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Chapter 1 -- Introduction

Continuum mechanics is a theory of the kinematics and dynamics of material bodies
in the limit in which matter can be assumed to be infinitely sudathle. Scientists va
long struggled with the question as to whether matter consisted ultimately of agadggre
of indivisible “atoms’, or whether ap small parcel of material could be suaded
indefinitely into smaller and smaller pieces. As we all mealize, ordinary matter does
indeed consist of atoms. Wever, far from being indiisible, these atoms split into a
staggering array of other particles undefisignt application of engy -- indeed, much

of modern plgsics is the study of the structure of atoms and their constituent particles.

Previous to the adent of quantum mechanics and the associatpdranental tech-
niques for studying atoms, y#icists tried to understandery aspect of the bewar of
matter and engy in terms of continuum mechanicsorknstance, attempts were made to
characterize electromagneti@wes as mechanical vibrations in an unseen medium called
the ‘luminiferous ether; just as sound aes were knan to be vibrations in ordinary
matter We nav know that such attempts were misguided. wdeer, the mathematical
and plysical techniques that werew#doped oer the years to deal with continuous distri-
butions of matter hae proven immensely useful in the solution of nggoractical prob-
lems on the macroscopic scale. Such techniques typically when the scale of a phe-
nomenon is much greater than the separation between the constituent atoms of the mate-
rial under consideration. Theare therefore of great interest to geggbists, astropysi-
cists, and other types of appliedypltists, as well as to applied mathematicians and engi-
neers. Indeed, the modernveéopment of the subject has beergédy talen over by

mathematicians and engineers.

This textbook derelops the subject of continuum mechanics from the point of vie
of an applied pysicist with interests in geoghics and astropisics. The subject of con-
tinuum mechanics is aast one, and the ab® interests ha guided the selection of
material. Havever, the basic subjects wered, i. e., elastic bodies andwdenian fluids,
transcend the autharparticular interests, and are central to the full spectrum of applica-

tions of continuum mechanics.

The key mathematical concept in continuum mechanics is the tensor -- in no other
area of plisics do tensors appear so naturally and ubiquitoushe main problem for
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the student is to connect the rather abstract mathematical notion of a tensor isite ph
of continuous media. drthis end, the properties of tensors aneettged in parallel with
the plysical notions of stress and strain.

Certain mathematical preparationybad elementary calculus is needed to master
continuum mechanics. The student shouldaweilfar with vector analysis, including the
laws of Gauss and Stek, and should ka some understanding of matrix operations. In
addition, eperience with the solution of elementaryfeliéntial equations, such as the
harmonic oscillator equation, is essential.
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Chapter 2 -- The Notion of Stess

Atoms and molecules in liquids and solids are subjectaaypes of forces, namely
long range forces such as gtg, and short range, molecular bonding forces. In this
chapter we consider toshort range forces are treated in continuum mechanics. This
gives rise to the notion of stress, a concept that is central to the subject. In order-to under
stand stress, we further need tovalep the mathematical idea of a tensdthis we
believe is best done in coincidence with theelepment of the pfsical concepts.

Conceptual Model from Atomic Physics

Let us first consider a simple conceptual model of a crystalline solidoimlitwen-
sions. Imagine a galar array of atoms or molecules tied together by springs as illus-
trated in figure 2.1. The springs simulate the intermolecular forces, and a state of equilib-
rium exists when none of the springs are stretched or compressed from their equilibrium
lengths. V¢ are interested in the force acting across the line AB, which is jusdioe v
sum of the spring forces for those springs that cross AB. The nature of this force is most
easily appreciated by concentrating on just those springs attached to a single molecule,
indicated by the square in figure 2.1. Six springs, a, b, c, d, e, and f are attached to this
molecule, It only two of those, a and b, cross AB, and are therefore of current interest.

Figure 2.2 shws what happens when the molecule is displaced small amounts in
various directions with no displacements @&kal in connecting molecules. If it is dis-
placed parallel to AB, spring a is compressed and spring b is stretched, and the net force
is such as to push the molecule back to its original position. This is called a shear dis-
placement. Similar restoring forces occur when the subject molecule vedrtavard
(compression) onaay from (etension) AB.

The point to be recognized here is that the direction of the restoring force is related
to the direction in which the molecule is displaced, and is unrelated to the orientation of
the line AB &cept insoér as the choice of AB determines which springs need to be con-
sidered in the calculation.

The restoring force is, of course, only part of the force acting on the molecule,

because we ke not included the forces due to the other springs. Indeed, if we compute
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Figure 2.1. Conceptual model of a crystalline solid.

instead the force across the line CD in figure 2.1, we may get quiezadif \alues for

the partial restoring force associated withegidisplacement of the molecule, because
now springs a, e, and f must be considered. alet,fthe net force acting on the molecule
across the line AB is almost completely independent of the force acting across CD if dis-
placements of the connected molecules arevalio The meaning ofdlmost” in this

case will be gplored more fully later in this chapter

The sum of all the spring forces acting across AB is called tbssstoce across
that line. In three dimensions onewd consider the stress force acting across aseurf
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Figure 2.2. Relation between displacement and force on a molecule.

In continuum mechanics we are interested in the collediehsior of mary atoms or
molecules, and consider the stress force across aceud be the inggal over the sur
face of a stress force per unit area, omation, rather than a sunver discrete molecular

bonds. The traction mayawy with position on the swate, lot this only maks sense if
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the distance wer which significant ariation tales place is lge compared to molecular
spacings. This is because the traction at a particular point is actually the sum of all the
spring forces through the sade within some distance of that point/ided by the area

on the surice encompassed by this sampling distance. The sampling distance must be
much lager than the molecular spacing for thigmaging process to maksense, yet

much smaller than the distanceeo which traction aries significantly It is this assumed

scale separation that neg<continuum mechanics a significant simplificativeraxplic-

itly computing the motion ofwery molecule in a complesystem.

Traction Across Arbitrary Planes

We nav drop our conceptual crutch of a crystalline solid, and think of matter as
being continuously distriied in space. Wknaw, of course, that this is an approxima-
tion based on an assumed separation of scales between molecular structure and the phe-
nomenon of interest. The traction, or stress force per unit area acrosaca,doetomes
the central focus of our attention, irrespeetof hav it is related to phenomena at the
molecular lgel.

We nav introduce a corention that is umersal to modern continuum mechanics,
but is perhaps somdat counterintuitie. Imagine a plane sae separating tv
regions, labeled 1 and 2 in figure 2.3. The orientation of thaseiit defined by a unit
normal \ector n, shwn as pointing into igon 2 in the figure. Heever, a unit \ector
pointing in the opposite direction could just as welNéadefined the orientation of the
surface. V¢ tale adwantage of this ambiguity to ascribe additional significance to the
direction of n: If n pierces mgion 2, then the traction across the soéf (illustrated by the
vector t in the figure) is considered to be the force per unit areated by rgion 2 on
region 1. Thus, the piercedgien does the acting.

The abee aguments indicate that the tractioactor generally aries @en at a sin-
gle point as the orientation of thevidiing surfice is aried. Thus, an infinite number of
different tractions are possible at a single point, depending on the orientation of the sur
face. Havever, it seems implausible that all thesefetiént tractions could be indepen-
dent, and indct it is not true. It turns out that once the traction is specified at a particular
point across three mutually perpendicular aces (in three dimensions), the traction

across ay other surhice that passes through that point can be computed. This



Figure 2.3. lllustration of the traction (t) and unit normal (e¢ters relatie to
a surfce cutting a continuous medium. The traction is the force per unit area
of region 2 acting on ggon 1.

computation leads naturally to the definition of a mathematical entity called a tensor --
the stress tensor in this case.

To prove this point, we turn to Ngon’s second M. Imagine a chunk of matter in
the form of a tetrahedron obtained by cuttinfjtbé corner of a cube, as stoin figure
2.4. The Cartesian as coincide with the edges of the cube, and ardwnit normal
vectors —i, —j, =k, and n are sk for each of the four swates, along with their respec-
tive areas, A Ay, A;, and A. If we assume that the tetrahedron is at rest and ignore long
range forces, then the total stress force on the, badigh is the sum of the stress forces
acting across each sace must be zero:

ty A+t Ay + 1A, +TA =0, (2.1)

where the tractionactors t, etc., are labeled by the sarés on which thyeact. The x
surface is that suaice normal to the x axis, etc. (Note in particular that the subscripts do
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View Line

Figure 2.4. Definition sitch of tetrahedron used to derithe traction across
an arbitrary sugce from the tractions across three mutually perpendicular sur

faces.

not indicate components of the tractioactor in this case!) In setting the stress force
across each sate to the product of the tractioector and the area, weveaassumed
that the traction aries insignificantly wer the sudice. As we will ultimately let the
dimensions of the tetrahedron approach zero, this is not a limiting assumption.

The areas of eaclade of the tetrahedron are related to the resgeahit normals.
This may be appreciated by wimg the tetrahedron along one of its oblique edges, as
illustrated in figure 2.5. Here we see the tetrahedron from a point on a line defined by the
intersection of the y — z plane and the oblique axef The x and obliqueades thus
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Figure 2.5. Vew of tetrahedron of figure 2.4 along widine.

appear edge-on at an an@leto each other Since the area ,Ais just the projection of
the area A onto the y — z plane, wedna\ /A = cos6, =i [h. Similar relationships hold
for the y and z suaces. Solving equation (2.1) for the traction t across the obligoe f
of the tetrahedron and eliminating the areas yields

t= = t,(i [h) - t,(j Ch) - t,(k Ch). (2.2)

This is precisely the desired result, as itvehidiav to compute the traction across an
arbitrarily oriented sudce, assuming that the tractions arevkmacross the three, mutu-
ally perpendicular coordinate planes. This oblique traction is defined acrossa@e surf
that is not precisely collocated with the intersection of the coordinate planasmde we

have assumed that tractions dovary much with position, this is not a problem.
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We hae derved equation (2.2) with the restrictions that no long range forces are
acting and that the tetrahedron is in static equilibrium. If the tetrahedronviedlto be
very small, it turns out thatven these restrictions can be lifted. This can be seen by esti-
mating the relatie importance of arious terms in the fullgression of Neton’s second
law applied to the tetrahedron:

2 Fsresst Foody = Ma. (2.3)

The first term is eerything included in equation (2.1), and forefik\alues of the trac-
tions, scales as4, where L is a typical linear dimension of the tetrahedron, such as its
diameter What we mean here is that irrespeetiof the actual alue of this term in the
equation, if the tetrahedron is reduced in linear dimension hgtarfof 2, the &lue of

the term is reduced by adtor of 2 = 4. This is because the stress term contains areas,
which are typically the products of éwlengths. If the diameter of the tetrahedron is
reduced by adctor of two without changing its shape, then these lengths will also be
reduced by thisafctor

The acceleration term on the right side of equation (2.3) contains the mass m of the
tetrahedron, which is theverage mass density times th@ume. Assuming that the mass
density \aries smoothly (if at all) through the material medium, we can see that this term
scales with E, due to the presence of thelwme. Thus, as L is alleed to becomeery
small, the ratio of the stress to the acceleration term goes as something/L. luesgpbecti
what ‘something’ is, this ratio will ezentually become much ger than unity as L gets
smaller Therefore, for gry small L, the acceleration term can be safely ignoredvelati
to the stress term in this calculation.

A similar agument can be made about long range forces, symbolized heggyas F
This is because such forces typically also scale with the mass of the body in question.
Thus, for \ery small tetrahedrons, the pi@usly imposed limitations are no longer appli-
cable, and equation (2.2) holdgea in the presence of long range forces and accelera-
tions. A side dkct of letting L becomeeary small is that spatialaviations in tractions
are then allved as long as theaxiation is reasonably smooth.

The abee analysis isalid whether the tetrahedron is a real object or simply part of
a lager material body setfaby imaginary planes defining the tetrahedsdates. In the
former case, the tractions may be thought ofxasreally applied to the body pbgay

some type of laboratory apparatus. In the latter case, the tractions represent internal
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forces in which one part of a material body acts on anothehis case it is profitable to
think of the state of séiss of the body as encompassing tiaugs of the tractions on
three mutually perpendicular saces and theirariations from place to place in the body

A Mathematical Diversion

This book will not present the formal theory of Cartesian tensors. Instead, it will try
to shav the plysical motvation behind the mathematical concept, avé gome notions
as to hav tensors are used in deations and computations. In order to ease tag we
start with the notion of a dyadic product. This relates tensors back to the anoliarf
concept of ectors.

