepiped is thus κ = EYwh/l.

For a parallepiped with the lateral faces constrained, Tyy and Tzz are nonzero, but all

strain components except Exx are zero. Equation (5.18) gives Txx = (λ + 2µ)Exx in this

case, and

U = lwh(λ + 2µ)E2
xx/2 = (λ + 2µ)whδl2/2l, (5.35)

and the new spring constant is κ = (λ + 2µ)wh/l, which is greater than the above case in

which the lateral faces are unconstrained.

When a cube of side l is subjected to shearing tractions that result in shear strain

Exy = Eyx, the corresponding components of stress are Txy = Tyx = 2µExy. If all other

stress and strain components are zero, the potential energy is

U = 2µl3(E2
xy + E2

yx)/2 = 2µl3E2
xy = µl3α2/2, (5.36)

whereα, defined in equation (4.10), is the deviation in the angle between the x and y

faces from π/2.

Problems

1. Given

ν
EY

=
λ

2µ(3λ + 2µ)
,

(1 +ν)

EY
=

1

2µ
,

solve for λ andµ in terms of EY andν, and vice versa.

2. For a rectangular parallelepiped aligned with the coordinate axes, assume that the y

faces are constrained (i. e., Eyy = 0) and the z faces are free (Tzz = 0). For a uniform nor-

mal stress, Txx, find Exx.
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3. Using the results of problem 2, show that Txx/Exx is intermediate in this case between

the xx stress-strain ratio for total lateral constraint (equation (5.20)) and no lateral con-

straint (equation (5.3)).
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Chapter 6 -- Waves in an Elastic Medium

As our first example of elastic body mechanics we consider waves in an isotropic

elastic medium. We limit our discussion to small amplitude waves so that the small

deformation approximation is valid. For an isotropic elastic medium we will find two

types of waves, longitudinal waves, in which the direction of material oscillation is paral-

lel to the direction of wave motion for plane waves, and transverse waves, in which the

material oscillates in a plane normal to the wave propagation direction. This is in con-

tradistinction to the case of sound waves in a liquid or a gas, in which only one type of

wave exists, the longitudinal wave.

Transverse Wave

Longitudinal Wave

−180° 0° 180°

Figure 6.1. Displacement fields for longitudinal and transverse waves moving

to the right. The dashed boxes show how an initial cube of material is

deformed.

Figure 6.1 shows the displacement fields in these two types of waves.
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Seismologists call longitudinal waves P waves and transverse waves S waves, which

respectively originate from the Latin terms undae primae and undae secundae, or first

waves and second waves. This terminology arose from the fact that longitudinal waves

travel faster than transverse waves. P waves therefore arrive first after a distant earth-

quake, followed by the S waves. See Leet (1950) for an elementary description of these

waves.

In this chapter we first discuss waves in an unbounded medium, investigating ini-

tially the case of plane waves. We then extend the distinction between the two types of

waves to non-plane case in which P waves are not always strictly longitudinal and S

waves are not necessarily purely transverse. We discover that more descriptive terms for

the two types are respectively irrotational and equivoluminal. We finally examine the

behavior of waves near a free boundary to the elastic medium, such as might be presented

by the surface of the earth. We find that elastic waves reflect off the boundary and see

that reflection can convert P waves to S waves and vice versa.

Waves in an Unbounded Medium

For problems involving elastic waves it is generally most productive to write the

governing equations entirely in terms of the displacement field u. Ignoring body forces,

which play no central role in elastic waves, Newton’s second law in continuum form, rep-

resented by equation (3.4), may be written in component notation as

ρai =
∂Tij

∂x j
. (6.1)

The stress-strain relationship for an isotropic elastic medium is given by equation (5.10).

Eliminating the strain in favor of the displacement field using equation (4.2) results in

Tij = λ
∂uk

∂xk
δij + µ


∂ui

∂x j
+

∂u j

∂xi




, (6.2)

which may be substituted in equation (6.1) to yield

ρ
∂2ui

∂t2
= (λ + µ)

∂2u j

∂xi∂x j
+ µ

∂2ui

∂x j ∂x j
. (6.3)

The small deformation approximation makes the acceleration equal ∂2ui /∂t2.
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Equation (6.3) may be rewritten in vector notation as follows:

ρ
∂2u
∂t2

= (λ + µ)∇(∇ ⋅ u) + µ∇ 2u. (6.4)

If the first term on the right side of equation (6.4) were dropped, it would be the classic

wave equation, and the wave propagation speed would be c = (µ/ρ)1/2. It turns out that

even with this term, equation (6.4) represents waves. The additional complexity serves to

distinguish the two types of elastic waves discussed above.

In order to demonstrate this, let us assume a plane wave moving in the plus x direc-

tion. We provisionally assume that the material oscillations associated with the wave are

partially longitudinal and partially transverse. We will find that such a combination is

impossible, and that a plane wave must be purely one or the other, with each component

moving at a distinct speed.  The assumed form for u is

u = (Ut + Ul i) exp[i(kx − ωt)], (6.5)

where Ut is the transverse component, i. e., Ut ⋅ i = 0, Ul is the longitudinal component,

and k andω are respectively the assumed wavenumber and frequency of the wave.

We note that ∇2u = − k2u in this case. However, ∇ ⋅ u = ikU l exp[i(kx − ωt)], so

the first term on the right side of equation (6.4), ∇(∇ ⋅ u) = − k2U l exp[i(kx − ωt)]i,

involves only the longitudinal oscillation. Substituting equation (6.5) in equation (6.4)

and canceling the common exponential factor results in

− ρω2(Ut + Ul i) = − (λ + µ)k2U l i − µk2(Ut + Ul i), (6.6)

which can be written

[ρω2 − µk2]U t + [ρω2 − (λ + 2µ)k2]U l i = 0. (6.7)

Since Ut is normal to i, both terms in the above equation have to be zero. This is only

possible if one or the other of Ut or Ul is zero, since the two terms in square brackets

can’t be zero simultaneously. Thus, plane waves must be either purely transverse or

purely longitudinal. In the transverse case (U l = 0) we have a phase speed for the waves

of

ct =
ω
k

= 

µ
ρ




1/2

, transverse, (6.8)

while longitudinal waves move with a speed



-71-

cl = 

λ + 2µ

ρ



1/2

, longitudinal. (6.9)

It is clear that cl > ct , as asserted at the beginning of this chapter, since λ + 2µ > µ.

Examination of figure (6.1) suggests that longitudinal and transverse waves respec-

tively have certain important properties. The dashed boxes show how a tiny cube of

material is deformed at different locations in each type of wave. At the 0° phase line in

the longitudinal wave, the cube is stretched in the direction of wave propagation, while at

the ±180° lines, the cube is compressed in this direction. Thus, volume changes take

place in small material elements as a longitudinal wave passes. However, no rotation of

volume elements occurs.  In other words, the displacement field is irrotational.

On the contrary, small cubes of material maintain constant volume when a trans-

verse wave passes, which means that the displacement field is equivoluminal. However,

the cubes are alternately sheared one way and then the other in the direction normal to

wave propagation. The displacement field for oscillations in the ±y direction is given by

equation (6.5) as

u = Ut j exp[i(kx − ωt)]. (6.10)

From equation (4.2), Ryx = − Rxy = ikUt j exp[i(kx − ωt)]/2. Thus, the rotation tensor is

non-zero, and small parcels are alternately rotated one way and the other as a transverse

wave passes. (Note that since Eyx = Ryx in this case, they are also subject to alternating

strains.)

The irrotational nature of plane longitudinal waves and the equivoluminal nature of

transverse waves suggests a way to generalize to the non-plane wave case. Any vector

field may be represented as the sum of the gradient of a scalar and the curl of a vector:

u = ∇ φ+ ∇ × a. (6.11)

Since the curl of a gradient is zero, ∇φ is irrotational. Likewise, since the divergence of a

curl is zero, ∇ × a is equivoluminal. Substituting equation (6.11) into equation (6.4)

results in

ρ
∂2∇ φ
∂t2

+ ρ
∂2∇ × a

∂t2
= µ∇ 2∇ φ+ µ∇ 2∇ × a + ( λ + µ)∇∇ 2φ, (6.12)

where we have recognized that ∇ ⋅ (∇ × a) = 0.
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Taking the divergence of equation (6.12) yields a wave equation

ρ
∂2χ
∂t2

= (λ + 2µ)∇ 2χ, (6.13)

where

χ = ∇ 2φ. (6.14)

These equations describe purely irrotational waves that reduce to longitudinal waves in

the plane wave case.  Similarly, taking the curl of equation (6.12) yields

ρ
∂2b
∂t2

= µ∇ 2b, (6.15)

where

b = ∇ × (∇ × a) = ∇(∇ ⋅ a) − ∇ 2a. (6.16)

Since only the rotational part of a yields a component of the displacement field, we can

set ∇ ⋅ a = 0 without loss of generality. Thus, equation (6.16) simplifies to b = − ∇2a as

long as a is constrained to be divergence-free.

As an example of a non-plane wave, imagine an irrotational wave with the structure

φ = Φ exp[i(kx − ωt) + mz], (6.17)

where Φ is a constant. Substituting this into equations (6.13) and (6.14) yields the rela-

tionship

ω2 = c2
l (k

2 − m2) (6.18)

and the displacement components

(ux uz) = (ikφ mφ). (6.19)

Since this represents a wave moving in the x direction with amplitude that increases with

z, it is definitely not a longitudinal wave, even though it is irrotational. Waves of this

type occur when the elastic medium is bounded by a free surface at z = 0. They are

called surface waves due to the fact that they have their maximum amplitude at the sur-

face, decaying toward the interior with an e-folding length of m−1. Real surface waves

actually are made up of a combination of irrotational and equivoluminal surface waves

that march in lockstep. This is impossible for plane waves because these two wave types

move with different speeds. However, the speed c =ω/k = cl (1 − m2/k2)1/2 of a surface
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wave can be adjusted by changing the value of m. The combination is such that zero trac-

tion exists on the bounding surface. Surface waves are important in seismology.

The elastic potential energy density is Eij Tij /2 and the kinetic energy density is

ρ|v|2/2. It turns out that these two densities are everywhere equal for elastic plane waves.

We now demonstrate this for longitudinal plane waves. For a longitudinal plane wave

moving in the x direction, the only non-zero component of the strain tensor is

Exx = ∂ux/∂x. Assuming that the physical displacement is given by the real part of equa-

tion (6.5). For a longitudinal wave u = Ul i cos(kx −ωt), so Exx = − kUl sin(kx −ωt).

From equation (5.10), Txx = (λ + 2µ)Exx, so the elastic energy density is

(λ + 2µ)k2U2
l sin2(kx −ωt)/2. On the other hand, the material velocity is v = ∂u/∂t in the

small deformation approximation, so the kinetic energy density is ρω2U2
l sin2(kx −ωt)/2.

Comparing these two densities shows that they are equal since ρω2 = (λ + 2µ)k2.

kinetic energy density

potential energy density

displacement

Figure 6.2. Relationship between wave displacement kinetic and potential

energy densities in an elastic wave.

Figure 6.2 illustrates the relationship between the energy densities and the wave dis-

placement. Both the potential and the kinetic energy densities are maximum where the

displacement is zero, because both the strain and the material velocity are maximal there.
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Reflection of Seismic Waves at the Earth’s Surface

Consider now a longitudinal or P wave incident on an unconstrained boundary to the

elastic material. An example of this phenomenon is the approach of a P wave to the

earth’s surface. Since the surface is unconstrained, the applied traction must be zero.

Under these circumstances, there are two rather than one reflected waves, a P wave, with

an angle of reflection θp equal to the angle of incidence of the incoming P wave, and an S

wave, with a smaller angle of reflection, θs.

θp

θs

T ⋅ k = 0 at z = 0

θp

incident P wave

reflected P wave

S wave
reflected

x

z

Figure 6.3. Illustration of the reflection of a P wave from a stress-free bound-

ary at z = 0. Reflected P and S waves are created.

Figure 6.3 illustrates the situation.

The smaller angle of reflection of the S wave is a consequence of the smaller speed

of the S wave relative to the P wave. If a plane wave has the space and time dependence

exp[i(kx + mz −ωt)], the phase speed of the wave is c =ω/(k2 + m2)1/2. Since all three

wave components must march in phase at z = 0, k andω must be the same for all. A

smaller phase speed with k andω held constant implies a larger value of m. Since the

incident or reflected angle is θ = tan−1(k/m), a larger m implies a smallerθ. Since

sinθ = k/(k2 + m2)1/2 = kc/ω, the relationship between θp andθs can be written
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sinθp

sinθs
=

cl

ct
≡ r . (6.20)

This is nothing more than a version of the Snell’s law of optics.

We now attempt to compute the amplitudes of the two reflected waves relative to the

amplitude of the incident wave. To do this we assume a superposition of the three plane

waves, the transverse oscillation of the S wave being in the x − z plane:

(ux, uz) = I (sinθp, − cosθp) exp[i(kx − mpz −ωt)] +

P(sinθp, cosθp) exp[i(kx + mpz −ωt)] +

S( − cosθs, sinθs) exp[i(kx + msz −ωt)], (6.21)

where I , P, and S are respectively the amplitudes of the incident P wave, the reflected P

wave, and the reflected S wave, and mp and ms are respectively the wave numbers in the

z direction for P and S waves. The arrows in figure 6.3 show what are considered to be

positive directions for I , P, and S.

The condition of no traction at z = 0 is simply that T ⋅ k = 0 there. Since there is

nothing with any dependence on y in the problem, this reduces to Txz = Tzz = 0. Since

Txz = 2µExz and Tzz = λ(Exx + Ezz) + 2µEzz, the zero traction condition reduces to the

two equations

∂ux

∂z
+

∂uz

∂x
= 0 (6.22)

and

λ
∂ux

∂x
+ (λ + 2µ)

∂uz

∂z
= 0. (6.23)

Substituting equation (6.21) in these, setting z = 0, and canceling the common factor

exp[i(kx − ωt)] results in

P +
2 sin2 θs − 1

2 cosθp sinθs
S = I (6.24)

and

P +
(r 2 − 1) sinθp cosθs

sin2 θp + r2 cos2 θp

S = − I , (6.25)
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where we have used r = sinθp/ sinθs, mp = k/ tanθp, and ms = k/ tanθs.

These equations can be solved for P and S in terms of I ,θp, and r, but the solution

is quite messy. Instead, we shall explore various limits to the equations as a means to

understand what they are telling us.

For normal incidence, θs = θp = 0. The only way equation (6.24) can be satisfied is

to have S = 0. In this limit equation (6.25) tells us that P = − I . Thus, (given the sense

of the arrows in figure 6.3), the free surface oscillates up and down with an amplitude that

is twice the amplitude of the incident wave.

For nearly grazing incidence of the incoming P wave, θp → π/2. In this limit equa-

tion (6.24) shows that S → 0 in this case as well. Thus, from equation (6.25) we again

have P → − I . The net oscillation of the free surface is thus zero, and we find that a free

surface doesn’t move at all in the limit of grazing incidence reflection of a P wave.

In the intermediate case the free surface undergoes a complex oscillatory motion in

response to a reflecting P wave.

Problems

1. Show that in a transverse plane seismic wave the principal axes of strains are rotated

45° from the direction of wave propagation.

2. Look up the appropriate constants for steel to find the propagation speeds of plane P

and S waves in this medium.

3. Consider a thin plate of elastic material of densityρ, with its faces at z = 0 and z = d

stress-free. For longitudinal elastic waves moving in the x direction in the plate with

wavelength λ >> d, one can assume that Txz = Tyz = Txy = Tzz = 0 and Eyy = 0. This

implies a relationship between Exx and Txx for longitudinal waves. Find this relationship

and the resulting speed of such waves.

4. Consider longitudinal waves moving normal to a plate of thickness d. Since they

reflect at the stress-free surfaces of the plate, the general solution is a superposition of

waves moving in opposite directions through the plate, which together constitute a stand-

ing wave. Find the frequencies of such standing modes in terms of the plate thickness, its

density, ρ, and the Lam´e constants.
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5. Show that the elastic potential and kinetic energy densities are equal for transverse

elastic waves.

6. Show that surface irrotational waves move more slowly than plane irrotational waves.

7. Compute the reflected P and S wave amplitudes when a P wave encounters a fixed

plane surface at angle of incidence θp. Is there a value of θp for which the amplitude of

the reflected P wave is zero?

References
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Chapter 7 -- Statics of Elastic Media

In the statics of elastic media we find it more convenient to work with the stress and

the strain tensors than with the displacement field. This is because boundary conditions

on statics problems are usually expressed as applied surface tractions, which impose con-

straints on the stress tensor. In such problems there are three elements that must be con-

sidered. First, Newton’s second law must be satisfied for the static case, i. e.,

∇ ⋅ T + ρB = 0. (7.1)

In the usual situation in which the body force per unit mass is derivable from a scalar

potential, i. e., B = − ∇U , and in which the mass density ρ is constant, the above equation

can be written

∇ ⋅ (T − ρU I) = 0. (7.2)

In many cases of interest ρU I is much smaller in magnitude than T, and can be ignored.

The second element is that boundary conditions on the stress must be satisfied. For

problems in which one seeks the response of a body to a distribution of applied tractions,

one must be sure that T ⋅ n equals the applied tractions at every point on the surface of the

body.

The third element is that the compatibility conditions on the strain tensor must be

satisfied. These translate, via equation (5.13), into conditions on the stress tensor. In

three dimensions, the three independent compatibility conditions plus the three relation-

ships implied by Newton’s second law are sufficient to uniquely determine the six inde-

pendent stress components as long as the boundary conditions are properly applied. In

two dimensions, the single compatibility condition and the two components of Newton’s

second law similarly determine the three independent stress components.

Note that the strain tensor as a whole must satisfy the compatibility conditions. In

particular, that part of the stress tensor resulting from body forces, ρU I, may not by itself

generate a compatible strain tensor. (See, for example, problem 2.) In this case, the

above separation of T into inhomogeneous and homogeneous parts may or may not be

useful.
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In this chapter we examine a number of simple problems in the statics of isotropic

elastic media. We first examine torsion in a cylindrical bar, obtaining the macroscopic

torsional spring constant in terms of the shear modulus and the dimensions of the bar. We

then explore pure bending of a beam. An approach to two dimensional problems is then

outlined, and we finally look into the use of energy methods to understand buckling of

thin beams under compressional loads.

Torsion on a Cylinder

Imagine a right circular cylinder of radius R and length l, as

z

x

y

x

R

B

A

l

End View

y

Figure 7.1.  Definition sketch for torsion applied to ends of a cylinder.

illustrated in figure 7.1. The ends of the cylinder are subjected to tangential tractions as

shown in the end view in figure 7.1. The tractions on the two ends of the cylinder take

the opposite sense, so the the cylinder is in torque balance, and the sides of the cylinder
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are assumed to be traction-free.

We assume a traction of the form t = (−Cy Cx 0) applied to end A of the cylinder,

where C is a constant, with minus this applied to end B. A stress tensor that matches

these tractions is

Tij =




0

0

−Cy

0

0

Cx

−Cy

Cx

0





, (7.3)

as is easily shown by dotting T with ± k. The zero stress condition is also satisfied on the

sides of the cylinder. We show this by noting that the unit outward normal on the sides of

the cylinder is n = (x/r y/r 0), where r = (x2 + y2)1/2. T ⋅ n = 0 in this case.

We now compute the torque on each end of the cylinder resulting from the applied

tractions. The torque is given by the formula

N = ∫ x × t dA, (7.4)

where t dA is the force applied to the surface element dA and x is the moment arm from

the pivot point, taken here as the origin. The integration adds up the contribution to the

torque from all the surface elements, and the integration is taken to be over one or the

other of the cylinder ends. The cross product in equation (7.4) takes the form

x × t = − C(ix + jy)z + kCr2. The first two terms cancel by symmetry in the integration,

and the z component of the torque, which is the only surviving component, is

Nz =
R

0
∫ Cr2 2πr dr =

πCR4

2
. (7.5)

Thus, the constant C = 2Nz/(πR4) in terms of the applied torque and the radius of the

cylinder.

We now check the other two elements to the solution of this problem. It is easy to

verify that ∇ ⋅ T = 0 in this case, and it remains only to obtain the components of the

strain tensor and check to see that the compatibility conditions are satisfied. Since the

diagonal components of the stress tensor are zero in this case, equation (5.10) can be used

to show that

Eij =
1

2µ
Tij =

1

2µ





0

0

−Cy

0

0

Cx

−Cy

Cx

0





. (7.6)
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This strain tensor is easily shown to satisfy the compatibility conditions, equations (4.16)

- (4.21). Therefore, the stress tensor postulated above is indeed a solution to the problem

of torsional tractions applied to the ends of a cylinder.

Let us now determine how much the cylinder is twisted by the applied torques. To

do this, we must obtain the displacement field u from E. From equation (7.6), we see that

since ∂ux/∂x = Exx = 0, ux = f (y, z), where f (y) is an arbitrary function of y and z.

Similarly, uy = g(x, z), and uz = h(x, y), where g(x, z) is an arbitrary function of x and z

and h(x, y) is an arbitrary function of x and y. Now,

Exz = Ezx =
1

2


∂ux

∂z
+

∂uz

∂x



=
1

2


∂ f

∂z
+

∂h

∂x



= −
Cy

2µ
, (7.7)

while

Eyz = Ezy =
1

2


∂uy

∂z
+

∂uz

∂y



=
1

2


∂g

∂z
+

∂h

∂y



=
Cx

2µ
. (7.8)

There is not a unique displacement field corresponding to this strain tensor. In par-

ticular, displacement fields that differ by a translation or a rigid rotation yield the same

strain tensor. However, displacements and rigid rotations don’t interest us here, as we

seek only the amount that the cylinder has been twisted. We therefore look for a simple

particular solution from which we can deduce this twist.  Such a solution is

u = ( − Cyz/µ Cxz/µ 0). (7.9)

A quick check shows that Exy = 0 with this choice of u, as is necessary for consistency.

Examination of equation (7.9) shows that the displacement is in the form of a rota-

tion about the z axis through an angle Cz/µ, as long as the angle of rotation is small.

Thus, the twisting of the cylinder increases linearly along the cylinder, and the rotation

angle of one end of the cylinder relative to the other is α = Cl/µ = 2lNz/(πR4µ). Thus, the

torque required to twist the cylinder through an angle α is

Nz = 

πR4µ

2l


α = κα , (7.10)

whereκ = πR4µ/(2l) is the torsional spring constant for the cylinder.

Technically, this result is only valid if |α| << 1. However, when phrased in terms of

twist angle rather than displacements, the result is valid for arbitrary twist angles as long
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as the twist angle for a cylinder segment of length comparable to the cylinder diameter is

small. This may be understood by thinking of a long, skinny cylinder as a sequence of

shorter cylinders, applying the theory rigorously to each segment, and adding up the

accumulated twist.

Bending of a Beam

The solution to the problem of the pure bending of a beam forms the basis for the

engineering theory of beams. It turns out that when a beam is much longer than it is

wide, the bending part of any general deformation is the most important part. Thus, the

solution to this problem has broad application.

w

z

h x

y

Figure 7.2. Section of a bent beam. The upper part of the beam is in tension,

the lower part, compression.

Figure 7.2 shows a segment of a bent beam. The arrows indicate the variation in

traction across a surface cutting the beam, with tensional stress occurring on the convex

side of the beam and compressional stress on the concave side. These stresses are caused

by the stretching and compression in the x direction associated with the bending. It

therefore makes sense to postulate a trial stress tensor for the beam material that takes the

form

Tij =




Cz

0

0

0

0

0

0

0

0





, (7.11)
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where C is a constant. This exhibits the necessary normal stress in the x direction, and

furthermore satisfies the stress-free boundary conditions on the sides of the beam. It is

also easy to show that ∇ ⋅ T = 0, so Newton’s second law is satisfied.

Equation (5.13) shows that

Exx = Txx/EY = Cz/EY, (7.12)

while

Eyy = Ezz = − νTxx/EY = − νCz/EY. (7.13)

All of f-diagonal components of the strain tensor are zero in this reference frame. This

strain tensor satisfies the compatibility conditions. Integrating to obtain the displacement

field, we find that

ux =
Cxz

EY
+ fx(y, z), (7.14)

uy = −
νCyz

EY
+ fy(x, z), (7.15)

uz = −
νCz2

2EY
+ fz(x, y), (7.16)

where fx, fy, and fz are arbitrary functions of the indicated variables. Setting

Exy = Eyz = Ezx = 0 results in

∂ fx

∂y
+

∂ fy

∂x
= 0, (7.17)

∂ fy

∂z
+

∂ fz

∂y
−

νCy

EY
= 0, (7.18)

∂ fx

∂z
+

∂ fz

∂x
+

Cx

EY
= 0. (7.19)

A consistent solution to this problem occurs if we set fx = fy = 0 and

fz = − C(x2 − νy2)/(2EY), whence

ux =
Cxz

EY
, uy = −

νCyz

EY
, uz = −

C

2EY
[x2 + ν(z2 − y2)]. (7.20)
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The assumed stress pattern thus results in a rather complex pattern of deformation.