Examination of equation (2.2) tempts one tariee it in a more dicient manner by
factoring out the common unit normal n:

t= (= tyi—tyj - t,k) . (2.4)

The resulting combinations such gs dre called dyadic mducts of ectors. Thg are
distinguished from dot and cross products by the absence of their respgarators, ()
and (x). The meaning of an arbitrary dyadic product ab af wectors, a and b, only
emeges when the dot product is &akwith another ector c:

(ab) L€ = a(b [E); c[{ab)=(c@A)b. (2.5)

In other words, the dyadic ab yields a number times tkeeter a when dotted on the right
by another gctor and a number times theator b when dotted on the left. Notice that
the results of dotting from the left and the right arded#int. Morewoer, ab is not the
same as ba because the results of taking dot products from each sidéeasntlif

A dyadic is a special case of a tensor. Sums of dyadics are also tensors. The quan-
tity in parentheses in equation (2.4) is called thesstitensor, and we denote it in this
book as T. Thus, a shorthanéyof representing equation (2.4) is

t=T[h, (2.6)

which means;‘if you dot the stress tensor T on the right with a urgttor n, you get the
traction across the sade normal to n’ Note that t, ty, and { are respectely reco-
ered by substituting — i, — j, and - k for n in equation (2.6).



-14-

Since T (or ay other tensor) is a sum of dyadics, the most general T may be
obtained by xpanding all the tractions forming the imtiual dyadics into component
form, e. g., § =ty +ty,j + tK, where the first and second subscripts of each t respec-
tively represent the Cartesian component of the tractmtor and the suate across
which the traction acts. Thus, s the y component of the traction across the zagrf
I. e., that sudice defined by the x — y plane. Therefore,

T=Tydi+Tyij -+, (2.7)

where T, = - t,,, etc. W infer that the most general tensor in three dimensions has
three coordinate planes times three components each, or nine independent components.

Equation (2.7) has a structure reminiscent of the component representaticecef a v
tor, e. 9., a=ai+a,j+a,k. Justas theector is the sum of the products of components
ay, ay, and g with their respectie unit \ectors i, j, and k, the stress tensor is the sum of

the products of the componentg,TT,,, - - -, with the unit dyadics ii, i} - -.

Xy
There are tw adantages in wenting the notion of a tensor andvrding equation

(2.2) as (2.6). Firstakctoring out n separates elements related to the definition of the sur

face across which the traction t is defined from those independent of this particular sur

face. The latter elements neakp the stress tensavhich may be thought of as repre-

senting the state of stress of the material. Secormh #hough T is constructed from

tractions defined across particular coordinateased, it correctly suggests that tensors,

like vectors, can be thought of as entities thaehaeaning independent of ose&hoice

of coordinate system. Thus, T may be resdhmnto components in any coordinate sys-

tem, and furthermore, the resulting components are the components of the corresponding

tractions across the coordinate agds of that coordinate system. This is easlyfied

by applying equation (2.6) with n set respeely to the basiseactors of the ng system.

Equations lile (2.6) may be represented inotalternate forms of notation, namely
component notation and matrices. Each type of notation heautks. vDyadic notation is
compact and independent of coordinate system, component notation shstmsore
general, and matrix notatiomdilitates computations. Therefore, all forms, as well as

ways of comerting between them must be mastered.

In component notation, equationsdik2.6) are xpressed as sets of component
equations xpressed in compact form. Referring back to its original foregrgby equa-

tion (2.2), we see that it can be represented on a component by component basis as the
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three equations

tx = Txxnx + Txyny + sznz
ty = Tyxny + Tyyny + Ty,N, (2.8)

t,=Thn, + szny + TN,

where t, has been replaced by =,I etc. (Dont confuse {, ty, and t, which are the
components of t, the traction across the oblique plane, wittd., which are the traction
vectors across the coordinate axis planes in figure 2.4.) Replacing x, y, and z in the sub-
scripts by 1, 2, and 3, the al@othree equations can be represented as

3
t = ZTijnj, i=1,2,3. (29)
j=0

Notice that the inde j occurs twice on the right side of the alequation. This is a
general characteristic of this kind of equation, and arises fromatiietifat operations
involving sums are wariably dot products, which are the sums of the products of the
components of tev vectorlike objects. On the other hand, the free xndenly occurs
once in each term. Thiswgis us a &y to distinguish whether avgin index is summed,

and therefore allws us to simplify the notation by omitting the summation sign:

ti = T'J nj. (210)

This is generally called the Einstein gention, and is only br@n a fev places in con-
tinuum mechanics. Suckaeptions will be gplicitly noted so as tov@id confusion.

It is important to remember that equation®I(2.10) are scalar equations, so that
Tijn; =n;T;. This is unlile dyadic notation, where in general T [h#n [T. The latter
dyadic epression wuld correspond to (= Tj n;) in component notation. The trick
to corverting rapidly between the twforms of notation is to order thanables in com-
ponent notation so that Bksummed indices are adjacent. Thus, the productmfdn+
sors in component notation, written agTig could be revritten as T;S;, since order
doesnt matter in componentpressions. It is then clear that this is eqlént to T [5 in
dyadic notation.

Expressions lie § T present a problem here, as no reordering will bring the tw
instances of the summed indieadjacent to each otheMe sole this problem by intro-
ducing the notion of theanspose of a tensor:
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T =T;. (2.11)

The transpose wolves nothing more than interchanging, Wwith T,,, etc. Thus, the
above troublesome xpression can be weitten as $Tik, which is equalent to the
dyadic S T,

With component notation, more complicategssions than discussed edaan
easily be handled. df instance, one might imagine somethinge liky = B;Cy, or
Rik = AjBu + CikDj. Notice that there are no implied summations in either of these
expressions. Quantities kA, and Ry, with three or more indices are also called ten-
sors, it are distinguished from each other by the notion of order, which is simply the
number of indices. Thus,jAis a third order tensor and;R is a fourth order tensor
The stress tensor;Tis a second order tensoBy extension we can callectors first order
tensors and scalars zeroth order tensors. The dot produa eéd¢tors aand b in com-
ponent notation is simply; . Similarly, the dyadic product is;jla;. Notice that in the
first expression there are no free indices, as is toxpeated of a scalarThe second has
two, since it is a second order tensor

The trace of a second order tensor is simply the scalar obtained by summing the
diagonal components, i. e.; F T, + T,y + T, In terms of dyadic notation, the trace
operation corresponds to turning dyadic products into dot products, i. e., Tr(ab) = a [b.
As an gample, the trace of the stress tensor is related to &@ssy®: p = — T;/3. This
corresponds to the common definition of pressure in a fluid at rest of thardutermal
force per unit areaxerted by the fluid on its surroundings. In the case of a stress tensor
incorporating just pressure, no shear stresessand all three components of the normal
stress are equal. The minus sign occurs because a@@séssure corresponds to a state
of compressional stress. Though defined originally for fluids, the notion of pressure, as
defined abwee, has uses in other areas of continuum mechanics as well.

The unit tensor of second ordéy is equvalent to the Kroneds delta,g;, when
expressed in component notation. Itdakon the @lue unity when i = j and is zero oth-
erwise. The Kroneak delta has the property that summatioeroary index simply
replaces that indewith the other inde of the Kroneckr delta in the x@ression, e. g.,
Tjj Oj = Ti. Indyadic notation, ILT =TO=T.

Symmetry is an important notion for tensors. This refers wodtensor is changed
upon the interchange of onindices. Br instance, if T = T;;, the tensor [ is said to be
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symmetric. If, on the other hand; F —Tj;, then T; is antisymmetric. If neither of these
relations holds, then;Thas no definite symmetryThe notion of symmetry otously
doesnt apply for tensors of order less tharotwrFor higher order tensors, thedawndices
interchanged need to be specifiedr Fstance, we might kia Ay = Aji = —Ay, which
means that 4 is symmetric with respect to interchange of the first and second indices,
but antisymmetric relate to interchange of the second and the third.

The most important third order tensor is the unit antisymmetric tensor of third order
&jk. This tensor has thealues &3 = &2 = &31= 1 and &1 = &3, = &13= -1, All
components with gntwo indices the same are zero. It is easyewfy that g, is anti-
symmetric under the interchange of/awo indices. Notice also thaj, doesnt change
when the indices arg/clically permuted, i. e.,i - |, ] - k,and k - 1i.

The main use fog, is to represent the cross product ofotwectors in component
notation:

G = Ellk aj bk (212)
is equvalent to c = a x b. The identity
&ik Eim = Oj1 Om ~ Ojm (2.13)
is useful in the proof of a number cdator relations wolving cross products.

The matrix form of equations E(2.6) may also be deduced from equation (2.8):

Ck, g ] Ty Tx %nx E
Som g T Tepfvg
-0 Ol sz T, MmN O

(2.14)

Second order tensors are e@lent to square matrices, whilectors are represented by
either rav or column matrices. The dot product obtwectors, a [b, is represented by

Op, O
O
DaX ay a, %by S (2.15)
oo, O
while the dyadic product ab is
o DD O
gay BDbX by b (2.16)

1@z 0
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Like dyadic notation, matrix notation is limited to representing tensors of second order or
less. Havever, within this limitation, matrices pwide an &cellent way to oganize

numerical computations.

We end our mathematicalveirsion by shwing howv to obtain the components of a
tensor in a n@ coordinate system that is rotated rekatio the initial system. The easiest
way to proceed is by returning to dyadic notation, with uedters in the old and ne
coordinate systems renamed, @, ;) and (g, &), 3'). Thus, a ector may be repre-
sented in terms of its components in either system as;@ = a;'e,', where the Einstein
summation covention has been empled. Dotting a by g yields the ith component of a
in the primed coordinate system. Applying this to the unprimed representation yields

e'[a=g'=(e'[®)a; = q;a;. (2.17)

The quantity g = &' Le; is the matrix of direction cosines between urettors of the old
and nev coordinate systems, and is called tlagformation matrix. Note that in spite of
its representation as a square matrixjsgnot a tensor A tensor is a pysical quantity
with different representations in lifent coordinate systems, whereas the transformation
matrix is a tool for coverting \ector and tensor components between such systems.

An expression similar to equation (2.17) may be obtained for tensors by dotting the
tensor from the left and the right with unéators of the ng coordinate system:

e e =T =aqwdjTu- (2.18)

The generalization to tensors of arbitrary order isi@mks, with one transformation
matrix for each orderFor instance, a fourth order tensoowld transform lile

Riki" = Aimdjn AkoClip Rmnop (2.19)

In corverting component notation to matrix form, one uses the same rule as in con-
verting to dyadic form, namely reorder and transpose ungildikmmed indices are adja-
cent. Thus, in matrix form, equation (2.18) becomes

[T7=[allTIa'], (2.20)

where the matrices are not fully written outit Bymbolized by the quantities inside the
square braakts. Higher order transformationsdikhat in equation (2.19) carde repre-

sented by matrix operations.
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Equation (2.17) may beverted to obtain the transformation matrix from the primed

to the unprimed coordinate system. Jf ¢ the matrix iverse of g, then
a = q;'a). (2.21)

However, by definition, ql =g le'=¢'le=q;= q,tJ i. e., the imerse of the transfer

mation matrix is simply its transpose. This type of matrix is called angwotiad matrix.
We note finallythat in constructing the;gnatrix, a simple rule stites:

unit vector 1
[d;] = Ounit vector 2] (2.22)

Uunit vector 31
where unit vector 1 is a m of the matrix consisting of the components in the old coordi-
nate system of the first uniestor of the n@ coordinate system, etc. Multiplying;[bon
the right by a columnector is thus equalent to dotting this ector by each of the three
unit vectors of the ng coordinate system, the resulting numbers being the three entries of
the nev column \ector The ne&v vector is thus the oldector resoled in the n& system
as epected.

The virtue of the abee transformation rules is more in thexistence than in their
actual usage. The point isygn these rules it is possible to shthat properly consti-
tuted componentressions hae the same form in all coordinate systemer iRstance,
if we have a'=Bj'c;’ in the primed reference frame, then this can be written
Uik = ik Budj djmCm. From equation (2.22) and thadt that the coordinate axis unit
vectors are mutually orthogonal, it is easy tovshieat g q;m = djn, reducing the right
side of the abee equation to gByc;. Finally, multiplication of both sides by;gand
summation wer i results in @ = Bj ¢;, which shavs that (aside from the names of the
indices) the equations look the same in both coordinate systems. Thus, if a relationship
involving the components ofeetors and tensors which is kmo to be walid in a particu-
lar coordinate system can be cast in proper component notation, this component form of
the relationship is the same in all coordinate systems.