However, the most important aspect of the solution is the vertical deviation of the center-

line of the beam from it initial position.  This is given by

u0z ≡ uz(x, 0, 0) = −
Cx2

2EY
, (7.21)

which shows that the beam centerline bends into the form of a parabola to the extent that

the approximations invoked are valid. Actually, a beam with a transverse stress distribu-

tion of the type discussed here which is uniform along its length should bend into a seg-

ment of a circle rather than a parabola. However, the small deformation approximation

limits the solution to relatively short beam segments over which it is difficult to tell the

difference between a parabola and the segment of a circle. The radius of curvature of the

beam centerline is also the radius of the circle, and is given by

R =




∂2u0z

∂x2





−1

=
EY

C
(7.22)

Thus, we have related the radius of curvature of the beam, R, to the gradient of normal x

stress, C, across the beam.

We now relate C to torques applied to the ends of the beam. Figure 7.3 shows the

tractions that need to be applied to the ends of a beam to generate the stress tensor given

by equation (7.11). (The tractions shown are those occurring on the left end of the beam

and those acting across an imaginary surface that cuts the beam normal to its centerline.)

Each set of tractions sums independently to zero net applied force. However, the net

applied torque is not zero, but represents a twist in the x − z plane. The non-zero compo-

nent of torque is thus the y component, Ny, in the coordinate system of figure 7.3. Since

the torque N =Σxi × Fi , where Fi is the ith force and xi is its associated moment arm,

Ny = Σ(zi Fix − xi Fiz). Fix = − Czi dx dy and Fiz = 0, so the torque is computed as

Ny = − C
h/2

−h/2
∫

w/2

−w/2
∫ z2 dy dz = −

Cwh3

12
, (7.23)

where the sum has been replaced by an area integral over the end of the beam. Dropping

the minus sign and eliminating C between equations (7.22) and (7.23) results in a rela-

tionship between the torque applied to the ends of a beam and the radius of curvature of

the beam:
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z

x

Ny
−Ny

Figure 7.3. Tractions occurring at the ends and across a surface normal to a

beam that is undergoing bending. The tractions result in a torque (or bending

moment) in the y direction.

R =
EY

Ny



wh3

12



=
EY I

Ny
, (7.24)

where I = wh3/12 is related to the moment of inertia of a small section of beam about the

y axis. The torque, Ny, is often called the bending moment applied to the beam, and the

solution is called the solution for pure bending.

Two Dimensional Problems

For two dimensional problems in which the displacements are all in the x − z plane

and are independent of y, and in which body forces are ignored, elastic body mechanics

takes on a simple form. In this case Exy = Eyy = Eyz = 0, and a single function φ(x, z),

called the Airy stress function, provides all the non-zero components of stress as follows:

Txx =
∂2φ
∂z2

Tzz =
∂2φ
∂x2

Txz = −
∂2φ

∂x∂z
. (7.25)

(Do not confuse the Airy stress function with the scalar potential of chapter 6.) Since

EYEyy = − ν(Txx + Tyy + Tzz) + (1 +ν)Tyy = 0, we have Tyy = ν(Txx + Tzz), and the stress

tensor becomes



-86-

Tij =








∂2φ
∂z2

0

−
∂2φ

∂x∂z

0

Tyy(x, z)

0

−
∂2φ

∂x∂z
0

∂2φ
∂x2








. (7.26)

It is easily verified that ∇ ⋅ T = 0, and Newton’s second law is thus satisfied in the

absence of body forces. The only compatibility condition that is not trivially satisfied is

equation (4.17):

2
∂2Exz

∂x∂z
=

∂2Exx

∂z2
+

∂2Ezz

∂x2
. (7.27)

Using the stress-strain relationship for an isotropic elastic medium to represent the strain

components in terms of φ results in

∂4φ
∂x4

+ 2
∂4φ

∂x2∂z2
+

∂4φ
∂z4

= 0, (7.28)

which is called the biharmonic equation.

Buckling of a Thin Beam

The problems in the previous sections always assumed that a given set of externally

applied forces result in a unique response. Unfortunately, this is not always the case.

You can easily convince yourself of this by trying

Figure 7.4.  Buckling of a thin beam under compression.

to compress a thin plastic ruler with your hands, as in figure 7.4. If the ruler were exactly

straight and if the forces applied by your hands were centered exactly on the axis of the

ruler, one would expect from the theory of elastic media that the ruler would remain
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straight while simply shortening a small amount. What in fact happens is that the ruler

bows in one direction or another. Furthermore, the direction in which it bows depends on

relatively minor effects, such as precisely how it is held when the force is initially

applied. This is an example of the buckling of a thin beam, which we now treat quantita-

tively.

The approach we use to understand buckling is to compute the elastic potential ener-

gies of alternate responses of an elastic body to a given set of applied forces. Generally

speaking, the body will take on the lowest energy configuration. For a thin beam in par-

ticular, we will compare the elastic potential energy of pure compression with that occur-

ring in a bowed beam. To a good approximation, the bowed beam can be thought of as

being in a state of pure bending.

Imagine a beam of rectangular cross section w by h, and with unstressed

l − δ

F

F

h

w

Figure 7.5.  Definition sketch for buckling calculation.

length l, as shown in figure 7.5. If the beam is compressed by forces F applied to the
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ends such that the length after compression is l −δ, then the xx component of the stress

(assuming that the x axis lies along the axis of the beam) is Txx = − F /(wh) and the corre-

sponding strain component is Exx = − δ/l. Since the sides of the beam are assumed to be

stress-free, we have Txx = EYExx, so

δ =
lF

whEY
, (7.29)

and the potential energy of compression, Uc, is

Uc =
ExxTxx lwh

2
=

whEYδ2

2l
. (7.30)

In the alternate configuration in which the beam is bowed, as shown in

F F

l

l − δ

R

θ θ

Figure 7.6. Sketch of relationship between the effective shortening, δ, of a

beam undergoing buckling, and the radius of curvature, R, of the beam.

figure 7.6, we assume that the arc length of the bowed beam is unchanged from its

unstressed value of l, while the cord length across the arc is l −δ. If the arc is in the form

of a segment of a circle of radius R, then from figure 7.6, θ = l/(2R). Furthermore,

sinθ = (l − δ)/(2R). Assuming only a slight bow and expanding sinθ ≈ θ − θ3/6, we find
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upon eliminating θ thatδ = l3/(24R2). However, equation (7.22) relates the radius of cur-

vature of a bent beam to the transverse gradient of longitudinal normal stress, C, by

R = EY/C. Eliminating R and solving for C2 yields C2 = 24E2
Yδ/l3.

We now compute the elastic potential energy in bowed state, Ub. If z is the coordi-

nate across the beam in the plane of the bending, the potential energy is

Ub = wl
h/2

−h/2
∫ (ExxTxx/2)dz =

wl

2EY

h/2

−h/2
∫ T2

xxdz =

wlh3C2

24EY
=

wh3EYδ
l2

, (7.31)

where we have used Txx = Cz.

Figure 7.7 summarizes these results. The potential energy of compression is qua-

dratic in δ, and therefore starts out being less than the potential energy of bowing, which

is linear in δ. However, as the applied force, and hence δ, increases, the compressional

potential energy exceeds that for bowing at some point. Defining δ = δ* where the two

are equal, we find that

δ* = 2h2/l, (7.32)

and the corresponding force

F * = 2EYwh3/l2 . (7.33)

As the load slowly increases on the beam, the compressional mode is first favored, since

it has the lower potential energy. However, as δ exceedsδ* , the bowing mode becomes

favored. Note that this can actually lead to catastrophic failure of the beam. From the

work-energy theorem, F dδ = d(total energy) = dU + dK , where U and K are respec-

tively the kinetic and potential energies. The maximum force the beam can sustain in

static equilibrium (i. e., with K = 0) is thus dU /dδ, which undegoes an abrupt decrease at

δ = δ* . If the actual applied force doesn’t undergo a corresponding decrease, static equi-

librium is no longer possible, and the beam rapidly buckles and collapses. The question

of buckling is thus one that needs to be given serious consideration in the design of struc-

tures.
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FORCE = dU /dδ δ*

F *

bowing

compression

δ

δ

POTENTIAL ENERGY = U

Figure 7.7. Potential energy of a beam shortened by an amount δ under the

influence of compressive forces on the ends, and the force required to maintain

this reduction in length. Note that at the transition from compression to buck-

ling at δ = δ* , the required compressive force drops by a factor of two.

Problems

1. Show that the displacement field arising from torsion on a cylinder (equation 7.9) is

equivoluminal.

2. Show that the displacement field arising from the bending of a beam (equation 7.20) is

neither equivoluminal nor irrotational.

3. In the special case in which the displacement field is irrotational, the displacement can

be represented as the gradient of a scalar, i. e., u = ∇ φ. Show that equation (7.2) reduces
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to

(λ + 2µ)∇ 2φ − ρU = const

in this case.

4. A cubical block of material of constant densityρ and height h sits on a table under the

influence of gravity. Assuming that the only applied traction is a uniform upward normal

traction applied to the bottom of the block by the table, determine the distributions of

stress, strain, and displacement field in the block.

5. Compute the elastic potential energy in a cylinder twisted through an angle α. The

cylinder has length l radius R, and shear modulus µ.

6. Consider the Airy stress functionφ = Ax2z in a beam that extends indefinitely in the

±y directions, where A is a constant. The lateral faces of the beam are at x = 0, a and

z = 0, b. a) Show that φsatisfies the biharmonic equation. b) Compute the stress tensor.

c) Compute the tractions that need to be applied to the lateral faces of the beam to match

the stresses there.

7. We desire to make as long a beam as possible to support a given compressional force,

F . However, we are limited to a mass M of material of densityρ and Young’s modulus

EY. If the beam has a square cross-section, how long can it be made without danger of

buckling?
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Chapter 8 -- Newtonian Fluids

We now begin the study of fluid dynamics. At rest, a fluid has a very simple stress

tensor, T = − pI. This is a consequence of the inability of a fluid to support a shear stress

while at rest. There can be no off-diagonal components of the stress tensor in these cir-

cumstances, which is why the stress tensor must take the form of a scalar times the unit

tensor. This scalar is minus the pressure, the minus sign being a matter of convention -- a

positive pressure corresponds to a compressional normal stress, which is negative.

A Newtonian fluid is an isotropic fluid that has a linear relationship between the rate

of strain and that part of the stress related to the motion of the fluid. As for isotropic elas-

tic media, two independent constants are sufficient to characterize this part of the stress-

strain relationship. However, unlike the case of ideal elastic media, we also need an

equation of state to define the static relationship between pressure and fluid density.

In this chapter we first develop the Navier-Stokes equation, which is the specializa-

tion of Newton’s second law to the case of a Newtonian fluid. We then investigate the

equations of state for two idealized cases, namely an incompressible fluid and an ideal

gas. We then learn about the role of energy in a Newtonian fluid, and we study fluid stat-

ics, a subject that is much simpler than the statics of elastic media. Finally, we investi-

gate when terms involving viscosity and compressibility are important.

In chapter 3 we derived an equation for mass continuity. Mass continuity plays an

important role in fluid mechanics, and so equation (3.11),

dρ
dt

+ ρ∇ ⋅ v = 0 , (8.1)

must be included in the set of equations to be solved in any fluid dynamics problem.

Navier-Stokes Equation

The starting point for our discussion of the Navier-Stokes equation is equation

(3.21),

ρ
dv
dt

= ∇ ⋅ T + ρB , (8.2)
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which results from considerations of continuity of momentum. The problem is then to

derive the motion-dependent part of the stress tensor in terms of the fluid velocity.

h

z

x

v

A

A

Figure 8.1. Sketch of experiment to determine the resistance of a fluid to

shearing deformation.

Figure 8.1 shows a sketch of an experiment to determine the resistance of a fluid to a

shearing deformation. Two parallel plates, each of area A and separated by a distance h,

are moved relative to each other with a speed v. If the plates are immersed in a fluid, it is

found that the fluid generates a drag force of magnitude F between the plates. For most

fluids it is found (if the plates are sufficiently close together and not moving too fast rela-

tive to each other) that F is directly proportional to v and A, and inversely proportional to

h. It is also found that the fluid is linearly sheared between the plates, with fluid immedi-

ately adjacent to each plate moving at the speed of the plate.

Two lessons arise out of this experiment. First, it shows that fluids obey what is

known as a no-slip boundary condition -- fluid adjacent to a surface moves with the sur-

face. Second, it shows that a linear relationship holds between the shear stress and the

fluid shear in unidirectional flow:

F

A
= Txz = µ

∂vx

∂z
. (8.3)

The constant of proportionality, µ, is called the coefficient of viscosity, or simply the
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viscosity for short, and is not to be confused with the shear modulus of elastic body

mechanics.

The shear, ∂vx/∂z, can be related to a component of the rate of strain, since vz = 0 in

this case: ∂vx/∂z = 2Dxz. Thus, equation (8.3) can also be written Txz = 2µDxz.

Generalization of this relationship to arbitrary flow patterns of an isotropic fluid can

be accomplished in the same way that we derived the stress-strain relationship for iso-

tropic, elastic solids. In particular, if we assume a general linear relationship between

components of the stress tensor and components of the rate of strain tensor, the condition

of isotropy forces this into a tensor relationship involving only two arbitrary constants, µ

andη:

Tij = − pδij + (η − 2µ/3)δij Dkk + 2µDij . (8.4)

The first term on the right side of the above equation represents the contribution from the

fluid at rest. Furthermore, the xz component of this equation is equivalent to equation

(8.3) for the special case of sheared unidirectional flow. However, the equation contains

an additional term that doesn’t enter into the static case, or in the case in which fluid ele-

ments don’t change their volume. This term involves the constant η, which is sometimes

called the second coefficient of viscosity. Since the trace of the rate of strain tensor is the

fractional rate of change of the volume of a parcel, which in turn is minus the fractional

rate of change of parcel density, taking the trace of equation (8.4) results in

− Tii /3 = 

p +η

d lnρ
dt




. (8.5)

The quantity p is the thermodynamic pressure that appears in such things as the

ideal gas law. We see that η is a measure of the difference between minus the mean nor-

mal stress, − Tii /3, and the pressure in situations in which a fluid is compressing or

expanding. In particular, when a fluid is compressing, d lnρ/dt > 0, and minus the mean

normal stress is enhanced over p as long asη is positive. This provides additional

resistence to compression. On the other hand, when d lnρ/dt < 0, the fluid is expanding,

and the η term opposes the pressure in driving the expansion. The effect of η is therefore

to introduce dissipation into expansions and contractions of fluids, just as µ causes dissi-

pation in shearing motions. The quantitative effects of these terms on fluid mechanical

energy will be explored later in this chapter. The coefficient of the second term on the
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right side of equation (8.4) is written as η − 2µ/3 simply to isolate the two effects from

each other.

Equation (8.4) may be written in terms of the velocities as follows:

Tij = − pδij + µ


∂vi

∂x j
+

∂v j

∂xi




+ (η − 2µ/3)
∂vk

∂xk
δij . (8.6)

Substituting this into equation (8.2) yields, after a bit of index manipulation,

ρ
dv
dt

= − ∇[p − ( η + µ/3)∇ ⋅ v] + µ∇ 2v + ρB . (8.7)

This is called the Navier-Stokes equation, and forms the basis of fluid dynamics. For a

fluid that is incompressible, ∇ ⋅ v = 0, and the term involving η + µ/3 vanishes.

Equations of State

Strictly speaking, no matter is incompressible. However, it is sometimes a good

approximation, particularly for liquids, to assume that incompressibility holds. As noted

in chapter 3, the condition of incompressibility is simply

dρ
dt

=
∂ρ
∂t

+ v ⋅ ∇ ρ = 0 , (8.8)

and mass continuity becomes

∇ ⋅ v = 0 . (8.9)

Equations (8.7), (8.8), and (8.9) impose five constraints (in three dimensions), and are

therefore sufficient to solve for the five unknowns vx, vy, vz, p, and ρ. When the fluid is

not only incompressible, but also homogeneous, the density, ρ, is constant, equation (8.8)

becomes trivial, and we have four equations in four unknowns. This is the simplest of all

fluid dynamical situations, and is applicable in many cases of flowing liquids.

When the fluid is an ideal gas, we must have recourse to thermodynamics. The ideal

gas law for a volume V of gas is

pV = nRT , (8.10)

where p is the pressure, T is the temperature, n is the number of moles of gas, and R is

the gas constant. This can be written more conveniently for fluid dynamical applications

by dividing both sides by the mass M of the parcel of gas:
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p

ρ
=

RT

m
, (8.11)

where M /V is recognized as the density, ρ, and m = M /n is the mass per mole of gas, or

the molecular weight. Equation (8.11) introduces one additional constraint on the solu-

tion, but unfortunately also introduces a new variable, the temperature. Since the temper-

ature itself can vary in a compressible fluid flow, yet another constraint is needed.

The first and second laws of thermodynamics provide an approximate answer that is

valid in many situations. The first law relates the heat added to a parcel, dQ, and the

work done by it, dW , to the change in internal energy, dU :

dU = dQ − dW . (8.12)

For reversible changes, the work done by a parcel of gas is simply dW = p dV , where dV

is the change in parcel volume, while the heat added is related to the change in entropy,

dS, of the parcel by dQ = T dS. The change in internal energy of an ideal gas is related

to the temperature change by dU = nCv dT , where Cv is the specific heat of the gas at

constant volume per unit mass and M is again the mass of the parcel.

If ds = dS/M is the entropy change per mole, or specific entropy, equation can be

solved for ds and written in the form

ds = Cv
dT

T
−

R

m

dρ
ρ

(8.13)

where equation (8.11) has been invoked. This is in the form of an exact differential, and

can be integrated to

s = s0 + Cv ln(T /T0) −
R

m
ln(ρ/ρ0) , (8.14)

where s0 is the specific entropy at temperature T0 and densityρ0. The temperature can

further be eliminated between equations (8.11) and (8.14) resulting in

s = s0 + Cv ln(p/p0) − Cp ln(ρ/ρ0) , (8.15)

where p0 = RT0ρ0/m and Cp = Cv + R/m is the specific heat at constant pressure.

The second law of thermodynamics states that the entropy of a closed system never

decreases. Furthermore, if parcel transformations are close to being reversible adiabatic,

and if very little heat flows into or out of parcels, entropy is nearly conserved. Thus, we

can often use the approximate equation
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ds

dt
=

∂s

∂t
+ v ⋅ ∇s ≈ 0 (8.16)

to describe the evolution of the field of specific entropy. In this case equations (8.1),

(8.7), (8.15), and (8.16) represent six constraints on the six unknowns vx, vy, vz, p, ρ,

and s.

Kinetic Energy in Fluids

In elastic body mechanics the only sources of energy are the applied tractions.

Stress forces simply redistribute energy within the elastic material, and in the elastic ide-

alization there is no dissipation or interaction with internal (i. e., thermal) energy. The

situation is very different in fluid mechanics. The pressure part of the stress redistributes

energy as in elastic body mechanics, but the viscous parts cause dissipation of mechanical

energy into heat. In addition, internal energy can be converted into mechanical energy

via the pressure part of the stress. Indeed, if this weren’t so, heat engines such as steam

turbines and automobile engines wouldn’t work. Accounting for energy flows is thus

more complicated in fluid dynamics than it is in elastic body mechanics.

We are able to learn a great deal about energy flows in Newtonian fluids by develop-

ing an equation for the budget of kinetic energy. We do this by dotting equation (8.2)

with the velocity and then manipulating it into a useful form with the use of equation

(8.4) and (4.24). Two tricks are used in this derivation. First of all, v ⋅ρ(dv/dt) can be

written ρd(v ⋅ v/2)/dt =ρd(v2/2)/dt. However, since mass continuity states that

dρ/dt +ρ∇ ⋅ v = 0, we can multiply the left side of this equation by v2/2 and add it to the

above term without changing its value:

ρ
dv2/2

dt
+ (v2/2)

dρ
dt

+ (v2/2)ρ∇ ⋅ v =

d(ρv2/2)

dt
+ (v2/2)ρ∇ ⋅ v =

∂(ρv2/2)

∂t
+ v ⋅ ∇( ρv2/2) + (v2/2)ρ∇ ⋅ v =

∂(ρv2/2)

∂t
+ ∇ ⋅ [( ρv2/2)v] . (8.17)

We recognize ρv2/2 as the kinetic energy density and (ρv2/2)v as the flux of kinetic
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energy via mass transport. It is therefore clear that this process is going to lead to a conti-

nuity equation for kinetic energy.

The second kind of trick is used on terms like v ⋅ ∇p. Since

∇ ⋅ vp = v ⋅ ∇p + p∇ ⋅ v, we can write

v ⋅ ∇p = ∇ ⋅ vp − p∇ ⋅ v . (8.18)

Similar tricks can be performed on the viscosity terms, with the final result that

∂(ρv2/2)

∂t
+ ∇ ⋅ [( ρv2/2)v + pv −µ∇(v 2/2) − (η + µ/3)(∇ ⋅ v)v] =

p(∇ ⋅ v) − µ|∇v| 2 − (η + µ/3)(∇ ⋅ v) 2 + ρv ⋅ B . (8.19)

Let us now try to understand this equation. The first term on the left side is simply

the time rate of change of kinetic energy density at a point. The terms inside the square

brackets constitute a kinetic energy flux, the divergence of which leads to the deposition

or removal of kinetic energy. The important point is that these terms simply move kinetic

energy around without creating or destroying it. This can be shown by integrating equa-

tion (8.19) over some volume and applying the divergence theorem:

d

dt ∫ (ρv2/2) dV +∫ [. . .] ⋅ n dA = . . . . (8.20)

This states that the time derivative of the volume integral of the kinetic energy density, i.

e., the time rate of change of the total kinetic energy in the volume, is only affected by the

contents of the square brackets at the surface bounding the volume. Furthermore, the

integrand of the surface integral is simply the component of the kinetic energy flux paral-

lel to the unit normal, n.

The kinetic energy flux is much more complicated than the mass flux because

kinetic energy can be converted to and from other types of energy. The first term within

the square brackets in equation (8.19) is simply mass transport of kinetic energy. How-

ever the second term, involving the pressure, corresponds to transport associated with

work done by one part of the fluid on another by the pressure force. The third and fourth

terms represent work done on one part of the fluid by another via the viscous stresses.

The right side of equation (8.19) represents ways in which kinetic energy may be

added to or subtracted from a volume of fluid other than by flowing through the walls of

the volume. Since ∇ ⋅ v is the fractional time rate of change of parcel volume, the first
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term on the right side is simply work per unit volume done by pressure forces, and repre-

sents conversion of internal energy into kinetic energy. An example would be the free

expansion of a gas released from a container into a vacuum. The second and third terms

involving the two coefficients of viscosity are always negative, and represent dissipation

of kinetic energy into heat. The fourth term is simply the work done by external body

forces on the fluid.

The energy budget is simpler if the fluid is incompressible. Setting ∇ ⋅ v = 0 elimi-

nates all effects of the second coefficient of viscosity. More importantly, it eliminates the

possibility of converting internal energy into mechanical energy, since the first term on

the right side of equation (8.19) then vanishes. This marks the primary difference

between compressible and incompressible flow.

Statics of Fluids

The static behavior of fluids is much simpler than the static behavior of elastic

media. This is due to the inability of ordinary fluids to sustain a shear stress in static

equilibrium, and the consequent reduction of the stress tensor to a very simple form. In

static equilibrium mass continuity is trivially satisfied and the Navier-Stokes equation

reduces to

∇p = ρB . (8.21)

For the case in which B is derivable from a potential U , equation (8.21) becomes

∇p = − ρ∇U . (8.22)

For a homogeneous, incompressible fluid in which ρ is a constant, this reduces to

p = − ρU + p0 (constant density) , (8.23)

where p0 is the pressure where U = 0. Thus, the pressure is greater deeper in the poten-

tial well, and the pressure gradient force balances the body force. For the case of a con-

stant gravitational field, U = gz, equation (8.23) reduces to the usual elementary hydro-

static relationship for a fluid of constant density.