The gradient, diergence, and curl operations are easkpressed in component
notation. ér instance, the gradient operation F ®is expressed

F =99

o (2.23)
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The rules of free and dummy indices are simply carned fsom tensor algebra. Thus, i
is a free inde in the abwe expression. The d@emgence D = [1TF is written

D_aFi

=3 (2.24)

while the curl A = [x B is written usingg;, as in the cross product:

9B,
A = ik ax; (2.25)

The tensor xpression

oT;
A= 2.26
is sometimes written in dyadic notation as A = [IT, i. e., theakgence of the tensor T.
Note that the ariation dT;/dx; is difficult to write using dyadic notation, since summa-
tion over the second inaeof T;; implies dotting from the right with the gradient operator
which would then imply that diérentiation is applied not to Tubto what follavs. This

shaws the limitations of dyadic notation in more conxpépressions.

Symmetry of the Stress Ensor

It turns out that the stress tensor is symmetric. This may emptoy &amining
the torque imposed on a cube of material by the tractions on its sacesirfV& imagine
a small cube of material with edge length |, centered at the origin, as ginéigure 2.6.
If the cube is sdiciently small, \ariations in the stress tensoreo the dimensions of the
cube will also be small, and we can approximate the tractions onazachffthe cube by
the appropriate components of the stress tengmluated at the center of eachcé.

Thus, the z component of the torque about the center of the cube is
;= 2Tyx(|/2)(| 2) - 2Txy(|/2)(| 2) = (Tyx - Txy)|3’ (2-27)

where the torque is computed as the force normal to the moment arm foaeace.fg.,
Tyxlz) times the moment arm (1/2), summeeeothe appropriateates. It is clear that if
body forces are absent and if the cube is static, the torque must be zerg, arnd,I

Similar aguments shw that T,, = T, and T,,=T,,, proving that the stress tensor is

yz
indeed symmetric under these conditions.
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Tyy
Ty
y
Tyx
_Txx |
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Txx
_Tyx
- |
Y
_Txy
-T

Figure 2.6. lllustration of stress components ares of a cube of material. In
order for angular momentum to be conseiwve must hee T,y = Ty,.

When body forces or angular accelerations are present, scaingents similar to
those iwvoked in dewing equation (2.2) can be used. The equation relating tarqud

angular momentum L may be written

fagesst Ty = (228)
From equation (2.27), the first term scales®asBody torques depend on the body force
varying over the dimensions of the cube. Thdeafiénce between the body force per unit
volume on one side of the cube and the other should scale as |. Combining this with the
moment arm (scales with |) and the computation of body force from body force density
(scales with 1) shaws that the body torque scales as The angular momentum contains
the moment of inertia, which scales asotume () times the square of a radius of gyra-

tion (12), and therefore goes asds well. As | becomesery small, both of these terms
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become unimportant relaé to the torque due to stress, so it is clear that equation (2.28)
reduces tagyess= 0 in the limit of \ery small I. The abee aguments therefore hold, and

the stress tensor is symmetric in all circumstances.

It turns out that for ansymmetric, second order tenstirere is a coordinate system
in which the tensor is diagonal, i. e., alf-dfagonal terms in the matrix representation
are zero. Pysically, what this means for the stress tensor is that all tractions across coor
dinate plane suates are normal, or perpendicular to theamafin this coordinate sys-
tem. This is easily shvan from equation (2.6).

Let us see if we can talkadwantage of this idea to determine the so-called principal
axis coodinate system. If we impose the condition that the traction is parallel to the unit
normal to a sukce, i. e., t 5An, then the unit normal is a candidate for defining a coordi-

nate axis in the principal axis system. Combining this with equation (2.6) yields
An =T [h, (2.29)
or recalling that | Ch = n,
(T-A)h=0. (2.30)
Writing this in matrix form

M =A Ty T, Wh,O
2T Ty-4 Ty gny =0 (2.31)

0 T Ty T,,- AN 0O
shaws that the problem of determining n reduces to the solution of a set of homogeneous
linear equations. As long as the determinant of the square matrix in equation (2.31) is not
zero, the only solution is the uninteresting one, n = Owder, setting this determinant

to zero results in a cubic equation for
A+ 1A+ LA+ 153=0, (2.32)

where |, I,, and k are combinations of the components of T. This has three solutions,
A0 2@ andA®. In general, solutions to a polynomial equation can be either real or
comple, but it can be shan that thg are all real solutions as long gsi$ symmetric.

Once the threealues ofA, called principal values or eggvalues, are knan, it is
possible to so equation (2.31) for the components of n. A unique solution does not

exist because the three equations are no longer linearly independeitt,id usually
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possible to determine, saye ratios p/n, and n/n,. Since by definition n is a unitec-
tor, n is determined up to an arbitrary sign by these ratios. {l£®, simply use one of
the other components in the denominator

Imagine nev that the eignvectos nY, n®, and #® have been determined for each
eigervalue. Can these be tak as the unitectors of a n@ coordinate system? Only if
they are mutually perpendicular! Mever, this is easily shen as long asTis symmet-

ric. The symmetry of the stress tensor insures that
n® 0o th® = n® 0r (2.33)
is true for ag two eigewvectors ) and . Using equation (2.29), this may be written
(A(i) — /\(i))(n(i) [h(i)) =0, (2.34)

which shaevs that ag two eigewectors are mutually perpendicular as long as the corre-
sponding eigeralues are not equal.aKing this as gien for a moment, we see that the
eigervectors do indeed define theeaxof a n& coordinate system, generally called the
principal axes. From equation (2.29) it is clear that the eiglres are also the diagonal

components of the tensor in the principal axis reference frame.

Once the eigerectors are calculated, it is easy to obtain the transformation matrix
from the original reference frame to the principal axis frame. From equation (2.22), we

see that the ms of this matrix are simply the components of each g&tar

WhenA® = A1) the eigemalues are said to begimente. In this important special
case it turns out that allectors in the plane defined b{’rand 1! are eigemectors.
This is easily shon by substitutingm® + g for n in equation (2.29), where and 8
are arbitrary constants, sinceyamthat satisfies this equation is by definition an eigen-
vector Since all ectors in the plane are eigeators, it is easy to pick out dwamutually
perpendicular gctors to define principal eg. The choice of principal as is, of course,
not unique as it is in the nongknerate case.

In the doubly dgenerate case in which all three eigdues are equal, givector at
all is an eigevector and ag Cartesian coordinate system is a principal axis system. In
this case, the tensor is diagonal in all coordinate systems, with all diagonal components
equal, and can be represented as an eaemtimes the unit tensar = Al.
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Two-Dimensional Case

In order to more firmly fix some of the alBconcepts in our mind, we waexplore
a number of gamples and special casesgdlving the stress tensor in twdimensions. In
this case we need to think of tractions as stress forces per unit length of a line rather than
per unit area of a swte.

Let us first look at a tavdimensional ample in which the stress tensor is diagonal
in the original coordinate system:

L 0
[T]_D XX U

0o T,O (2.35)

In this case the tractions on the edges of a square (theitmensional analog of a cube)
are normal. Figure 2.7a illustrates these tractions

a) b)
lTyy = T TTW = Ty
TXX TXX
TXX TXX

Figure 2.7. Tactions on edges of a square inotwlifferent cases, a)
Tyy = —Tx and b) T, = T,,, with T,, = T,, =0. When the square is rotated
by 45°, ¢) and d) shwothe transformed tractions.

for the special case in whichyI= -T,,, in which case the tractions are trying to pull the
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x faces apart while tlyeare trying to push the yaées togetherFigure 2.7b shes an

alternate case in which,J= T,,.

The matrix corresponding to the transformation to a coordinate system rotated an
anglea counterclockwise relatre to the original frame is

_[pcosa sina [

= 2.36
Lal [Fsina cosa O ( )
Computing |’ = gy T« qj Yields
Tu' = T COS @ + Ty sirf a
Ty =Ty =(Tyy—Tx)cosasina (2.37)

T,y = TSI’ a + Tyycos a .

Note that maxima occur i)),/| for a = 45°, 135°, 225°% -, except when ], = T,. In

this case no 6fdiagonal term occurs for g, which is to be xpected, since this is a
completely dgenerate case. Note also that whep=-T,,, the normal stress compo-

nents T, and Ty’ disappear whewmr = 45°- - -. Thus, for a square rotated 45° to the orig-

inal reference frame in this case, the tractions on the edges of the square are purely tan-
gential, i. e., the are shear tractions. Note,vwver, that it is incorrect to say that the
stress itself is‘purely sheaf’or *“purely normal’ -- this terminology is only correct for
tractions across a particular sagé. As figure 2.7 shes, the same stress tensor can gen-
erate shear tractions across aoefs with certain orientations and purely normal tractions

across others.

The primed stress components in equation (2.37) yield the tractions acrasgsurf
aligned with the coordinate ex of the primed reference frameor nstance, the traction
across the x' suate is gren by Ty, Ty,/). An alternate \ay to dewe these tractions is
to apply equation (2.6) to the tensor in the original reference frameingtance, to get
the traction in the abe example, tak n =i'=cosai+sinaj. We get for the x and y

components of the tractiofi , cosa, Tyysina).

Inspection shws an apparent discrepgne the components of the tractioector
derived in the tw different vays dont agree. Hwever, the discrepancis resoled when
we realize that the first set ofetor components are relaito the primed frame, whereas
the second are relaéi to the unprimed frame. rdnsformation of the second set to the
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primed frame yields equalent results.

Boundary Conditions

So far we hae only considered the traction across aaa@finside a continuous
medium. If the sudce is placed so that it is coincident with the boundary of the medium
with the unit normal pointing outavd, equation (2.6) has a slightly fdifent interpreta-
tion. Since the normal points oudind, our comention states that the traction is the force
per unit area applied by theternal world to the suice of the medium. In this case
equation (2.6) becomes

tapplied = T Mlsyrtace - (2.38)

In other words, the stress tensor at the scefis constrained by thalue of the applied

stress there. Since equation (2.38) represents three conditions, three of the six indepen-
dent components of stress areeflxat the sudce. In the case of a free sack, the
applied traction and the corresponding tensor components are zero.

Problems

1. When n =iin equation (2.4), the result is t = &= tDetermine the ig@on on which the
traction t is acting, andxglain the origin of the minus sign in the abaquation.

2. Write the pair of equations

biag; + bya; =0

bias, + bra =0
in matrix form and in component notation.

3. Write

(1 @211 by 0_ 0
Lap;  ap by by
in component notation and as idiual equations.

4. Corvert the follaving component notationxpressions to matrix form. (Assumedw
dimenSionS.) a.) ﬂABJ b) Aj Bi' C) BA” . d) Aj Bjk e) qkquTkl'
5. Write the matrix corresponding to the follong dyadic: 3ii + 2ij — 4ji + kk.
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\
Y

- 45°

Figure 2.8. See problem 6.

6. Referring to figure 2.8, the traction of the —x domain on the +x domain is 5i + 3j, and
the traction of the -y domain on the +y domain is 3i — 2j. Find the traction of the
unhatched domain on the hatched domain. Be careful of signs.

7. Shav that a second order tensor may be split into a symmetric and an antisymmetric
part. For the three dimensional case, indicatevhoary independent components there

are in each part.

8. Consider the unprimed and primed coordinate systemsrsito figure 2.9. a) Find

the transformation matrix, ;g ' [&;. b) Using the results of part a, find the primed
components of theector A, where the unprimed components age=A and 4 = -1. c)

Using the results of a, find the primed components of the tensor T, whose unprimed com-
ponents are

M 0O
M 20

9. Shav that G = & A; By represents the cross product C = A x B.
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Figure 2.9. See problem 8.

10. Shaev thatgy a;b;c, equals the determinant

Da, a, a, [
b, b, H.

11. Reduce thexpression (A x B) x (C x D) to a simpler form using equation (2.13).

12. In a particular reference frame a tensor has the components

00 -1 0
1 0 0
Opo o 20

a) Find the eigeralues of this tenspand write the matrix representing the tensor in the
principal axis reference frame. b) Find the ewgmmors. c) Find the transformation
matrix from the original reference frame to thevnmeference frame using the results of b

d) Using the results of c, transform the components of the tensor from the original refer
ence frame to the principal axis frame, aedfy that the results agree with the results of

a.
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13. Repeat the ale problem for the tensor

00 -1 0
1 0 0[O
Oo o0 21U

14. Sletch plots of T,', T,y, and T’ as a function ofa from equation (2.37) for the

case when I, = 1 and T, = —1. Note particularly where the maxima and minima occur

15. A continuous medium is confined to z < 0 and the stress in the mediuvnerslyi

the stress tensor

wherea, S, y, andd are constants. Find the distuition in the x — y plane of the traction

applied to the medium across the aod defined by z = 0.
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Chapter 3 -- Budgets, Fluxes, and the Equations of Motion

In this chapter we consider Wwahe stress in a medium is related to the motion of
the medium. In other ards, we deelop the continuum mechanics analog tovida’'s
second lav. We do this initially by considering the imbalance between stress forces on
the opposingdces of a cube due to thariation of stress with position. It becomes clear
from this analysis that net stress forces on parcels of material are only non-zero if the
stress dries from place to place. @\then introduce the notion of adget of a quantity
starting with the massaudget. The conseation of mass mads this idea particularly easy
to understand. Theulget for momentum is then discussed, and tidgét notion is
used to solg some classic problems in mechanics thablwe open systems. The
momentum bdget is then woked to deelop the application of Ngton’s second la to
continuum mechanics in a fiifent way. Finally, we shav how this lav changes in an
accelerated coordinate system and illustrate this with xtamgles of a rotating frame
and the Lagrangian reference frame, in which the coordinate system deforms with the
material medium.