The law of Archimedes specifies the upward buoyancy force on a body immersed in

a constant density fluid in a uniform gravitational field as the weight of the displaced

fluid. This is easy to derive from our knowledge of the stress tensor. As figure 8.2

shows, the traction of the fluid on the body is simply t = T ⋅ n = − pn, where n is the unit
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n

dA

T ⋅ n

Figure 8.2. Illustration of the traction vector, T ⋅ n, in a fluid at rest. This rep-

resents a normal compressional force on the fluid.

normal vector pointing outward from the surface of the body. The total stress force on

the body is thus

F = − ∫ pn dA = −∫ pI ⋅ n dA = ∫ (ρgz − p0)I ⋅ n dA . (8.24)

Applying the divergence theorem to the right side of this equation yields

F = ∫ ∇ ⋅ [(g ρz − p0)I]dV = gρVk , (8.25)

where V is the volume of the body. Since gρV is the weight of fluid with volume equal

to the volume of the body, Archimedes’ law is verified.

When a fluid is not of constant density, equation (8.22) is not integrated so easily.

However, taking the curl of this equation shows that

∇ ρ × ∇U = 0 . (8.26)

In other words, surfaces of constant density and potential must everywhere coincide.

From equation (8.22), the pressure gradient and potential gradient are parallel, so these

surfaces are also surfaces of constant pressure. Thus, pressure and density can be written

as functions of potential alone: p = p(U); ρ = ρ(U). Finally, the density may be written

as a function of pressure alone as well: ρ = ρ(p).
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In many cases, these functions will be single-valued. However, if isolated potential

wells exist, than separate pressure-density-potential relationships can exist for the sepa-

rate wells.  For instance, imagine the situation

z

normal density high density
x

Figure 8.3. Contours of constant density of a fluid at rest in a container with an

undulating bottom. Fluid parcels at the same level in ‘‘valleys’’ isolated from

each other can have different densities. This cannot occur for parcels above the

‘‘ridgeline’’.

shown in figure 8.3, in which a fluid of variable density is bounded underneath by an

undulating surface. The horizontal lines represent surfaces of constant pressure, and their

spacing is inversely proportional to the fluid density according to equation (8.22). Above

the undulating bottom the spacing of pressure surfaces doesn’t vary horizontally. How-

ever, within different depressions in the bottom, the spacing of constant pressure surfaces,

and the consequent density, is different. For example, if we are talking about the ocean,

the right depression in figure 8.3 may contain extremely saline water from a sub-oceanic

spring, whereas the left depression contains ordinary ocean water. Density is greater with

higher salinity, and there is a greater increase in pressure with depth in the right depres-

sion.
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For an ideal gas, if density and pressure are constant on surfaces of constant poten-

tial, the temperature and entropy must also be constant on these surfaces, since both these

quantities are uniquely specified by the pressure and density. For an ideal gas at constant

temperature, the ideal gas law, given by equation (8.11), may be combined with equation

(8.22) to yield

∇p = −
mp

RT
∇U , (8.27)

which may be integrated to yield

p = p0 exp 


−
mU

RT



, T = constant, (8.28)

where p0 is again the pressure at U = 0. If U = gz, then the pressure decreases exponen-

tially with height in proportion to exp( − z/zs), where zs = RT /(mg) is called the scale

height.

Reynolds Number

Under some circumstances the viscous terms in the Navier-Stokes equations (i. e.,

those involving µ andη) can be ignored, whereas in other circumstances they dominate

the evolution of the flow. The art of deciding when certain terms can be safely discarded

in the Navier-Stokes equations is aided by a process of estimation called scale analysis.

In this process, dependent variables are replaced by estimates of their typical value, and

space and time derivatives are replaced by the inverse of estimates of typical space and

time scales respectively. The magnitudes of various terms in the equation of interest are

then compared.

Let us investigate the magnitude of various terms in the Navier-Stokes equation for a

homogeneous, incompressible fluid, i. e., one with ∇ ⋅ v = 0 and ρ constant. Ignoring

body forces, equation (8.7) becomes

ρ
dv
dt

= − ∇p + µ∇ 2v . (8.29)

If velocities have a typical magnitude of V , and the flow structure of interest has a spatial

scale L, the time for a parcel to advect through the flow pattern is of order T = L/V . If

this is the characteristic time scale of the flow pattern, then the ratio of the acceleration

and viscous terms in equation (8.29) is
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R =




ρV

L/V





µV

L2



=
ρVL

µ
. (8.30)

R is a dimensionless number called the Reynolds number after Osborne Reynolds, a 19th

century British scientist and engineer. If R >> 1, viscous terms can be ignored, whereas if

R << 1, the acceleration can be neglected.

Notice all the caveats in this estimation process. The conditions of incompressibil-

ity and absence of body forces are easily removed, as is the constant density condition.

However, these conditions do indicate that the notion of Reynolds number does apply pri-

marily in those instances in which the essential character of the flow does not depend on

compressibility or the existence of external forces. More important is the notion that

there is only one length scale in the problem, a condition that is easily and frequently vio-

lated. Under these circumstances the appropriate length is some combination of the two

or more length scales in the problem. Alternatively, it may be appropriate to define multi-

ple Reynolds numbers. Finally, there is the assumption that the primary source of tempo-

ral variation in the velocity of parcels of fluid is movement of the fluid through some

established flow pattern. This assumption can be violated in at least one way. If the flow

is evolving on a time scale more rapidly than L/V , the ratio of the acceleration and vis-

cous terms will be larger than indicated by the Reynolds number as conventionally

defined. An example of this would be any wave phenomenon in which the wave speed,

C, is much greater than the material speed, V . In this case, a better estimate of the ratio

of the two terms would be R =ρCL/µ.

The typical instance in which two length scales are important is where fluid flows by

a rigid body. Figure 8.4 shows flow past a thin plate that is aligned with the flow. The

flow is parallel far upstream and has a uniform speed V there. Flow near the plate is not

uniform because fluid immediately adjacent to the stationary plate must have zero veloc-

ity. A sheared flow ensues near the plate, resulting in a tangential viscous stress, which

slows the fluid in the vicinity of the plate. The region of thickness D in which the fluid

has been significantly slowed as called the boundary layer. In order for this to happen,

the mean deceleration of parcels as they pass by the plate must be of order

V /T = V /(L/V ) = V2/L, where L is the distance from the point under consideration to the

front of the plate. If this deceleration is caused primarily by the viscous force, then this
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D

V

L

Figure 8.4. Initially uniform flow past a flat plate aligned with the flow. A

boundary layer forms next to the plate, in which the fluid velocity is reduced

from its initial value. The boundary layer thickens with increasing distance

behind the leading edge of the plate.

force must be equated to the deceleration. In other words, the ratio of acceleration to vis-

cous force per unit mass, which is precisely the Reynolds number, must be of order one.

The viscous force per unit mass may be estimated as µV /(ρD2), since the strongest

gradients, which contribute most heavily to ∇ 2, are perpendicular to the plate. The

Reynolds number therefore becomes

R =
ρVD2

µL
(8.31)

in this case. Setting R = 1 allows us to use equation (8.31) to estimate the depth of the
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boundary layer as a function of distance back from the leading edge of the plate:

D ≈ 


µL

ρV



1/2

. (8.32)

The boundary layer thickness increases as the square root of L, as indicated in figure

(8.4).

Two lessons can be learned from the above analyses. First, it is not safe to pick

length, time, or velocity scales arbitrarily, plug them into equation (8.30), and expect the

resulting Reynolds number to mean anything. Some thought has to be given as to how

changes in parcel velocity actually come about in order to define a Reynolds number that

truly reflects the importance of viscosity. The second lesson is that in estimating the val-

ues of variables, don’t worry about numerical coefficients. For instance, in the above

estimation of the parcel deceleration as it passes the plate, the average velocity would be

somewhat less than the free stream velocity, V . The transit time, T , would therefore be

somewhat greater than L/V . This defect could in principle be rectified by inserting a

numerical coefficient of the proper size in equation (8.31), but it would not be worth the

effort. The purpose of scale analysis is to obtain the functional form of relationships, for

example, the square root dependence of D on L. Obtaining numerical coefficients should

be left to computers.

Sound Waves in an Ideal Gas and Mach Number

We now obtain a solution to the Navier-Stokes equation for small amplitude sound

waves in a homogeneous ideal gas that is otherwise at rest. This will then lead to a scale

analysis that reveals when the compressibility of a gas needs to be considered. For now

we ignore the effects of viscosity, which tend to be small in many cases involving gas

flow.

A homogeneous ideal gas will have constant entropy. If the entropy is constant,

equation (8.15) can be solved for the pressure in terms of the density and a constant K

containing the entropy:

p = Kργ . (8.33)

The constant γ = Cp/Cv is the ratio of the specific heats at constant pressure and at con-

stant volume for the gas. It respectively takes on the values 1.67 and 1.4 for ideal
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monatomic and diatomic gases.

Ignoring viscosity and body forces, the Navier-Stokes equation (8.7) takes the form

dv
dt

+
γp

ρ
∇ χ = 0 (8.34)

where χ = lnρ, and pressure has been eliminated in favor of density using equation

(8.33). In deriving this equation, we have used ∇p = γργ − 1K ∇ ρ and then eliminated K

using equation (8.33) again. Similarly, the mass continuity equation can be written in

terms of χ as

dχ
dt

+ ∇ ⋅ v = 0 . (8.35)

In both these equations the relationship dχ = d lnρ = dρ/ρ has been used.

For small amplitude sound waves in a medium at rest, parcels of fluid will not move

far from their original positions. Therefore, the total time derivatives can be replaced by

partial derivatives. Also, deviations in pressure and density from constant ambient val-

ues, p0 andρ0, will not be large, so we can set γp/ρ = γp0/ρ0 ≡ c2. The resulting equa-

tions

∂v
∂t

+ c2∇ χ = 0 (8.36)

∂χ
∂t

+ ∇ ⋅ v = 0 (8.37)

are linear with constant coefficients, and can be combined into a single equation for χ by

taking the divergence of equation (8.36) and eliminating ∇ ⋅ v with equation (8.37):

∂2χ
∂t2

− c2∇ 2χ = 0 . (8.38)

This is simply the wave equation for waves with speed c. Note that using the ideal gas

law, c = (γRT0/m)1/2, where T0 is the ambient temperature of the gas.

Note that from equation (8.36) we find that

v = − ∫ c2∇ χ dt = − ∇ ∫ c2χ dt . (8.39)

The flow due to sound waves is therefore irrotational, as it is derived from a scalar poten-

tial. Thus, as for irrotational seismic waves, plane sound waves are longitudinal.
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Furthermore, sound waves are fundamentally dependent on energy transfers due to com-

pression, and therefore cannot exist in an incompressible medium.

The energy equation (8.19) helps us understand the relative importance of compres-

sional effects in fluids. In a fluid with no body forces and negligible viscosity, this equa-

tion can be written

∂(ρv2/2)

∂t
+ ∇ ⋅ A = − p

dχ
dt

(8.40)

with the help of equation (8.35), where A = (ρv2/2 + p)v represents transfer of kinetic

energy from parcel to parcel in the fluid by mass transport and pressure forces. Since this

term simply moves energy around, integration over the entire volume of fluid dispenses

with it, leaving pressure work as the only source of kinetic energy. If N is an estimate of

fluid density, P of pressure, V of velocity, and X of the log density deviation, χ, then

equation (8.40) implies

NV2

T
=

PX

T
, (8.41)

where T is the characteristic time scale of the flow. Thus,

X =
NV2

P
=

V2

c2
≡ M2 , (8.42)

where we have used the result that the square of the sound speed c2 = γp/ρ. The dimen-

sionless quantity M = V /c is called the Mach number. If M << 1, the above equation

shows that the fractional compression and expansion occurring in an ideal gas is small.

Under these circumstances it is valid to assume that the flow is incompressible even

though the fluid is a highly compressible gas, except, of course, when consideration of

sound waves is explicitly desired.

Problems

1. Derive equation (8.19) using the hints presented in the text.

2. A sphere of gas in space is initially at rest and has initial radius R, mass M , and pres-

sure p. After it expands 1% in volume, find the total kinetic energy and the root mean

squared average fluid velocity. Ignore viscous effects and body forces. (Hint: Integrate

the kinetic energy equation over a volume larger than the volume of the sphere, noting

that the kinetic energy flux is zero at the boundary of this volume. For a 1% expansion
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the change in pressure and density can be ignored. For the purposes of this problem you

may assume that the pressure is uniform inside the sphere of gas, and zero outside it.)

3. Derive the hydrostatic pressure as a function of height for an ideal gas of constant spe-

cific entropy, s, in a constant gravitational field.

4. If a small parcel of gas in an isothermal atmosphere in a constant gravitational field

undergoes an adiabatic vertical displacement, show that the resultant of buoyancy and

gravity forces act to return the parcel to its initial level. If these are the only two forces

acting, find the frequency of small vertical oscillations of a parcel about its equilibrium

level. (Hint: Assume that the pressure in the parcel is the same as that in the surrounding

gas at the same level, and note that both the density of the parcel and the surrounding gas

change with height.)

5. Assume that a spherical planet of radius a and surface gravity g has an isothermal at-

mosphere of temperature T and molecular weight m. If the surface pressure is ps, find

the pressure as a function of height. Does the pressure go to zero an infinite distance

from the planet?

6. Assume that some fluid flow has characteristic space and time scales L and T , and a

characteristic velocity V . (Don’t necessarily assume that V = L/T .) Do a scale analysis

on the two parts of the parcel acceleration,

∂v
∂t

+ v ⋅ ∇v ,

and define a dimensionless number A which is the ratio of the time derivative part to the

space derivative part. Under what circumstances may one or the other of these terms be

neglected?

7. A liquid compresses slightly under the effect of pressure, with the relationship

ρ = ρ0 + κ p, where κ is a constant, p is the pressure,ρ is the density, and ρ0 is the den-

sity at zero pressure. Find the speed of sound in this liquid. (Hint: You will need to red-

erive equation (8.34) for the new pressure-density relation.)
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Chapter 9 -- Creeping Flow

In the previous chapter we discovered that the term ρ(dv/dt) can be ignored when

the Reynolds number is very much less than unity. In this circumstance, the Navier-

Stokes equation reduces to the simple relationship

∇p = µ∇ 2v , (9.1)

where we have ignored body forces and the viscous terms involving ∇ ⋅ v. F or most cases

of creeping flow, this is justified, since the fluid can be considered incompressible, thus

making the continuity equation

∇ ⋅ v = 0 . (9.2)

Low Reynolds number flow is often called creeping flow, since in most every day exam-

ples the fluid tends to ooze along, such as when pouring syrup out of a bottle.

Plane Couette Flow

The simplest example of creeping flow occurs when fluid is confined to a channel

between two parallel plates, one of which is stationary, the other moving. Figure 9.1

shows the configuration with two plates separated by a distance d and the upper plate is

moving at a speed v0. The flow velocity in this case changes from the velocity of the

lower plate (zero) to that of the upper plate as one crosses the channel, due to the no-slip

boundary condition, i. e.,

v = v0(z/d)i . (9.3)

In this example, the flow requires no pressure gradient to drive it. Under the condition

∇p = 0 it is easy to verify that equation (9.3) satisfies equations (9.1) and (9.2).

The strain rate tensor associated with this flow is easily calculated from equation

(4.24) to be

Dij =




0

0

v0/2d

0

0

0

v0/2d

0

0





. (9.4)

Using equation (8.4), we then find the stress tensor in the fluid:
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d

v0

z

x

Figure 9.1. Creeping flow between two parallel plates, one of which is mov-

ing.

Tij =




0

0

µv0/d

0

0

0

µv0/d

0

0





. (9.5)

The pressure has been ignored, since by hypothesis it is constant. It is clear from the

above equation that the upper plate exerts a tangential traction t = (µv0/d)i, on the fluid,

which is consistent with equation (8.3).

Pipe Flow

A somewhat more complex flow occurs when a pressure gradient drives a viscous

fluid through a pipe of circular cross-section. As figure 9.2 illustrates, creeping flow

under these circumstances is parallel to the axis of the pipe, with zero velocity at the

walls of the pipe and maximum velocity on the axis. Defining a cylindrical coordinate

system, (r,θ, z), with its z axis aligned with the axis of the pipe, and assuming that the

velocity points only in the z direction and is a function of r alone, then

∇ 2v = 

r

∂
∂r

+
θθ
r

∂
∂θ

+ k
∂
∂z




⋅ 

r

∂
∂r

+
θθ
r

∂
∂θ

+ k
∂
∂z



vz(r)k =



-111-

R

z

Figure 9.2.  Sketch of laminar flow through a pipe of radius R.




∂2

∂r 2
+

1

r

∂
∂r



vz(r)k =

k
r

d

dr


r

dvz

dr



. (9.6)

Assuming that the only pressure gradient is a uniformly decreasing one in the z direction,

the left side of equation (9.1) becomes

∇p = − αk = constant . (9.7)

Equation (9.1) is therefore

− α =
µ
r

d

dr


r

dvz

dr



, (9.8)

which integrates to

vz = −
α r 2

4µ
+ A ln r + B , (9.9)

where A and B are constants of integration. This velocity satisfies mass continuity, since

there are no velocity components normal to the axis of the pipe, and since vz is not a

function of z.

We rule out infinite velocity on the pipe axis on physical grounds, and therefore set

A = 0. Adjusting B so that vz(R) = 0 results in the final solution
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vz(r) = α(R2 − r2)/(4µ) . (9.10)

The volume flow rate, F , through the pipe is simply vz integrated over the cross-sec-

tion of the pipe:

F =
2π

0
∫

R

0
∫ vz r dr dθ =

2πα
4µ

R

0
∫ (R2 − r2) r dr =

παR4

8µ
. (9.11)

Note that this flow rate is very sensitive to the diameter of the pipe, with a doubling of

pipe diameter yielding a factor of 16 increase in flow rate for a given pressure gradient

and viscosity. Note also that the flow rate is a linear function of pressure gradient.

Flow in Porous Media

The underground flow of water or oil is an example of creeping flow. In this case

the fluid is moving slowly through small pores in the rock, resulting in a flow with

extremely small Reynolds number. Such a flow is quite complex in detail, but may be

relatively simple in some averaged sense.

Generally speaking, gravity must be considered in the underground flow of fluids.

Thus, equation (9.1) becomes

∇p = µ∇ 2v − ρgk , (9.12)

where g is the acceleration of gravity, assumed to act in the negative z direction. In the

case of a homogeneous fluid in which the density ρ is a constant independent of position,

equation (9.12) may be written

∇(p + g ρz) =µ∇ 2v . (9.13)

The quantity h = p + gρz, or something closely related, is generally called the total head.

As we have defined it, it is the pressure with the hydrostatic burden of the overlying fluid

subtracted. When gravity is present, creeping flow occurs when a gradient of head rather

than of pressure occurs. (See problem 5.) The pipe flow example explored above may be

solved with gravity present simply by replacing the pressure gradient with the head gradi-

ent.

For flow in porous media, the volume flux of fluid, q, is normally considered to be

the most interesting observable. q ⋅ n is the volume of fluid per unit area per unit time

passing through a surface with unit normal n. This has the same units as velocity, but is
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less than the spatially averaged fluid velocity by a factorε, the porosity, because the fluid

only occupies the pores in the medium. The porosity is defined as the void volume in a

medium divided by the total volume.

Darcy’s Law is an empirical law, established by observing the flow of water through

a bed of sand, that relates q to the head gradient:

q = −
k

µ
∇h . (9.14)

The constant k is called the permeability, and has the units of length squared. It plays the

role of a ‘‘fluid conductivity’ ’, i. e., the larger its value, the greater the fluid flow for a

given head gradient and viscosity. For an incompressible fluid, the volume flux obeys

∇ ⋅ q = 0 . (9.15)

A simple flow model will serve to clarify the physical basis of Darcy’s

z

x

y

Figure 9.3. Flow through a porous medium idealized as flow through a parallel

array of pipes.

Law. Consider a block of solid material, as shown in figure 9.3. The block has numerous

holes of radius R drilled through it, amounting to N holes per unit area in the x − y plane.
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We consider the flow of a fluid with viscosity µ and densityρ through these holes subject

to a head gradient in the z direction ∂h/∂z = −α. The volume flow for each hole is

παR4/8µ for each hole. The volume flux in the z direction is just N times this, or

qz =
NπαR4

8µ
= −

εR2

8µ
∂h

∂z
, (9.16)

whereε = NπR2 is the fractional area in the x − y plane covered by holes, or just the

porosity. The permeability is evidently k =εR2/8 in this case, as comparison with the z

component of equation (9.14) shows. For a given porosity, equation (9.16) shows that

bigger holes result in more flow for a given head gradient, since the permeability then

scales with the square of hole radius.

Real porous media have much more complex flow channels than the example of fig-

ure 9.3. However, a scale analysis of equation (9.13) leads to the same conclusion. The

Laplacian of the velocity in this equation will be of order V /L2 = Q/(εL2) where L is a

characteristic pore dimension, V is a characteristic fluid velocity, and Q =εV is an esti-

mate of the volume flux.  Equation (9.13) therefore becomes (in an averaged sense)

∇h = −
Cµ
εL2

q , (9.17)

where C is a numerical constant of order unity. The minus sign arises because the cross

channel second derivative of the velocity arising from the Laplacian is negative for a posi-

tive flow with zero velocity on the boundaries of the channel. Identifying k =εL2/C as

the permeability makes equations (9.14) and (9.17) identical. Thus, for a pore pattern of

the same shape, but scaled down by a factor of two, the permeability would be decreased

by a factor of four.

Actually, the porous medium illustrated in figure 9.3 is an example of an anisotropic

medium, in the sense that fluid can move through it in only one direction. The usual form

of Darcy’s law shown in equation (9.14) assumes that the medium is isotropic. A gener-

alization of Darcy’s law that takes anisotropy into account is

q = −
1

µ
K ⋅ ∇h . (9.18)

The permeability becomes a symmetric tensor, K, in this formulation, and the fluid flow

is not necessarily in the direction of minus the head gradient. For the unidirectional

medium of figure 9.3, we would have
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Kij =




0

0

0

0

0

0

0

0

εR2/8





. (9.19)

It is clear that a head gradient in the x or y direction would result in no flow for the

medium of figure 9.3. This is easily verified by substituting equation (9.19) into equation

(9.18).

Problems

d1

d2

z

k = k2

x

k = k1

Figure 9.4. Two horizontal layers of soil with differing thickness and perme-

ability. (See problem 7.)

1. From equation (8.19) we see that the energy dissipated per unit volume per unit time

by viscous forces in an incompressible fluid is

µ


∂vi

∂x j

∂vi

∂x j




.

Using this result, show that the work per unit time done by the moving plate in plane

Couette flow just balances the viscous dissipation in the fluid between the plates.
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2. Show that equation (8.19) is satisfied in the case of Couette flow by a balance between

the last term in square brackets on the left side of the equal sign and the term considered

in problem 1.

3. Solve the incompressible Couette flow problem (i. e., the flow between two parallel

plates with one plate moving) for the situation in which a pressure gradient

∂p/∂x = −α = constant exists between the plates. When the velocity of both plates is

zero, this is called plane Poiseuille flow. It is the slab-symmetric analog of pipe flow.

4. Find the strain rate and stress tensors for pipe flow. (Hint: You can obtain these in

Cartesian coordinates by realizing that r2 = x2 + y2, where x and y are the Cartesian axes

normal to the axis of the pipe.) Using the stress tensor, show that the force per unit length

exerted by the pipe on the fluid just counterbalances the pressure gradient integrated over

the cross-section of the pipe.

5. Show that for a fluid of constant density at rest, the total head is constant.

6. Prove equation (9.15) from first principles. Why wouldn’t a version of (9.15) with q

replaced by a spatially smoothed velocity work? (Hint: Suppose that the porosity varied

from place to place.)

7. Consider flow of water downward through two horizontal layers of saturated soil, the

upper layer having thickness d1 and permeability k1, the lower layer with thickness and

permeability d2 and k2. (See figure 9.4) If the total head is h0 at z = 0, find the head at

all levels in the soil. Assume that the pressure is the same below the bottom layer as it is

above the top layer.

8. Given the permeability tensor in equation (9.19), find the flow for a head gradient

∇h = − A[cos(α)i + sin(α)k], where A andα are constants. What is the component of the

flow in the direction of the head gradient?
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Chapter 10 -- High Reynolds Number Flow

When the Reynolds number is very large it is reasonable to assume that the viscous

terms in the Navier-Stokes equation can be ignored. We now explore the consequences

of this assumption. When a fluid is in contact with a solid surface, we will find that the

assumption is not strictly defensible. However, it remains a useful approximation under

many circumstances.