Equation of Motion

In the preious chapter we sked that for a small parcel, the stress forces on indi-
vidual faces of the parcel tend to dominate the camiobs from body forces and accel-
eration in Naton’s second M. This fact was used in dering the notion of a stress ten-
sor. Under these circumstances, it neaksense that if the stress tensamies smoothly
through the material medium, the imbalance in the total stress force due tatiason
would be of the same order as the acceleration and body forces. Remember that there
would be no imbalance if the stress tensor were constant.

This notion is erified by recalling that the stress force onvidlial faces of a par
cel goes as?| where | is a typical dimension of the parcel, whereas body forces and
acceleration go as.| The diference between tractions acrosotaurices of the same
orientation, It separated by a distance | should go as I. Multiplying by theaseirarea
of the parcel, which scales & fesults in a stress force imbalance that scales with |
which is the same as for body forces and acceleration.
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12t(x + 1)
12t(x)

Figure 3.1. Definition skch for computing the force imbalance on a cube.
On the left side of the cube, the force is
126(X) = =17 [ Toe(X)i + Ty (X)j + Tx(X)K], while on the right side, it is
12t(X + 1) = IP[Tyu(X + )i + Tyy(X +1)j + Ty (X + K]

Figure 3.1 shas hav to compute the imbalance in the stress forces on a cube of
side I. For simplicity, only tractions on the posigé and ngative x surbces are shan.
The traction on the posie x face is actually T [0. Hwever, the symmetry of the stress
tensor allevs this to be written i (T = i + T,,j + T,,k. Combining this with the trac-

tion on the ngative face gves the net force on these swds:

I:net X = |2[(Txx(x + I) - Txx(x))i + (Txy(x + I) - Txy(x))j +

(Txz(X +1) = Tz(X))K]. (3.1)
Multiplying and dviding by | and recognizing that the tbfences diided by | approxi-
mate x dewnatives leads to

~ 3|:aTxx- aTxy- asz 0_
Freox = agx 1+ 3% 1 ax o™
.0 N .. . 0T
13 = ATl + Tyl + T olk) = 13 O (3.2)

where the last step recognizes that ternesilikl,ji are zero.

Similar terms can be dead for the stress forces on the y andaes, resulting in
the net stress force

Favess= 10 0 4] 0 vk 20

— —[0 = I3[0 .
ox oy 0z (3:3)
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The approximation in equation (3.2) becomes an equality when | becanesmall.
Thus, the net stress force on a small parcel equals Yheyelice of the stress tensor
times the vlume of the parcel.

In order to complete our cearsion of Nevton’s second M to continuum form, we
note that the mass of the parcel nPgWherep is the mass densityWe also write the
body force in terms of the body force per unit mass, B, and the derb%@y.:ﬂe’pB. If
a is the parcel acceleration, thenwen’s second M, ma = Fyyesst Fpoay DECOMES

pa=[T+ pB (3.4)

upon canceling the parcebume, .

Mass Budget

In continuum mechanics we often deal with open systems, in which mass, momen-
tum, and engy flow freely in and out of the system. The machinery of ordinary particle
mechanics is ill-equipped to deal with this kind of situation, and classical analyses of
open systems likroclets and coveyor belts hae an ad hoc flor to them. One ay of
handling these fles is to think in terms ofumgets for the respecate quantities. In other
words, we equate the netvilmf a quantity into a system plus the net creation rate of the
guantity to the time rate of change of the quantity within the system. The momentum
budget is perhaps the most crucial to our studiaswe bgin with the mass uxget
because it is simpler and has considerable importance inntsight.

Before considering the massidget, we need to siwohow physical \ariables are
represented in continuum mechanicse f¥st discuss theelocity of a material medium.
Imagine that the material forming the continuum of interest isimyowith velocity
v(X,t), where x is the positionector and t is time. This functional form implies that the
material \elocity varies from place to place, and at eegi place canary with time. Fur
thermore, this type of description loses track ofvittlial parcels of material -- vgxt) is
the \elocity of parcels passing through the point x,=a% a function of time -- diérent
parcels are located at this point afehént times. This is called the Eulerian description
in continuum mechanics.

Note that the trajectory of gngiven parcel may be regered by intgrating the
equation
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dx _
o v(x,t), (3.5)

with x set to the initial position of the parcel at the initial time. Though simple in princi-
ple, this is often dffcult to do analytically in practice, because both the dependent and

independentariables appear on the right side of the equation.

Streamlines are imaginary lines in space that aserywhere tangent to theslocity
field. They are sometimes useful for visualizing therlowWhen a flev is steady (i. e., v
is not a function of time), parcel trajectories coincide with streamlinesvel$g when
the flov depends on time, this is not necessarily true. Tlerdiice between trajectories
and streamlines in this case can be quite striking, agshy problem 3 at the end of this

chapter

Given the Eulerian ay of representingariables, we no proceed with ourosi-
tion of the massumlget. Since mass is neither created or dgsttan eeryday phenom-
ena, we are left with a balance between mfimd increase with time. The trick is to be
able to compute the netWoof mass through a sade. D do this we need to understand
the flux of a quantity Representing the mass densi{x, t), in Eulerian form, we define
the mass flux agv. The meaning of this quantity becomes clear when we dot it with
noAd, wheredA is the area of a suate element with unit normal n, aidtis a short
time intenal. As illustrated in figure 3.2, aolume v [OAA flows through the suate
element indt. Thus,pv [ is the mass per unit area per unit timeafiog through the sur
face normal to n. If vis normal to the sacke, then v and n are parallel, aod[h = plv|.
Thus, the magnitude of the mass flux is the mass per unit area per unitwing fiothe

direction of the elocity vector

From the abee analysis we compute the rate at which masssflout of a sudce
ol that encloses theolume I":

Rate of mass outflowj’pv ChdA :r[ (I{ pv)dV. (3.6)
r

The cowersion from a sudce intgral oser oI to a wlume intgral over ' was per
formed using Gauss’lav. The mass within ®@lume I is simply the glume intgral of

density so mass conseation can bexgressed as

%Imv:lg—fdv:—lmm)dv, (3.7)
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OA

Figure 3.2. Sétch of flav through a suece elemendA with unit normal n.
The wlume of the parallelepipedAn V&, equals the ume of fluid passing
through the sudce element in timé. The fluid \elocity is v.

where the minus sign occurs because the lagraitespresents outwd

a)

Figure 3.3. lllustration of a) dergent (actuallycorvergent) and b) nonder-
gent flav.

flow. This balance is)@ressed in ter examples in figure 3.3. In figure 3.3a there is net
mass flov into a wlume, and mass density must on tkierage be increasing within the
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volume. In figure 3.3b there is as much maswiit out as in, and thevarage density
remains constant.

Placing the tw terms in equation (3.7) under a single gnét yields
Pp O
— + V =0, 3.8
e T (3.8)
from which we deduce that the igtand itself must be zero:

0
2+ =0, (3.9)

This is because T is an arbitrargplume, and may be shrunkwlo to a tiry sphere wer
which the intgrand doesm’vary much. In this case the igtal reduces to the irgeand
times the wlume of the sphere, which may be canceled, resulting in equation (3.9).

Equation (3.9) represents, in Eulerian form, the comsernv of mass in the medium
of interest. An alternate form may be dered by &panding the second term:

9p .

5+ v Dp+ pv =0, (3.10)

A commonly used shorthand for this representation is

C;f + TV =0, (3.11)
where the total time demtive is to be interpreted as a dative following a parcel in the
material. The sense of this may be understooddparding the total derative using the
chain rule:

d,o ap dx 6,0 dy 6,0 dz ap 6_,0 dx

dt "ot Tdtox dtay Tdtaz ot dt P (3.12)

The correspondence folle if dx/dt =v. This sergs to emphasize thaten though v is
represented as a function of x and t, it is thleity of the pacel that happens to be at x
at time t.

When do/dt = 0 for a material, the material is said to be incompressible. In this
case equation (3.11) reduces to [IVv = 0. Note that an incompressible medium way ha
variations in density from parcel to parcel. Imagine, for instanceeaftowing into the
ocean. Both the freshater from the sier and the salt ater of the ocean are essentially
incompressible, it they have different densities. The density field thusies from place
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to place in this circumstanceutbindividual parcels retain their initial densitgnd the

divergence of the @locity field is zero.

Momentum Budget

The hudget for momentum is more complicated than that for mass éordasons.
First momentum is aectot so the flux of momentum is a second order tenSecond,
external forces as well as the material transport of momentum enter the balance. Thus, a
verbal statement of the momentumdget of some system is that the rate of change of
momentum in the system equals the rate of wifioinus the rate of outfle via mass
transport, plus the totakeernal force on the system. Consideration of certain classical
physics problems helps us to better understand the notion of a momeundget.b The
problem of an accelerating raaiis particularly illuminating.

Figure 3.4. Sktch of a rockt maving to the right with speed, v The roclet
has mass M, and is losing mass at the rate R viale@ust with ghaust eloc-
ity V.

Figure 3.4 shws a roclet with mass M and speed. vBoth of these quantities are
changing with time. In particularthe mass of the roek is decreasing at a rate

R = - dM/dt as a result of thexpulsion of &haust @s. The ghaust elocity of the @s
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is V, relative to the rockt, so that in the rest frame thasgs leaing the roclet at speed
Ve — V,. The momentum per unit time kgag the dashed box surrounding the retcis
therefore — R(y— v;). We assume that all this is occurring in free space so that there are
no eternal forces acting on the raak The momentumualget is thus a balance between
the rate of increase of momentum in the box, which is mainly the momentum of the
rocket, My;, and the rate of fil®m of momentum out of the box:

% = R\ — V). (3.13)
Expansion of the left side by the product rule leads to the cancelation of the term — Rv
on both sides, le@ng the classical formula

M —~ = Ry (3.14)

The right side of the alve equation is normally interpreted as the thrust force of the
rocket. Havever, in our interpretation the thrust is totally a consequence ofxibarteof
momentum in thexdaust stream -- naxeernal ‘thrust” force is acting. This duality in
the interpretation of the momentunadget in open systems persists in the continuum
mechanics description. The applicability of each interpretation dependsacityenav
the open system is defined -- i. e., where the dashed line is located in figure 3.4. If this
line follows the inside of the roek's comlustion chamber rather than cutting straight
through the ehaust stream, as illustrated in figure 3.4, the pressure force ofithese
gas on the comistion chamber wuld constitute the x@ernal force that delers the
thrust. Furthermore, the fuel and oxidizer entering the chamloetdvdo so with ery
little momentum in the reference frame of the eickThus, een though this mass is
exiting the system (by crossing the dotted line), it contab little to the momentunut-
get, and the balance is primarily one between the pressure force on thesttomtham-

ber and the rate of change of the ®t&kmomentum.

This example illustrates he important it is to carefully define what is inside and
what is outside the system to whichviHen's second Ml is to be applied. Minor
changes in this definition change thaywin which \arious plysical efects are treated.
Some vays of defining a system result in easier calculations than othersnskance, it
is easier to compute the ratls thrust in terms of theelocity of the @s passing through
the dashed rectangle in figure 3.4 than it is togiatie the detailed pressure disitibn



-38-

of the &xhaust @s wer the complicated inner sade of the comistion chamberHow-

ever, ary consistent wy of defining a system should lead to a correct description of the
phenomenon of interest, such as the evt¢krust in the abh@ example. The danger is in
deriving terms of the momentumuliget based on an inconsistentwias to what is
included in the system. oF instance, including both the pressure force on the astiain
chamber and the momentum flux of tixb@&ust @s after it has left the com&tion cham-

ber in the momentumudlget could result from an inconsistent definition of the system
boundaryand wuld be incorrect.

We naw translate the momentunudiget to a form applicable to continuous media.
The equation for momentum may beveleped in the sameay as the equation for mass.
The flux of mass is the mass dengtiimes the fluid elocity v. Similarly the tulk flux
of ary quantity is simply its density times thelgcity. The density of momentum jgv,
which coincidentally is also the mass flux. The momentum flux is thergiore Note
that this is a second order tendmecause we ka talen the product between the momen-
tum density to be the dyadic product. This is the secrachple of a general rule, which
states that the flux of a tensor of order n is a tensor of order n + 1.

The momentum per unit time being carried out oblaime I by the material flo is

5|'pvv ChdA :J’EI]( ow)dv, (3.15)
:

where Gauss’lav is used as in equation (3.6). The time rate of change of momentum in
volume T is therefore

%T[pvdv =Jaait"dv=—lm ow)dV +F, (3.16)

where F is the sum of the stress and body forces on theawe. From equation (2.6), the
stress force is
Fstress™ IT [hdA :J’ [Tdv, (3.17)
ar

where Gauss’lav has agin been imoked. The body force is simply thelwme intgral
of the body force per unittlume, pB:

Fbody = JdeV . (318)
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Combining equations (3.16)-(3.18) and applying the logic used in thi®psesec-
tion yields

aaﬂt/ + 07 pw) = OT + pB. (3.19)

Comparison of this result with equation (3.4) suggests that the left side of equation (3.19)
is just the density times the parcel acceleration. Product xpknsion of the left side
and slight rearrangement yields

v 0. @p 0
'OEE-FVEN D+[ﬁ+mpv)ﬁ(' (3.20)

Comparison with equation (3.9) she that the last tavterms anish by virture of mass
continuity Furthermore the first tavterms reduce tpdv/dt, which is nothing more than
the parcel acceleration. The egalence of equations (3.4) and (3.19) is thusgdpand
equation (3.19) can be written

dv ov
pa_pa+pv[lﬂ—[]]]'+ PB. (3.21)

The two forms of this equation are useful infdient circumstances.

Accelerated and Non-Cartesian Coordinate Systems

Equation (3.21) is nothing more than aqpreession of Neton’s second M, and as
such is walid only in an inertial reference frame. Sometimes it is desirabletk w an
accelerated reference frame, in which case it is necessary to modify this equaton. T
instances of accelerated reference frames are commonly seen. Sometimes it is useful to
view the motion of a continuum in a reference frame that is rotating at a uniform rate
about a fied axis. The flv of the atmosphere and the oceans on the rotating earth is one
example. Anotherxample occurs when the coordinate system itself &fto the mate-
rial of the continuum, and thus nes, accelerates, and deforms with the material. This is
commonly called the lgrangian reference frame in contrast to the Eulerian frame,
which remains figd in space.

Figure 3.5 shas hav a \ector A, at rest in a reference frame which rotates with fre-
queny |Q|, mwes relatve to an gternal obsersr. The axis of rotation is defined by the
vector Q, which mag&s an anglé with A. In time & the component of A normal to Q
rotates through an angle Jd@= Qd = OA/(Asind). Therefore,
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op= |Q|&

Figure 3.5. Definition sch for relating the components ofector in station-
ary and rotating reference frames.

OA/d = QAsingd=|Q x A|. Invocation of the right-hand rule shis thatdA is in the
direction of Q x A, so theactor lav

dA

— =QxA 22
i x (3.22)
holds. If A is changing in theatating frame, the ééct on dA/dt is additie, i. e.,
dA [MdA[Q
— = — _+QxA 2
at odtn (3.23)

We nav apply equation (3.23) to the acceleration:

+Q x (Q x Xx). (3.24)
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If we redefine v as theelocity in the rotating frame, v = (dx/dt)then equation (3.21)
becomes (dropping the subscripted r in the timevaivie)

p%’:D]W PB —20Q x v —pQ x (Q x X). (3.25)

The etra components of the acceleration that result from being in a rotating reference
frame hae been placed on the right side of equation (3.25) to #hat the can be inter
preted as body forces. The term —2Q x v is the Corioliedgoer unit mass, while

- Q x (Q x x) is the centrifugal f@e per unit mass. These aworces are often called
inertial forces to distinguish them from such things asvggaand Coulomb attraction
which are commonly thought to arise from fundamentgfsigal processes rather than
ones choice of reference frame. The Coriolis force in particular plays a fundamental role

in atmospheric and oceanic circulations.

We nav examine hav equation (3.21) is modified when a Lagrangian reference
frame is chosen. Imagine a transformation from Cartesian coordinates x = (X, Yy, z) to a
nev coordinate system X =(X,Y,Z) that deforms with the material. In general,
X = X(x,t), where t is time. W may imagine that X is the location of each parcel at time
t=0, i. e.,, X(x,0) =x. Thus, parcels are labeled by their initial position. Th&or
relationship may in principle bevarted to obtain x = x(X,t). The total time deative
of x may then be written in component notation as

dt ot  o0X; dt (3:26)

However, the second term on the right side of equation (3.2ff)ishes because
dX;/dt = 0. This follavs from the original definition of the (X,Y, Z) coordinate system;
since it m@es with the material medium, the medium cannotenelatve to the coordi-
nate system, and the parcelacity is zero in this reference frame. A second application
of this logic shws that the acceleration simply reduces®d/@?, i. e., the v [Iv term of
equation (3.21) disappears.

Such simplification in one part of equation (3.21) is unfortunately accompanied by
additional complications in another part. The complication arises because the stress, T,
will generally be defined as a function of X rather than x. Thus, a changariables
needs to be performed in the term IT. Furthermore, it is incorrect to simply apply the

chain rule to the component form of theedgence of the stress tensar;;/x;. This is
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because in the dedtion of the component form from the more fundamental dyadic form,
the spatial devatives of unit ectors were ignored. This is justified in a Cartesian coordi-
nate system in which unieegtors are constants. Wever, in general a Lagrangian ceor
dinate system will not remain Cartesian, and the sparétions in unit ectors must be

considered.

The theory of tensors in arbitrary coordinate systems ysriaethe scope of this
book, and readers interested in this subject are referred to the book by McConnell (1957).
Many problems using the Lagrangian approach aggessable in terms of coordinate
systems that are locally orthogonal, i. e., the coordinate lines at each point are mutually
perpendicular Polar and spherical coordinates are wellwnoxamples of orthogonal
coordinate systems. Problems in such systems can be approached witthaotass
theoretical vork. Batchelor (1967) dares numerous useful relations for such coordinate
systems.

In the Lagrangian representation, equation (3.11) is not a usajulonxpress mass
conseration. An alternatie method is to consider Wathe wlume of a parcel changes
with time. Suppose a parcel is initially aytioube of side |, with edges parallel to the
coordinate ags. After some time it will in general be deformed into a parallelepiped
with edges defined by theestors AXY, Ax®, and AX. The wlume of this paral-
lelepiped will be

AV = AKX I x A = g AXPAXPAXD. (3.27)

The edge &ctors may be xpressed in terms of the original edgectors A),{')
(I =1, 2, 3) by the transformation

Ax = a—x'_ AxM. (3.28)
J

(Recall that X = x attime t = 0.) Since the edges of the cube are aligned with the coordi-

nate ars att = 0, we he A)ﬁ(l) =19y, etc., and theolume of the parcel at time t is

0x; 0X; 0X

where AV, = |2 is the initial volume of the parcel.

The terms imolving &y and the partial devatives form the determinant of gax;.
This determinant is also kmm as the dcobian of the transformation x = x(X, t).
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Writing equation (3.29) in terms of the densigy= AM/AV, and the initial density
Po = AM/AV,, where AM is the mass of the parcel, mass comgiEnv in the Lagrangian
frame becomes

[0%; [0

Po _ yet0%
X, [

= det (3.30)

Problems
1. If the tensor T is symmetric, stothat n O = T [h for ary n.

2. Gwen the stress tensor

in a medium of densitp, wherea, B, andyare constants, find the acceleraticector at
each point in the medium. (Assume no body forces.)

3. Gwen a flav field v = (C cosat, C sinat, 0), where C andv are constants, and t is
time, find the trajectory of a parcel starting at x g, (), 0). Sletch the flov field at
t=0and att 772w. Sketch the trajectory of a parcel starting at the origin att = 0.

4. The density of wter near the mouth of aver varies in space and time as
p= A+ Btanhf/d) where y = x + d cosut) due to periodic tidal &cts. The dawn-
river direction is gien by positte x, and t is time. A, B, d, ardare constants. Assum-
ing that the flav is purely upstream and wastream, and thatater is incompressible,
determine the fl@ speed in the ver as a function of x and t. Hint: Sep/dt =0 and
solve for .

5. Sole the comeyor belt problem using momentum flux methods (see figure 3.6). In
other words, a comeyor belt mwes along at a speed v. Mass (sal or wheat)dlls

onto the cowmeyor belt at a rate R. Determine the force requirecetepkihe coveyor belt
moving at speed v.

6. Given the flav field v = Cx/r3, Cy/r®, Cz/r®), where f = x* + y* + Z2 and C is a con-
stant, determine the acceleration of parcels at each point in space. Also, determine
whether the flov is incompressible.
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000 2020 oPnoa

Vv

Figure 3.6. See problem 5.

7. Derve an apression for the giergence of a &ctor [1V, in polar coordinates. Pro-
ceed by setting V = \& + Vgep, Where g and g are respectely the unit ectors in the r
and @directions and Yand Vj, are the ector components in these directions. The gradi-
ent operator is

0 10
[(Fe r E + egF 6_9
in polar coordinates. Finallyise e =icos@+jsin@and  =—ising+ jcosfto com-

pute the deviatives of ¢ and g with respect to r and.

8. Consider the Lagrangian representation of a uniformpaading @s, with the parcel
position x at time t gien as x = (1 + @)X, where is a constant and x=X at t = 0.
Determine the parceklocity as a function of X for all parcels. Selfor X in terms of x,
and combine with the akie results to obtain theelocity field as a function of x. Finally
if the density of the as is uniformlyp, att = 0, find its density at later times.
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Chapter 4 -- Kinematics in Continuum Mechanics

In this chapter we learn toto describe the motion of continuously distiteed mat-
ter, independent of what is causing the motion. Central to this discussion is the displace-
ment vector, u(X, t) = x(X,t) — X. Since x is the position of a parcel whose position at
time t = 0 is X, the displacement u is simply thewvement of the parcel since the initial
time.

Of particular interest is the variation in the displacement of neighboring parcels. If
all parcels meed togetherall displacements ould be the same. Thisowld correspond
to a uniform translation of the entire bodyhe diferences in displacement between
neighboring parcels are related to more interesting thingsdilation and deformation of
the body

In this chapter we first shkohov small displacements in the neighborhood of some
point decompose into a combination of a translation plus a rotation plus a stethewW
shav that the components of the so-called strain tensor are subject to certain conditions
called the compatibility conditions. Finallyve consider the case of a continuously
deforming fluid, in which the rate of displacement of parcels, or ¢hacity field, is of
interest.

Small Displacements

Figure 4.1 illustrates the relationship betweea parcels, A and B, as theove to
their nev positions, A" and B'. The initial positions of the parcels axeigiby the ec-
tors X, and Xg, while their final positions are indicated by and . The displacement
vectors are W and ys. The position of parcel B relag to parcel A iX = Xg — X, at
the initial time anddx = xg — x5 at the later time. Simple substitution st® that
X =0X+ (Ug — Up).

If parcel displacements awy smoothly w@er some small ggon, and if
|ug — ua| < |OX] for all pairs of parcels in the g®n, then a first orderaylor series
expansion about some reference parcel yields a good approximation tarititeon in u
over the rgion. Changing n@ to component notation,
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Figure 4.1. Relationship between the displacementsapascels, A and B.

ou
(X)) = ui(><o,-)+a—;j oX;, (4.1)

where nav 0X; = X; — Xy; is the position of an arbitrary parcel relatito the reference
parcel, X%;. The condition |g — ua| < |dX]| is called the small deformation ajgpima-
tion, and is satisfied in mgnbut not all situations. In this book we will restrict our atten-

tion to this case. Spencer (1980)as an rtensve discussion of finite deformations.
The second order tensor;@iX; is called the deformation tensor. It has no particu-

lar symmetrybut can be split into symmetric and antisymmetric parts,

ou _10ou  ouin, 100y oujC
oX; 200X; ox,0 200X; ox O

Ej + R 4.2)

The symmetric part, E is called the s&in tensor, while the antisymmetric part;,Rs
called the otation tensor. The displacement in a small neighborhood thus becomes

U; :uOi+Eij6Xj + Ruéxl, (43)
where y; is shorthand for X,;), the displacement of the reference parcel.

The origin of the name "rotation tensor" is clear once the properties of antisymmet-
ric tensors are understood. Antisymmetric tensors in three dimensions ltéose rela-

tionship with \ectors, since thehave three independent components, justexgors do.
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If Ajj is an arbitrary antisymmetric tensatis components can be related to those @&c v
tor, &, by A = —gax. (Recall thatgy, is defined in the conie of the cross product in
chapter 2.) Theactor g is called the dual vector of the antisymmetric tensqr Alote
that the relation between these otwquantities can be werted, since
& Aj = —&j &§xax = —23. The reduction ofg; g, can be computed using equation

(2.13), plus the properties of the Kronecklelta.