When the viscous terms are dropped, the Navier-Stokes equation reduces to the

Euler equation,

ρ
dv
dt

= − ∇∇p + ρB . (10.1)

Since terms involving second order spatial derivatives have been ignored, the boundary

conditions needed to insure a unique physical solution are changed. The no slip bound-

ary conditions required for the Navier-Stokes equation overconstrain the Euler equation,

resulting in no solution in most circumstances. It turns out that free slip boundary condi-

tions are appropriate for the case in which viscosity is ignored. Physically, this means

that the only constraint on a fluid adjacent to a solid boundary is that the fluid not flow

through the boundary. Flow tangent to the boundary is unconstrained. Mathematically,

the free slip condition may be written

(v − vs) ⋅ n = 0 , (10.2)

where v is the fluid velocity, vs is the velocity of the bounding surface (often zero), and n

is the unit normal to the bounding surface.

Figure 10.1 illustrates the flow next to a plate for large, small, and no viscosity. The

sheared region near the plate in the first two cases is called a boundary layer, as discussed

in chapter 8. Other things being equal, as viscosity decreases, the boundary layer

becomes thinner. However, the shear in the boundary layer becomes stronger, leaving the

product of the shear and the boundary layer thickness the same. Thus, as long as there is

any viscosity, no matter how small, there will be a thin sheared boundary layer. The third

case in figure 10.1, in which the viscosity is identically zero, is quite different. Since the

boundary condition here is free slip, no shear layer exists.
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small
viscosity

no viscosity
(free slip)

large
viscosity

Figure 10.1. Illustration of flow parallel to a flat plate in the case of large vis-

cosity, small viscosity, and no viscosity. The last case differs fundamentally

from the other two in that no layer of vorticity exists at or just above the sur-

face.

The distinction between a very thin shear layer near the surface and no shear layer

may seem trivial, and so it is as long as fluid adjacent to the surface never departs from it.

However, as we shall see, the distinction is crucial when the phenomenon of flow separa-

tion occurs. In the case of small viscosity, the shear layer is sometimes stripped away

from the surface and transported into the interior of the fluid, where it has significant

dynamical consequences. An inviscid fluid has no shear layer available for transport into
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the interior.

In order to obtain a better understanding of these matters, we delve into the concepts

of vorticity and circulation. We then study Bernoulli’s equation and irrotational flows.

Finally, we use these tools to investigate flow in the presence of solid surfaces.

Kelvin’s Theorem

In chapter 4 the vorticity was introduced as twice the dual vector of the rotation rate

tensor, and it was shown to be equal to the curl of the velocity:

ωω= ∇∇ × v . (10.3)

The vorticity plays a crucial role in high Reynolds number fluid dynamics.

A closely related quantity, the circulation, is defined

Γ = ∫ v ⋅ d l , (10.4)

where the integral is a line integral around a closed loop. The circulation around a loop is

therefore the average value of the component of the velocity tangent to the loop times the

circumference of the loop. Figure 10.2 illustrates streamlines of a flow pattern, a circula-

tion loop, and the velocity v and line element d l vectors at one point on the circulation

loop.

The relationship with vorticity comes from applying Stokes’ theorem to equation

(10.4):

Γ = ∫ ∇∇ × v ⋅ n dA = ∫ ωω⋅ n dA =ωn A . (10.5)

The integral is now an area integral over the surface (actually, any of the many surfaces)

bounded by the circulation loop. Since n is the unit normal to the surface (see figure

10.2), the integral picks out the component of vorticity normal to the surface. Ifωn is the

average value of the component of vorticity normal to the surface, then the integral can

also be written as the area A of the surface times ωn.

In the special case of two-dimensional flow the only nonzero component of the vor-

ticity is that component normal to the plane of the flow. A point vortex results when all

vorticity is concentrated in a very small region. Any circulation loop that encompasses

the vorticity has the same circulation in this case, by virtue of equation (10.5). Thus, in

particular, two circular loops concentric with the concentration of vorticity have the same
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n

v

d l

dA

circulation path

Figure 10.2.  Definition sketch for circulation theorem.

circulation, as illustrated in figure 10.3. By symmetry, the circulation around a concen-

tric, circular loop of radius r is simply Γ = 2πrvt , where vt is the tangential velocity

around the loop. As a consequence, vt = Γ/(2πr) for a point vortex. Thus, the circulation

is a convenient measure of the strength of a point vortex. The equivalent of a point vortex

occurs in three dimensions when all vorticity is concentrated into a pencil-shaped region

aligned with the vorticity vector.

Let us see if we can compute the time rate of change of the circulation around a loop

that moves with the fluid. To do this it is easiest to approximate the circulation integral as

a finite sum:

dΓ
dt

=
d

dt ∫ v ⋅ d l ≈
d

dt i
Σ vi ⋅ (xi+1 − xi ) . (10.6)

The finite difference analog of d l is taken as the difference between two position vectors

representing successive points along the circulation path. By hypothesis these points

move with the fluid, so dxi /dt = vi . Applying the product rule for differentiation to the

right side of equation (10.6), we see that
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all vorticity

r1

r2Γ1

Γ2

Figure 10.3. Two circulation loops around a point vortex. The circulations are

equal, i. e., Γ1 = Γ2.

dΓ
dt

= ∫
dv
dt

⋅ d l + ∫ v ⋅ dv (10.7)

upon passing back to the exact integral form.

The second term on the right side of equation (10.7) is easily disposed of by noting

that v ⋅ dv = d(v2/2). This is an exact differential, and integration around a closed loop

yields zero. The first integral may be evaluated by eliminating dv/dt with the Euler

equation, (10.1). If the body force per unit mass is conservative, i. e., B = − ∇∇U , where

U is the potential energy per unit mass of fluid, then the integral of ∇∇U ⋅ d l = dU around

a closed loop is zero, since dU is also a perfect differential. As ∇∇p ⋅ d l = dp, equation

(10.7) becomes

dΓ
dt

= − ∫
dp

ρ
. (10.8)
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This is called the Kelvin circulation theorem, and it states that the only way the circula-

tion around a closed loop moving with an inviscid fluid can change is when the gradient

of pressure and the gradient of density don’t point in the same direction.

Imagine a tank filled with water containing a variable concentration of dissolved

salt, and hence a variable density. If left to itself, the saltier, more dense water will end

up at the bottom of the tank, making the density gradient vector point vertically down-

ward. The pressure gradient also points downward due to the hydrostatic law. If the tank

is somehow perturbed so that the denser fluid is moved to the left side of the tank and the

lighter fluid to the right, the density gradient will then have a horizontal component,

while the pressure gradient will remain approximately vertical, as shown in figure 10.4.

According to equation (10.8), a circulation will then develop which will tend to restore

the fluid to its equilibrium configuration. However, the flow will overshoot, which will

result in a tilt of the constant density surfaces the other way. This will slow down the cir-

culation that has developed, eventually stopping and reversing it. Oscillations will con-

tinue until damped by viscosity.

A fluid for which the density can vary independent of the pressure is called a baro-

clinic fluid, and the process described above is called the baroclinic generation of vortic-

ity. A barotropic fluid has a unique relationship between pressure and density, ρ = ρ(p).

A simple example is a homogeneous, incompressible fluid for which the density is con-

stant. Another example is an ideal gas with constant specific entropy. It is easy to show

from equation (8.14) that p = Cργ in this case, where C is a constant andγ = Cp/Cv.

Thus, ∇∇p = γCρ(γ − 1)∇∇ ρ, and ∇∇ ρ × ∇∇p = 0 since the gradients of pressure and density

are automatically parallel. Equation (10.8) states that the circulation around any loop that

moves with the fluid is constant in time for a barotropic fluid.

Lines everywhere parallel to the vorticity vector are called vortex lines. The more

closely spaced the lines, the stronger the vorticity. Since the vorticity is the curl of the

velocity, its divergence is zero. This means that vortex lines cannot begin or end in the

fluid. For a barotropic fluid, vortex lines can be thought to move with the fluid. This fol-

lows from the Kelvin circulation theorem.  (Why?)

The development of strong vortices in a barotropic fluid can be understood using the

circulation theorem and equation (10.5). If such a fluid deforms so that vortex lines are

brought closer together, as in figure 10.5, then the vorticity is intensified. If the fluid is
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∇ ρ
∇p

∇p
∇ ρ

∇ ρ ∇p

Figure 10.4. Evolution of the orientation of the constant density surfaces in a

tank with salt water of varying concentration. In the upper panel the density

gradient has a component to the left, which induces a clockwise circulation.

The middle panel shows the velocity field when the circulation has made the

constant density surfaces horizontal. The fluid configuration in the last panel is

opposite of that in the first panel. In all panels, ∇∇ρ is the the density gradient

and ∇∇p is the pressure gradient.

incompressible, the shrinking of the circulation loop around the vortex lines must be

accompanied by stretching in the perpendicular direction, as illustrated by the change in

shape of the cylinder shown in figure 10.5. This constant volume deformation is often

characterized as a process of stretching the vortex lines. Any increase in the length of

vortex lines must be accompanied by a decrease in their spacing such that the volume,
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Γ

AΓ h

h′

A′

Figure 10.5. Illustration of ‘‘vortex stretching’’. The dashed lines are vortex

lines.

Ah = A′h′, remains constant for an incompressible fluid. For this reason, the spinup of a

vortex from weak ambient vorticity by such a deformation process is often called vortex

stretching. Examples of vortex stretching are the development of the ‘‘bathtub vortex’’

when water drains out of a bathtub, and the formation of tornados and hurricanes. Note,

however, that the spinup is not a consequence of the ‘‘stretching’’, but of the reduction in

the cross-sectional area normal to the vorticity vector.

Inviscid Irr otational Flows and Bernoulli’ s Equation

An irrotational flow is one in which the vorticity is everywhere zero. If the fluid is

also inviscid and barotropic, as we shall generally assume in this section, it will remain
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irrotational for all time if it starts out that way -- a consequence of the Kelvin circulation

theorem. It is therefore useful to study this special case of fluid flow.

If ωω= ∇∇ × v = 0, then the v elocity field can be represented as the gradient of a

scalar, called the velocity potential:

v = ∇∇ φ (irrotational flow) . (10.9)

If the flow is also incompressible, then

∇∇ ⋅ v = ∇ 2φ = 0 , (10.10)

i. e., the velocity potential, φ, satisfies Laplace’s equation. The free slip boundary condi-

tion evaluated in terms of φ is derived from equation (10.2):

∇∇ φ⋅ n = vs ⋅ n . (10.11)

Equation (10.10) and these boundary conditions contain all of the physics of incom-

pressible, inviscid, irrotational flows, and represent a considerable simplification over the

more general problem of fluid motion. Equation (10.10) also contains no time derivative,

so the fluid flow at any time depends only on the conditions at that time, and not on previ-

ous times. In other words, such a fluid does not remember its history, and any time

dependence can only enter through the boundary conditions.

We now derive the Bernoulli equation for an inviscid, irrotational, barotropic fluid.

Using a vector identity, v ⋅ ∇∇v = ∇∇(v 2/2) − v × ωω, and assuming that the body force is

derivable from a potential, B = − ∇∇U , the Euler equation, (10.1), can be written

∇∇ 

∂φ
∂t

+ v2/2 + ∫
dp

ρ
+ U




= 0 , (10.12)

which immediately integrates to Bernoulli’s equation,

∂φ
∂t

+ v2/2 + ∫
dp

ρ
+ U = H , (10.13)

where H is a constant called the Bernoulli constant. We are able to take the density

inside the gradient operation in equation (10.12) because the fluid is barotropic by

hypothesis. The density is a unique function of the pressure, and the integral is therefore

unique. In the case of a time-independent flow of a homogeneous, incompressible fluid,

Bernoulli’s equation reduces to the more familiar form

v2/2 + p/ρ + U = H . (10.14)
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Since the velocity is determined by ∇2φ = 0 and the free slip boundary conditions,

Bernoulli’s equation may be thought of as a diagnostic equation for the pressure in the

case of inviscid, incompressible, irrotational flow. Thus, between Bernoulli’s equation

and Laplace’s equation for the velocity potential, the entire problem of computing this

type of flow is in principle solved.

In the special case of two-dimensional flow in the x − y plane, further simplification

occurs. In this case the continuity equation reduces to

∂vx

∂x
+

∂vy

∂y
= 0 . (10.15)

This can be satisfied by assuming that

vx = −
∂ψ
∂y

vy =
∂ψ
∂x

. (10.16)

The variableψ is called the streamfunction, since lines of constant ψ are streamlines.

This is easily verified by noting that the above equations imply v ⋅ ∇∇ ψ = 0. Thus, v is

parallel to lines of constant ψ. A corollary is that ∇∇ ψ ⋅ ∇∇ φ = 0, i. e., lines of constant ψ
andφare perpendicular. Finally, since the vorticity is zero in irrotational flow,

ωz =
∂vy

∂x
−

∂vx

∂y
=

∂2ψ
∂x2

+
∂2ψ
∂y2

= ∇ 2ψ = 0 . (10.17)

Thus both the velocity potential and the streamfunction satisfy Laplace’s equation in two-

dimensional, incompressible flow, and solving for either one leads to a solution for the

velocity field. In a steady flow situation (i. e., the boundaries don’t move), ψ is simply

constant on each boundary.