Imagine nwv a displacement field withou= 0 and § = 0. If & is the dual ector to

R, then the displacement field becomes
Ui = Ry OX; = —gj &X, (4.4)
or in vector notation, u =8 x oX.

Reference to the section on accelerated coordinate systems in chapter 3, and particu-
larly to figure 3.5, shwes that displacements in this caseetdke form of a small, rigid
body rotation. Note especially that equation (3.2@)iteen as dA = (Qdt) x A is analo-
gous to equation (4.4) if dA = u, Qdt & and A =dX. Thus, the axis of rotation, which
passes through the reference parcel, is define€, land the angle through which the
body rotates is4.

The meaning of the strain tensé&; is best understood by reference to itieef on
the dot product between dwectors embedded in the material medium. Figure 4.2 illus-
trates three points, A, B, and the reference point, O. Theswators of interest are the
respectre displacements of the points A and B from O. The change in the dot product of

these tw vectors is

OXp [Xg — OX p [BXg = (X a +Up — Ug) (X + Ug — Ug) — OX 5 [DX

O Ou ou;
D5X = 5XAJD]]5XB| B 5XB|<D OX pi OX

oy, + aUJ + ou, duy [

= Xaigx, T ax T ax, ax, s

= 25XAi Eij 5XBj’ (45)

where the approximation of ieiag out the nonlinear term in the third line is justified by
the small deformation assumption. In dyadic notation this becomes
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Figure 4.2. Displacement of three points, A, B, and O.

&AWB:@(A EB)(B+26><A|:E|:5>(B' (46)

Two eamples sem to illustrate the meaning of this relationship. If
Xa=0Xg=In and X, =Xg =I'n", where n and n’' are unit ectors, and where

I"'=1+ d, then equation (4.6) becomes
12 = 12(1 + 2n [E [h). (4.7)

By the small deformation approximation, | and lomwt differ by wery much, so

12 =12 + 21d4. Therefore, equation (4.7) reduces to

?; = n (E [h. (4.8)

In other words, n [E [h is the fractional change in length of a ling®ent embedded in
the material medium with initial orientation defined by n. This fractional change in
length is refered to as the unktension in the n direction. In the special case in which,
for instance, n =i, the combination n [E [h reduces tg.EThus, the diagonal compo-
nents of E are the unitxéensions along the respe@ticoordinate as.

The second>ample in the use of equation (4.6) is wig, anddX g are normal to
each other If |0X | = |0Xg| =1, and §x,| =1 + A 5 while |[xg| = | + d g, then equation

(4.6) becomes
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(I + A (1 + dg) cosa2 — a) = 21?n , [E [hg, (4.9)

where the angler measures the d&tion of ox, and oxg from orthogonality and where

n, and rg are unit \ectors in the directions of the avwectors. By the small deformation
approximation, the changes in thector lengths are fractionally small, and the change in
the angle between theesetors is small as well. Thusg||« 1, and the small angle
approximation yields cos(2 — a) = a. Equation (4.9) therefore becomes

a = 2n, [E . (4.10)

The anglea is the decease from772 of the angle between the dwectors under the
influence of the deformation. If, for instance, i and ng = j, thena = 2E,,. The of-
diagonal terms of the strain tensor are thus related to changes in the angles between v
tors initially aligned with the coordinate ex

We nav examine the change imolume of a small cubical parcel of material under
the influence of a deformation field. The rotation part of the deformation does not influ-
ence the elume, since solid body rotations do not change the size and shape of objects.
The efect of the strain tensor is to change the lengths of the edges of the cube and to
skew the cube slightly into the shape of a parallelepiped.

If the initial diameter of the cube is |, theators representing three nearly perpen-
dicular edges of the resultant parallelepiped can be writeR=(1+ Jd)Nna,
Xg = (I + dg)ng, anddxc = (I + dc)nc. The wlume of the parallelepiped is

V = (dXp X Xg) X =

(I+ a1+ dg)(I + dc)(na x ng) [Ne. (4.11)
To first order in small quantities, this reduces to \? £I2(d 5, + dg + dc). The triple
product of unit ectors remains unity to first ordesince all of the deations from unity
occur in the form of 1 - cog| = £/2, whereBis a small angle. The fractional change in

volume of the cube is thuW N = (A 5+ dg + A)/l.

If the cube were initially aligned with the coordinatesxthe fractional change in

volume could be written

N
v = ExtEy+E,=E, (4.12)

since E, = d /I, etc. For an arbitrarily oriented cube, one could define a coordinate
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with appropriately aligned &s, and we wuld have &V = E;' in this coordinate system

as well. Hovever, as we sheed in chapter 2, components of a tensor ifecéht coordi-

nate systems are related by'E giq;Ey, where g is the transformation matrix
between the coordinate systems. Thug,=1;.q; E« = Ex. The last equality is by

virtue of the relationship ey = 4y, which follovs directly from equation (2.22).
Hence, E has the samealue in ay coordinate system, and is equal to the fractional
change in glume of a small, arbitrarily oriented cubical parcel. As indicated in chapter

2, the sum of the diagonal components of a second order tensor is called the trace of the
tensor so

d/ —_
5 =) (4.13)

The part of the displacement field associated with the strain tensor is simply called
the stain. If the strain tensor is diagonal in a particular coordinate system, a cube with
edges aligned with the coordinateeaxoecomes a rectangular parallelepiped after being
strained, i. e., the angles between edges remain 90°. Only the lengths of edges are
changed. This is called normal ain. However, if off-diagonal terms of the strain tensor
are non-zero, then not only the lengths of edges are changedsd the angles between
them. When angles change, the cube is said ¥e baen subject to shear ain.

Note that the concepts of normal and shear strain are dependent on the choice of
coordinate system. Figure 4.3 sisotwo cubes rotated 45° to each ofH®ath subject to
the same strain tensawith E,, = E,, = 0 in the unprimed frame and,E= E,' =0 in
the primed frame. In the unprimed frame the x -agefof the cube is deformed into a
diamond, while the samade of the cube aligned with the primed frame becomes a rec-
tangle. D shav that the abee statements about the unprimed and primed components of
E are consistent, note that the transformation from the unprimed frame to the primed
frame yields (in tw dimensions)

0 2—1/2 2—1/2 M 0 Exy DEQ—l/Z _2—1/2 D:
D_2—1/2 2—1/2 E[DExy 0 D]:Q—llz 2—1/2 0

Eyw O O_OEx 0 O

= , 4.14
00 -E,0 00 EyO (4.14)

shawing that E,' = E,, and E,' = —-E,y. Therefore, itis important to specify the coordi-
nate system when discussing the normal and shear components of strain.
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\
Y

Figure 4.3. Bect of strain on tw squares rotated 45° reladito each other

Compatibility Conditions
inverse process wolves solving a set of partial tkfential equations. Furthermore, not

Given a displacement field, it is easy to compute the strain teirsmvever, the
all symmetric tensors can be strain tensors. This is most easily illustrated inothe tw

dimensional case in which
ouy duy 1 Puy,  Ouy[]
= = — = = — — 4+ — .
Eyy ayY '’ Exy = By 200Y oxO (4.15)

T ox
In this case, three functions of x and y arewa@gtifrom only tvo functions, y(X,Y) and

uy(X,Y). Therefore, k, Ey,, and Ey are not independent of each othdtris easily \er-

ified that
0°Ey _ 10°E  O°Epy -
= + O (4.16)
0XaY 2 0Y2 X2
O O
This is called a compatibility condition, andyacandidate strain tensor in dwdimen-
sions must satisfy equation (4.16). If it does not, it is impossible to obtain a consistent set
of solutions for the displacement field from grating equations (4.15).
In the three dimensional case, the situation is gdrae more complicated. Six

independent strain components (recall that the strain tensor is symmetric) aeel deri
from three displacement components. Ormul therefore xpect three compatibility
conditions rather than one, and indeed, sadt8fin of equation (4.16) and the aw



-53-

additional equations

azEXZ — } EaZEXX + 62EZZ|:|

X0z 200z2  9x2 O (4.17)
and
e, 1e, s wss
oYoz 2 DGZZ oY? 0 '
are required. Haeever, in addition, the three conditions
0%E _ 00 0E,, N 0E ,« N aEXyD’ (4.19)
oYoz oXUO odX oY 0Z O
0°Eyy _ 0 O 0E4 N 0E,y N aEyZD’ (4.20)
0ZoX oYy O oY 0Z oxX O
0°E,, 0 0 OEy N 0E,, N 0E, O 4.21)

axXaY 9z0O 9z a9X oy O

need to be satisfied as well. Equations (4.19)-(4.21) are not completely independent of
equations (4.16)-(4.18). Note thatfdientiating equation (4.19) with respect to Y and
equation (4.20) with respect to X, and adding, yields the Xaliee of equation (4.16).
However, all six equations need to be satisfied in order to insure that a consistent dis-
placement field can be deed from the strain field.

The displacement field deed from a gren strain field in general is not unique.
However, ary two solutions for the displacement field shouldedifit most by a transla-
tion and a rigid rotation. This foles because gmother diference wuld be reflected as
a difference in the strain field itself.

One final point needs to be made.ittthe small deformation approximation,
0/0x; = 0/0X;. We sometimes find it cemnient to replace one by the other when the
small deformation approximation ighd. Thus, for instance, we might write the strain
tensor as

1 oy
E.. = _— — 4+
I 2 [BXJ

0

%L (4.22)

in some situations.
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Continuous Motion -- Strain and Rotation Rates

Sometimes, particularly in the case of fluids, it is desirableatid w terms of the
rate of displacement rather than the displacement itself. The time rate of change of dis-
placement is simply the parcedlacity field,

. e t+a) —ulX, ) O

(4.23)

We can arbitrarily set the time origin at t, which mski(X, t) = 0, and u(X, t ¥t) arbi-
trarily small. Thus, the small deformation approximation is automatically satisfied in this

case.

The analogs to the strain and rotation tensors in this case areatheat® tensor,

1 EﬁVi OVJ Il
PE = —— = 4.24
o2x; ox 0O (4.24)
and the otation rate tensor,
1 [ﬁvi GVJ O
Qi =—- — - — | 4.25
I 2 EBXJ aXi ] ( )

The use of lwer rather than upper case spatatiables in the alwe equations is inten-
tional. Since only timesery near the reference time, t, are considered, we can assume
that x = X for the purposes of this deation. The reference time can, of course, be
moved around at will.

The dual ector of q is

1 1 EﬁVi an N 1 aVi

__E..Q..:__g.. - = —— & — .
WU T T4y, o O 279y,

- (4.26)

This is simply ([ v)/2. The last step in the demtion of the abee equation results

from &;0v;/0x; = —&;0V;/0X; = —£&;0Vi/0x;. The vorticity, which is defined= [x v,

and plays an important role in fluid mechanics, is thus twice the datdrnof the rota-

tion rate tensorBy analogy with the rotation tensor R, the dual of the rotation rate tensor
defines the direction and speed of the rigid body rotation of a small parcel. The magni-
tude of the wrticity vector is thus twice the local rigid body rotation rate.
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Problems

1. For the displacement field u(X) gY i, do the follaving: a) Compute the rotation ten-

sor and the angle through which small parcels are rotated. b) Compute the strain tensor
and the angle which a small square initially aligned with the coordinateiathe x —y

plane is skwed from square. c¢) Compute the principadsand eigamlues of the strain

tensor What angles do the principal @x malk with respect to the original coordinate
axes? d) What are the unikinsions in the directions of the principaka® e) What is

the fractional change inolume of a small parcel as a result of the deformation? f) What
condition is required to makthe small deformation approximatioalid?

2. Repeat problem 1 for the displacement field <

3. A rectangular parallelepiped with respeetix, y, and z dimensions a, b, and c, is
stretched uniformlyda in the x directiongb in the y direction, andc in the z direction.
a) Determine the strain tensob) Determine the »act fractional change inolume
assuming thada is not small compared to a, etc. ¢) As the umikeasionsda/a, etc.,

become small, shothat this is well approximated by; E

4. For the strain tensor

® 1 0f
gl -3 30
o 3 10

where §| < 1, find the unitx@ension in the direction defined by thector (3 1 — 1).

5. For the strain tensor defined in problem 4, find the change caused by the strain in the
angle between the twwectors with initial directions (3 1 — 1) and (1 0 3).

6. Shav that the strain tensor

e _[RaY oaX [
" Oax 28y O

satisfies the compatibility conditions, and thengnié¢e equations (4.15) to obtain a dis-
placement field consistent with; E

7. Repeat problem 6 for the strain tensor

E--—D 0 aYy +8X O
"7 Oay +8X 0o D
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8. If v(x,t) represents theelocity field in a fluid, she that [TV is the fractional time
rate of change of theolume of a small fluid element. Sh@lso that it is minus the frac-

tional time rate of change of density and compare with equation (3.11).

References

SpencerA. J. M., 1980: Continuum miggnics. Longman, 183 pp.
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Chapter 5 -- Elastic Bodies

Most solid materials belia somahat like a spring as long as the applied forces are
sufficiently small. Figure 5.1 sk hav a rectangular parallelepiped

777777777777777777777777’ 77777777777 -0
- z | |
L .
F d’ " ‘ F
T R s

Figure 5.1. Deformation of a rectangular parallelepiped under the influence of
uniform normal tractions on the left and right ends.

of length I, width (into the page) w, and depth d is deformed by normal forces F distrib-
uted uniformly @er the left and right ends. The result is a sohs longer and skinnier
parallelepiped of dimensions I'x w'x d', with I'>1, w'<w, and d'<d. As with a
spring, Hook’s lav holds, i. e., the amount of stretch is proportional to the applied
stretching force:

FO-1= & (5.1)

In addition the parallelepiped shrinks or stretches in the lateral dimensions in proportion
to the applied force:

FO-w-w)=- dw F-(d'-d)=-ad . (5.2)

Equations (5.1) and (5.2) can be represented in a form that is independent of the
actual dimensions of the parallelepiped byvesting the force to applied traction and the
extensions and contractions to strain components. The fractional changes in dimension
of most materials are small as long as the forces are such that the matérpdrisa-
nently deformed or bran. Thus, the small deformation approximation holds, and
Ex = dll, E,y = dw/w, and E,=dd/d. Inthe computation of the traction applied to the
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ends of the parallelepiped, it dogsmiatter whether the old or wearea is used, i. e.,
T = F/(wd) = F/(w'd").
Rewriting equations (5.1) and (5.2) in terms of stress and strain,
Tw=EBEEx VIx=-E Eyy VI =~ EyEy;, (53)

we hare introduced the proportionality constants dependent upon the materiablied
Young’s modulus, and, called Poissog’ratio. Poissos’ratio relates the (gative) unit
extension in the directions trarexge to the applied traction to the unitemsion in the
direction of the traction:

E E
v=-2 =2 (5.4)
EXX EXX

<

Implicit in this is the assumption that the characteristics of the material medium do
not change with direction -- otherwise it is conegie that E, might differ from E,,,
requiring two different \alues ofv for the two transerse directions. This assumption of
an isotopic medium is approximatelyakd for mary, but by no means all materials.
Metals tend to be isotropic unless ythare specially treated,ubwood, for instance,
behaes \ery differently along diferent axes. May composite materials that consist of
strong, it brittle fibers embedded in a supporting matrix are highly anisotropic by
design. Fibeglas is anxample of such a material.

Hooke’s lav implies that a deformed body returns to its original shape when the
applied force is released. Bmd a certain limit on the stress, called the elastic limit, all
real materials lggn to deform in an irneersible mannerThis is called plastic deforma-
tion. Beyond plastic deformation, the materialeatually breaks. Repeategcting of
applied forces, \n within the elastic limit, can cause some materials to break as well.
This is the phenomenon of fatigue. Other materials worlddraror anneal under
repeated yxling, i. e., become more or less brittle. These phenomena ywoadée
scope of this book, and we shall consider only the \behaf isotropic solid materials
within their elastic limit.

The abeoe example shws the eflect of applied normal forces. When tangential
forces are applied to a rectangular parallelepiped, as in figure 5.2, the parallelefped tak
on a nonrectangular form, with the angtedefining the deiation from rectangularity
The tangential traction on the top and bottomeaxes$ is T, = F/(lw), where w is the
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Figure 5.2. Deformation of a rectangular parallelepiped under the influence of

shear tractions.

dimension of the parallelepiped normal to the page. From equationc4=1RE,,, and
within the elastic limit, T, CE ,,. This is usually written

TXZ = 2I’IEXZ 1 (55)
whereuis a proportionality constant called the shear modulus of the material.

Omitted from figure 5.2 for clarity are the tangential forces on the left and right ends
of the parallelepiped. The stress tensor is symmetric, i.,e£5 T,,, and applied trac-
tions are required to match the stress tensor on the ends as well as the top and bottom of

the parallelepiped.

The abeoe examples illustrate particular instances of the general stress-strain rela-
tionship for isotropic elastic media, which wevdBp in the ngt section. Bllowing that,
we dernve formulae for the potential and kinetic egies in an isotropic elastic medium.

Stress-Strain Relationship ér an Isotropic Medium

Hooke’s lav behaior implies that there is a linear relationship between the compo-
nents of stress and the components of strain. The most generalHoreageneous rela-
tionship between stress and strain components consists of six equations, one for each of
the stress components. (There are six rather than nine in three dimensions due to the
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symmetry of the stress tenserhich males three of the possible nine equations redun-
dant.) Each of the stress equations in turn contains linear cotitniis from each of the

six independent strain components. (Recall that the strain tensor is also symmetric.) The
result is 36 independent céiefents characterizing the material.

In reality, even the most anisotropic elastic medium can be characterizeavby fe
than 36 constants, and in an isotropic medium the number of independent constants
reduces to tw. We nav see hw this comes about. First, for an isotropic medium, the
principal axes of the stress and strain tensors will be coincident. This igadeqnii to
saying that a rectangular parallelepiped of material subject to applied forces normal to its
surfaces retains its rectangular shape, as illustrated in figure 5.1 -- in @itus;, wormal
forces dort result in the type of shear deformationwhan figure 5.2.

Since the principal @s of stress and strain coincide, and since an isotropic material
has the same characteristics in all directions, no generality is lost by writing the stress-
strain relationship in the principal axis coordinate system. In these coordinates all of
diagonal terms are zero, \@ag only the three diagonal components of stress and strain.
This reduces the 36 independent Gognts to nine, as shm belav:

Tyx = AE + BE,, + CE,,
T,y = DE, + FE,y + GE,, (5.6)
T,,= HEq + IEyy, + JE,,

Further reductions folle from ideas of symmetrySince the material is isotropic,
the relationship between normal stress and strain in the same direction should be the same
in all directions, which implies that A = F = J. Furthermore, relationship between a nor
mal stress in one direction and normal stress in another direction should also be indepen-
dent of the tw directions, which results in B=C =D =G = H =1. Equation (5.6) thus
becomes

Tyx = AE + BE,, + BE,,
T,y = BE + AE,, + BE,, (5.7)

T,,= BE + BEyy + AE,,
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We rewrite equation (5.7) as

T = (A - B)Exx + B(Exx"' Eyy+ Ezz)
Ty=(A-B)Ey+B(Ex+Ey+E,) (5.8)

Tzz: (A - B)Ezz+ B(Exx + Eyy+ Ezz)

because this is easily recognized to correspond to the component notation form of the ten-

sor equation
Tij = (A - B)Ej + ij Ekk- (59)

Since equation (5.9) isalid in the principal axis coordinate system, and since it is a ten-
sor equation, it is equallyalid in ary coordinate system. Thus, in a non-principal axis
system in which dfdiagonal terms are non-zero, we see that, for instance,
T,, = (A - B)E,, which by comparison with equation (5.5) aisothat (A - B) = 2

We corventionally write equation (5.9) in terms of the so-called €amnstants}, and

the preiously defined shear modulys,

Tij = Ad; Ew + 2UE;;. (5.10)

Given the strain tensoE, equation (5.10) skes hav to compute the stress tensor
T. Sometimes we need theverse relationship in which the strain tensor is computed in
terms of the stress tensoin order to ivert equation (5.10), we need to calculate the
trace of the strain tensdg,, in terms of the stress tensarhis is easily done by taking
the trace of the entire equation,

Tkk = (3A + 2,U) Ekk! (511)
and solving for . Combining this and equation (5.10) results in

1 A

EE=—T — ——
Voo2u Y 2u(BA+21)

9 Tk (5.12)

This is conentionally written in terms of the Poisson ratio amdiYgs modulus as

1+v) .

g, i (5.13)

%
Ej=- E, G T +

which shavs that the Lam’constants are related to the Poisson ratio anthgs modu-

lus by
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% A
Ey  2U(3A+2) (5-14)
and
1+vy) 1
5 S (5.15)

The characteristics of an isotropic, elastic medium maypeessed either in terms af
anduor in terms ofvand E,.

For the special case shko in figure 5.1, in which J, is the only non-zero stress
component, equation (5.13) reduces to
EyEx = Ty (5.16)
and
EvEyy = EyEz = — VT, (5.17)
which agrees with the analysis of this case in tlygnipéng of this chapter

It is important to distinguish between this situation, in which the y aadesfof the
parallelepiped are alleed to mee in response to normal tractions applied to thaced,
and the one in which the lateralcks are constrained not tovao In the latter case,
E,y = E;; =0, lut the corresponding normal stresseg, dnd T,, are nonzero. This is
because additional tractions must be applied to the lateras to kep them from me
ing in response to applied tension or compression in the x direction.

When the lateraldces are constrained, equation (5.10)shihat

Tux = (A + 2L)E (5.18)
A
Tyy = TZZ = AEXX = A+ Z,UTXX. (5'19)

In the unconstrained case, thaiffness’ of the material, i. e., amount of stress required
per unit strain is simply & while in the constrained case itAs 2u. By manipulating
equations (5.14) and (5.15) it is possible tonskimat

Ey(l - V)

AT a2

Evy + V2 O
1-2 1-2vO

>Ey, v<1/2. (5.20)
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Thus, when the parallelepiped is laterally constrained, it iferstihder stretching and

compression than when the latei@dds are free.

The limit v=1/2 is interesting toxplore. Taking the trace of equation (5.13)

results in
EY Ekk = (1 - ZV)Tkk. (521)

Recall that E is the fractional change inclume of a small parcel of material. This is
normally expected to be posite under tensional stresses, i. g4 ¥0, and ngative

under compressional stresses. Thus,1/2. The limity = 1/2 implies no change iroi+

ume rgardless of the stress, and therefore corresponds to the case of an incompressible
material. Note that in the albe example an incompressible material has infinitdretgs

to normal stresses if the lateratés are constrained.

From chapter 2, the pressure is defined as p;#3-TFrom equations (5.18) and
(5.21) it is clear that the pressure is linearly related to the fractional changlenmevof

an isotropic elastic medium by
p = - KE;, (5.22)
where the blk modulus, k, can be related to the Poisson ratio andgé modulus:

k = B,/[3(1 - 2)]. (5.23)

Energy in Isotropic Elastic Media

As shavn in elementary mechanicsxts, a spring with spring constartexhibits
restoring force F = xx when stretched x from equilibrium, and stores potentialgner
U = kx?/2. A similar quadratic dependence on deformatigists for elastic media. In
this section we deelop pressions for both the kinetic and elastic potential gegrof

an isotropic elastic medium.