Boundary Layers and Forces on Immersed Objects

With new tools in hand, we now return to the question of flow near solid boundaries.

In particular, we try to understand the forces exerted on an object as it moves through a

homogeneous, incompressible fluid at very high Reynolds number.

An alternative way to interpret figure 10.1 is that a layer of vorticity exists where a

moving viscous fluid comes in contact with a solid body. As the viscosity is decreased,

the layer becomes thinner, but the vorticity becomes stronger, thus keeping constant the

circulation around a segment of this layer. Vorticity generated at the surface moves



-127-

outward by molecular diffusion, so the smaller the viscosity, which can be thought of as

the diffusion coefficient for momentum and vorticity, the smaller the spread.

not

streamlined

streamlined

wake

Figure 10.6. Development of a wake behind streamlined and unstreamlined

bodies.

The main effect of the flow is to transport this vorticity downstream. The result for

a streamlined body, as shown in the upper part of figure 10.6, is the creation of a narrow

wake behind the body. The wake is a region in which the downstream flow speed is less

than the upstream flow speed. It is created by the two boundary layers from the opposite

sides of the body coming together.

In the inviscid approximation, these layers of vorticity, and hence the wake, don’t

exist. For high Reynolds number the boundary layers and the wake become very thin for
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a streamlined body. It seems reasonable under these circumstances to suppose that in the

limit of large Reynolds number the inviscid approximation to the flow, and hence to the

force on the body, is valid.

How do we evaluate the force on a body due to its motion through an inviscid, irro-

tational fluid? The most straightforward way is to integrate the traction of the fluid on the

body over the surface of the body, i. e.,

F = ∫ T ⋅ n dA = − ∫ pI ⋅ n dA = − ∫ pn dA , (10.18)

where n is the outward unit normal to the surface of the body, and the stress for an invis-

cid fluid, − pI, has been substituted. If we place ourselves in the reference frame of the

body so the flow is steady, the pressure can be obtained from the flow field with

Bernoulli’s equation, assuming no body forces:

p = − ρv2/2 + constant . (10.19)

For flow around a sphere or a cylinder, or any other object that exhibits side-to-side

and upstream-downstream symmetry, substitution of equation (10.19) into equation

(10.18) yields zero force.

F

B

A

C

E

D

Figure 10.7.  Schematic of flow around a sphere or cylinder.

This may be seen by examining figure 10.7, which illustrates such a flow. The symmetry

of the object causes the flow to have similar symmetry. For instance, the points C and D
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both have zero velocity, and are called stagnation points. By Bernoulli’s equation, C and

D have pressures exceeding the pressure in the distant fluid by ρv2
0/2, where v0 is the flow

speed far from the object. On the other hand, the points E and F both experience pres-

sures less than the distant fluid value, since the flow speeds at these points exceeds v0. In

the more general case of points A and B, the pressures are equal by symmetry, and there-

fore equal but opposite tractions are exerted on the object at these two points. Since the

total force on the object can be expressed as the sum of pairs of tractions on opposite

sides of the object, the total force on the object is zero.

It turns out that the above argument can be generalized to a finite-sized object of any

shape. Thus, any such object moving through a homogeneous, incompressible, inviscid

fluid experiences no drag force. This result, called D’Alembert’s paradox, is not in

accord with our intuition (derived, say, from riding a bicycle into a strong wind!), so there

must be a flaw in the argument.

The flaw turns out to be the assumption that the wake always tends to zero thickness

as the Reynolds number increases. The lower part of figure 10.6 shows what more com-

monly happens when an object moves through a fluid. In the illustrated case the vorticity

generated in the boundary layer of the object separates from the object before it meets its

companion vorticity from the other side of the object. In the illustrated case the separa-

tion is induced by the sharp corner at the back of the unstreamlined object, but even in

less extreme cases such as actual (as opposed to ideal) flow around a sphere, separation

occurs at high Reynolds numbers. The result is a very broad wake, comparable in diame-

ter to the cross-stream diameter of the object. In such a wake region the flow is typically

time-dependent and turbulent, though for simplicity it is shown as being zero in the illus-

tration.

An estimate of the drag on such a blunt object can be made using the following rea-

soning. The pressure at the front stagnation point on the bottom object in figure 10.6 is

ρv2
0/2 by Bernoulli’s equation. If the object has a projected cross-sectional area normal to

the flow of A, the drag from pressure perturbation forces on the forward face of the object

is of order ρAv2
0/2. For pure irrotational flow, this force would be countered by an equal

and opposite force on the rear face of the object, and the net force would be zero. How-

ever, the pressure in the wake region must be the same as the pressure in the ambient flow

far from the object, since there can be no pressure jump across the shear line that defines
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the boundary of the wake (why?). Thus, there is no rear pressure perturbation, and no

countervailing thrust force.  The net drag can therefore be written

Fdrag = CDρAv2
0/2 , (10.20)

where CD is a dimensionless coefficient of order one called the drag coefficient. The

drag coefficient accounts for the fact that we only estimated the drag on the front faces of

the object and didn’t precisely calculate it. Drag coefficients are hard to calculate from

first principles in any but the most idealized cases, and are generally obtained by measur-

ing the force on an object placed in a moving stream of air or water.

We now need to ask why flow separation takes place. Let us examine the behavior

of parcels moving around the sphere in figure 10.7. For truly inviscid flow, a parcel start-

ing out near point C will have near-zero velocity and higher than normal pressure. The

pressure gradient is such that it will accelerate in its trajectory around the sphere until it

reaches point E, the location of lowest pressure. From point E to point D it will then

decelerate until it reaches nearly zero velocity at the rear stagnation point. However,

when viscous drag is added, the acceleration from C to E is less than in the idealized

case, and the deceleration afterwards is greater. Thus, the fluid near the surface of the

sphere comes nearly to a halt before it reaches point D. By mass continuity, fluid cannot

pile up at this new stagnation point, so it must move away from the surface, carrying its

boundary layer vorticity with it. Thus, separation of the flow from the surface of the

object is an inevitable consequence of viscous drag in the boundary layer.

As might be expected, the separation process is one that is very sensitive to many

things, and is very hard to predict. In addition, it turns out that the boundary layer vortex

sheet that peels off of the object is itself unstable. This generally causes the wake to

evolve in a complex and unpredictable fashion. The subject of high Reynolds number

flow past objects thus becomes one of the most difficult areas of study in fluid mechanics.

Nevertheless, the simple arguments made here suffice to give a qualitative picture of what

happens in these circumstances.

We now turn to the subject of lift. Lift is the component of the fluid force on an

object normal to the direction of the flow. Imagine an infinitely long cylinder of radius R

aligned normal to a flow that is uniform far from the cylinder. As is shown in problem 3,

a solution for the streamfunction that satisfies free slip boundary conditions at

x2 + y2 = R2 and has uniform flow in the minus-x direction at large distances is
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ψ = v0y


1 −

R2

x2 + y2



. (10.21)

However, this isn’t the most general solution possible, since

ψ = C log(x2 + y2) , (10.22)

where C is a constant, also satisfies Laplace’s equation. This solution has a singularity at

x = y = 0, but is irrotational away from this point. Application of equation (10.16) shows

that this represents the flow around a point vortex at the center of the cylinder with circu-

lation Γ = 4πC. Thus, the vorticity associated with this flow is confined to the region

inside the cylinder, and is imaginary in the sense that no vorticity is actually found in the

fluid. Nevertheless, since the circulation around the cylinder in this case is nonzero, a

bound vortex is said to exist inside the cylinder.

The bound vortex flow satisfies free slip boundary conditions on the surface of the

cylinder, as does the zero circulation flow represented by equation (10.21). Since the

governing equation for streamfunction in the irrotational flow case, ∇2ψ = 0 is linear, a

linear combination of equations (10.21) and (10.22) is a valid flow solution that also sat-

isfies boundary conditions on the cylinder. The characteristics of this combined solution,

written here in cylindrical coordinates,

ψ = v0r sin θ (1 − R2/r 2) + (Γ/2π) log r , (10.23)

are quite interesting. Since the tangential velocity is simply ∂ψ/∂r, the tangential velocity

at the surface of the cylinder is

vt(R,θ) = 2v0 sin θ +
Γ

2πR
, (10.24)

and the pressure at the surface of the cylinder is

p = − ρ

2v2

0 sin2 θ +
v0Γ sin θ

πR
+

Γ2

8π2R2



+ constant (10.25)

by Bernoulli’s equation. Inserting this into equation (10.18) results in the following force

per unit length of cylinder:

F = ρv0Γj (10.26)

This is the Kutta-Zhukovskii theorem, which states that the force on an infinitely long

cylinder oriented normal to a uniform flow is proportional to the product of the flow
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speed and the circulation around the cylinder, and is directed perpendicular to the direc-

tion of the flow. This theorem can actually be proved for a cylinder of arbitrary cross-sec-

tion. A condition of the Kutta-Zhukovskii theorem is that there be no significant wake.

Though we have proved the theorem for the special case of a circular cylinder, this condi-

tion can be realized in practice only with streamlined shapes so that boundary layer sepa-

ration doesn’t take place.

y

x

v0

higher velocity
lower pressure

lower velocity
higher pressure

Γ

F

Figure 10.8.  Lift acting on a rotating cylinder.

It is possible to understand the Kutta-Zhukovskii theorem from figure 10.8, in which

a circular cylinder is subjected to the translational flow plus bound vortex described by

equation (10.23). On top of the cylinder the circulation associated with the bound vortex

and the translational flow reinforce resulting in a larger velocity than at the bottom of the

cylinder, where they act against each other. By Bernoulli’s equation, the pressure is

therefore lower on the top than on the bottom of the cylinder, resulting in a net upward
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force. Note that this lift force requires both translation of the cylinder through the fluid

and the existence of a circulation.  Neither effect by itself will generate lift.

wingtip vortices

Figure 10.9.  Lift from a wing of finite length.

The Kutta-Zhukovskii theorem strictly applies only to infinitely long cylinders.

However, it is approximately correct for finite cylinders that are much longer than they

are broad. For a finite cylinder, the bound vortex inside the cylinder must emerge into the

fluid at some point, as vortex lines cannot end. This occurs typically at the end of the

cylinder. As the cylinder is moving through the fluid, the vortex line trails downstream

from the end of the cylinder. This is called a wingtip vortex, and is illustrated in figure

10.9, which shows the circulations around the airfoil and the wingtip vortices for an ide-

alized ‘‘flying wing’’.

Problems

1. Water flows irrotationally in a channel as shown in figure 10.10. When it is going

around the curve, is the water on the inside or outside of the curve flowing faster? Hint:

Apply the circulation theorem around the path shown.

2. Compute the motions of two point vortices with known circulations separated by a dis-

tance d in two cases, a) when the circulations around the vortices are the same, and b)
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circulation path

Figure 10.10.  Water flowing irrotationally in a curved channel.

when they are equal but opposite in sign. Hint: Recall that vorticity moves with the fluid

flow, including that flow induced by other vortices.

3. Show that the streamfunction

ψ = v0y

1 −

R2

x2 + y2



represents two-dimensional, inviscid, irrotational flow about a cylinder of radius R with

axis perpendicular to the flow.

4. Find the pressure field surrounding a point vortex using Bernoulli’s equation in a fluid

of constant density. Also find the streamfunction. Ignore body forces and assume two-

dimensionality.

5. Show that if a flow is steady, inviscid, and has conservative body forces, but is rota-

tional, Bernoulli’s equation is valid along streamlines, but that different streamlines may

have different Bernoulli ‘‘constants’’.

6. For an ideal gas with constant specific entropy, show that

∫ dp/ρ = CpT /m + constant ,

where Cp is the molar specific heat of the gas at constant pressure, m is its molecular

weight, and T is the temperature.

7. Apply Bernoulli’s equation for an ideal gas to a rocket engine to find the exhaust

velocity of the engine as a function of the gas temperature inside the engine, the
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molecular weight of the gas, and its molar specific heat at constant pressure. Assume that

no body forces are acting, and that the rocket is in vacuum.

8. For a viscous fluid show that vortex lines cannot end on a solid surface. How then are

‘‘bound vortices’’ explained in the viscous case?
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