The epression for kinetic engy of an elastic medium is particularly simple in the
small deformation approximation. In this case tameity of parcels in the Eulerian rep-
resentation, v = du/dt, may be approximated by du/ot, since parcelsmore \ery far
from their initial position. The ector u is the parcel displacement from its initial posi-
tion, and the approximation amounts to ignoring v [Iu, which is quadratic in u, and thus
neggligible as long as |u| is didiently small. In this case the kinetic eggfis simply the
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volume intgral of the kinetic engy density:
=P
K _I 5 [VPdV. (5.24)

The potential engy takes somehat more dbrt to derve. We beain by noting that
the work due to gternal forces on a body can b&ided into a contribtion due to body
forces and to tractions on the bodihe incremental wrk due to body forces associated
with a small change in the displaceméuatis simply

dNbody = J- A p B; dv, (525)

where the intgral is over the wlume of the body and;Bs the body force per unit mass.
The incremental wrk due to the applied tractions is in the form of angrakover the
surface of the body:

MWirac = I i Tn;j dA, (5.26)

where T;n; = t; is the applied traction. Equation (5.26) may be\ated to a slume
integral over the material using thewdirgence theorem:

Wi = [ 3 (Ty) @V = [ T+ T, (5.27)

Combining the wrk from the tvo contritutions results in

LD Au; OT; i
W = dNbody'*' MWirac = I D_ T + + A, XI{ + pB; [ng. (5.28)
J

The terms within parentheses are simply the right side of equation (3.21), which is the
equation of motion, and therefore eqpédlv,/dt). Setting this tqo(dv;/0t) by the small
deformation approximation, and relating the change in the displacement toedaitigyv

field over time interal &, du, = v, &, equation (5.28) becomes

CHAu; p 0|vP
MW =(G—Tj+z — &y, 5.29
[ Ties 5 A 29
where yv; = |vf.
Assuming that the density is constant, the second term on the right side of equation

(5.29) reduces t&o|vf/2), or the change in the kinetic eggrdensity In the first term
the 0 and the diferentiation may be interchanged. From equation (4.2),
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ou;/0x; = Ej + Ry, and since RT;; = 0 due to the antisymmetry of; Rhe first term may
be writtendE; T;. Note that we hee differentiated the displacementwith respect to
X; rather than X, because with the small deformation approximation, theediffer only

negligibly.
The first term may be further simplified using the stress-strain relationship, equation
(5.10):

Ok Tyj = Ok (A9 By + 2UE;) =
A OE; B+ 2udE; Ej =

XAEL + 2UE; E;)/2 =

Combining all this, and interchanging thand the intgration (possible because the inte-
gration wlume is assumed to remain constant), the incremerdel due to gternal
forces may be written

I =9 J’(Eij T; + plvf)/2 dv. (5.31)

Since it vas possible toxgract thed from the the intgral, equation (5.31) is a per
fect differential, and the total @rk, made up of a sum of increments adriy can be
expressed in terms of the stress, strain, agldoity fields, independent of of Wwothis
state vas reached:

W = J’(E” T; + plvf)/2 dv. (5.32)

By conseration of enegy, work done on a parcel of material must be reflected in an
increase in the sum of kinetic, potential, and internalgiegiof the material. The second
term is simply the kinetic engy as defined in equation (5.24).eWdentify the first term

as the elastic potential eqgy

and note that coersion to internal engy doesrt occur in the idealization of an elastic
body.
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We nav apply equation (5.33) to aviesimple cases of uniform stress and strain.
For example, when normal tractions are applied to the ends of a parallelepiped of length
|, width w, and height h,,l = EyE,, from equation (5.3). If the other sades of the
cube are free, all other components of the stress tensor are zero, and other components of

the strain tensor donénter the xpression for engly, which is simply

U = IWhE/E2/2 = E,whd?/2l, (5.34)
where d = IE,, is the amount the parallelepiped is stretched in the x direction. The
“spring constant’of the parallelepiped is thus= E,wh/I.

For a parallepiped with the latera@des constrained,Jand T,, are nonzero, tt all
strain componentsxeept E, are zero. Equation (5.18)\gs T, = (A + 2L E,, in this
case, and

U = Iwh(A + 20)E2,/2 = (A + 21)whd /2, (5.35)
and the ne spring constant ig = (A + 2t)wh/I, which is greater than the aleocase in
which the lateraldces are unconstrained.

When a cube of side | is subjected to shearing tractions that result in shear strain
Exy = Eyx, the corresponding components of stress age=T,, = 2UE,,. If all other
stress and strain components are zero, the potentiglyeser

U = 2U3(EL, + EZ)I2 = 2U°ES, = h3c?12, (5.36)

where a, defined in equation (4.10), is thevdgion in the angle between the x and y
faces fronvr2.

Problems
1. Gwven

2 A Q+vy) 1
E, 2u3)\+21)’ Ey 2u’

solve forA anduin terms of E andv, and vice ersa.

2. For a rectangular parallelepiped aligned with the coordinats, aassume that the y
faces are constrained (i. e, E 0) and the zdces are fre€l(, = 0). For a uniform nor

mal stress, J, find E,.
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3. Using the results of problem 2, shahat T,,/E,, is intermediate in this case between
the xx stress-strain ratio for total lateral constraint (equation (5.20)) and no lateral con-
straint (equation (5.3)).
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Chapter 6 -- Waves in an Elastic Medium

As our first @ample of elastic body mechanics we considaves in an isotropic
elastic medium. W limit our discussion to small amplitudeawgs so that the small
deformation approximation isalid. For an isotropic elastic medium we will find dw
types of vaves, longitudinal waves, in which the direction of material oscillation is paral-
lel to the direction of \@e motion for plane aves, and @nsvese waves, in which the
material oscillates in a plane normal to thavevpropagtion direction. This is in con-
tradistinction to the case of soun@wss in a liquid or aas, in which only one type of
wave «ists, the longitudinal ave.

Longitudinal Wave

- - - —— — ——
T r—=——" rT
| | | | | |
| | - - - | | — —_— — | |
Ll | I L1
- - - —— —_— —— —_—
- - - — —_— ——
- - - —— — ——
- - - —— —_— ——

Trans\erse Vdéve

V\\\ ///1 V\\\
w 3 r w w 3
C| o | T C| o

= d L - T = d
-180° 0° 180°

Figure 6.1. Displacement fields for longitudinal and transy vaves ming
to the right. The dashed bex shov how an initial cube of material is

deformed.

Figure 6.1 shas the displacement fields in thesetiypes of vaves.



-69-

Seismologists call longitudinalaves P waves and trarsnse vaves S waves, which
respectrely originate from the Latin terms undae primae and undae secundaestor fir
waves and second waves. This terminology arose fromaittettiat longitudinal aves
travel faster than transvse vaves. P vaves therefore awe first after a distant earth-
guale, folloved by the S aves. See Leet (1950) for an elementary description of these

waves.

In this chapter we first discussaves in an unbounded mediumyasticating ini-
tially the case of plane aves. W then &tend the distinction between theawypes of
waves to non-plane case in which Rwas are not alays strictly longitudinal and S
waves are not necessarily purely tramse. V& discoer that more descript terms for
the two types are respeetly irrotational and equivoluminal. @/finally examine the
behaior of waves near a free boundary to the elastic medium, such as might be presented
by the surhice of the earth. ®find that elastic awes reflect dfthe boundary and see
that reflection can ceert P vaves to S waves and vice ersa.

Waves in an Unbounded Medium

For problems imolving elastic vaves it is generally most produati to write the
governing equations entirely in terms of the displacement field u. Ignoring body forces,
which play no central role in elastiaves, Nevton’s second la in continuum form, rep-

resented by equation (3.4), may be written in component notation as

o = 10 (6.1)
The stress-strain relationship for an isotropic elastic mediunves doy equation (5.10).
Eliminating the strain inavor of the displacement field using equation (4.2) results in

ouy oy, 0u;[l

T.. = A —0: + P —— , 6.2
T ox % 'UEBXJ- ox; O (6.2)
which may be substituted in equation (6.1) to yield
0°u; 0%u; 0y,
— =(A+ L+ . 6.3
o2 - VA Gax THaxox, 63)

The small deformation approximation neskthe acceleration equal/dt?,
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Equation (6.3) may bewgitten in vector notation as folles:
0%u
0t2

If the first term on the right side of equation (6.4) were droppedyutdibe the classic
1/2

= (A+pIIu) +  pu. (6.4)

wave equation, and theawe propagtion speed wuld be ¢ = /p)~'“. It turns out that
even with this term, equation (6.4) representgses. The additional comptéy senes to

distinguish the tw types of elastic aves discussed ate.

In order to demonstrate this, let us assume a plae moving in the plus x direc-
tion. We provisionally assume that the material oscillations associated withabe ave
partially longitudinal and partially transkse. V& will find that such a combination is
impossible, and that a planewe must be purely one or the otherth each component

moving at a distinct speed. The assumed form for u is
u = (U + U i) expli(kx — at)], (6.5)

where | is the transerse component, i. e.,,Ui = 0, U, is the longitudinal component,
and k andware respectely the assumedavenumber and frequepof the vwave.

We note that Bu = — k?u in this case. Hwever, [Tu = ikU | exp[i(kx — at)], so
the first term on the right side of equation (6.4), [([Tu) = -2W, exp[i(kx — at)]i,
involves only the longitudinal oscillation. Substituting equation (6.5) in equation (6.4)

and canceling the commorponential &ctor results in
- pcf (U +U,i) = = (A + 1)k2U,i — tk?(Uy + U)i), (6.6)
which can be written
[paf — 12U, + [pa? — (A + 2)k?]U,i = 0. (6.7)

Since | is normal to i, both terms in the alm equation hae to be zero. This is only
possible if one or the other of, Wr U, is zero, since the tw terms in square braets
cant be zero simultaneouslyThus, plane \aves must be either purely traesse or
purely longitudinal. In the transvse casel; = 0) we hae a phase speed for themes

of

2
o= @

k o0’

while longitudinal vaves mae with a speed

transverse, (6.8)
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_A+2uit”
"0 p O

longitudinal. (6.9)

It is clear that c> ¢, as asserted at thedirening of this chaptesinceA + 2u> u

Examination of figure (6.1) suggests that longitudinal and teaeswaves respec-
tively have certain important properties. The dashedeboghw howv a tiny cube of
material is deformed at di@&rent locations in each type ofave. At the 0° phase line in
the longitudinal vave, the cube is stretched in the direction efevpropagtion, while at
the £180° lines, the cube is compressed in this direction. Tholsime changes tak
place in small material elements as a longitudinalenpasses. Huwever, no rotation of
volume elements occurs. In otheonds, the displacement field isatational.

On the contrarysmall cubes of material maintain constaolume when a trans-
verse vave passes, which means that the displacement field is equivoluminakvetio
the cubes are alternately sheared oag and then the other in the direction normal to
wave propagtion. The displacement field for oscillations in the xy direction vegiby
equation (6.5) as

u = Ujexpli(kx — at)]. (6.10)

From equation (4.2), R=— Ry, = ikU;jexp[i(kx — at)]/2. Thus, the rotation tensor is
non-zero, and small parcels are alternately rotated ayeawd the other as a trapsse
wave passes. (Note that sincg,E R, in this case, theare also subject to alternating
strains.)

The irrotational nature of plane longitudinadme@s and the equbluminal nature of
trans\erse vaves suggests aay to generalize to the non-planeve case. Awn vector
field may be represented as the sum of the gradient of a scalar and the cedtof:a v

u= O+ X a. (6.11)

Since the curl of a gradient is zerogpis irrotational. Likewise, since the dergence of a
curl is zero, [x a is equvoluminal. Substituting equation (6.11) into equation (6.4)
results in

2 2
paa'[D2¢+pa S’;‘za = D@+ P Tx a+ (A+ Q0 * (6.12)

where we heae recognized that [I{[x a) = 0.
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Taking the drergence of equation (6.12) yields awe equation

62
a_t)2(= (A+200%, (6.13)
where

x=Co (6.14)

These equations describe purely irrotationaveg that reduce to longitudinalaves in

the plane \ave case. Similarlytaking the curl of equation (6.12) yields

b _,
pw = b, (6.15)
where
b=[x(Ixa)=[(Ia) -0 Za. (6.16)

Since only the rotational part of a yields a component of the displacement field, we can
set [Ta = 0 without loss of generality Thus, equation (6.16) simplifies to b = “&las

long as a is constrained to bevdigence-free.

As an egample of a non-planeave, imagine an irrotationalave with the structure
@= D expli(kx — at) + mz], (6.17)

where @ is a constant. Substituting this into equations (6.13) and (6.14) yields the rela-

tionship
o = c2(k% - ) (6.18)
and the displacement components

(uy u,) = (kg mg. (6.19)
Since this represents awve mwing in the x direction with amplitude that increases with
z, it is definitely not a longitudinal ave, evzen though it is irrotational. Wes of this
type occur when the elastic medium is bounded by a freacgudt z = 0. Theare
called surdce vaves due to theatt that thg have their maximum amplitude at the sur
face, decaying toard the interior with an e-folding length of tn Real surfice vaves
actually are made up of a combination of irrotational andvefiuninal surbce vaves
that march in lockstep. This is impossible for plarswes because thesedwave types
move with diferent speeds. Keever, the speed ¢ sk = g (1 - nf/k?)'2 of a surice



-73-

wave can be adjusted by changing tiadue of m. The combination is such that zero trac-
tion exists on the bounding sade. Surdice vaves are important in seismology

The elastic potential ergy density is ET;/2 and the kinetic engy density is
p|vf/2. It turns out that these wdensities areverywhere equal for elastic planewes.
We nav demonstrate this for longitudinal planemgs. For a longitudinal plane ave
moving in the x direction, the only non-zero component of the strain tensor is
E.x = 0u,/0x. Assuming that the pisical displacement is\gn by the real part of equa-
tion (6.5). fr a longitudinal wave u = Uicos(kx —at), so E, = — kU, sin(kx —at).
From equation (5.10), J=A+2WE,,, so the elastic engy density Iis
(A + 21)k2UZ sirf(kx — axt)/2. On the other hand, the materiglocity is v = du/dt in the
small deformation approximation, so the kinetic ggetensity isoa?U? sirf(kx — at)/2.
Comparing these twdensities shes that thg are equal sincea” = (A + 2)K>.

displacement

kinetic enegy density

potential enagy density

Figure 6.2. Relationship betweerewe displacement kinetic and potential
enegy densities in an elasticane.

Figure 6.2 illustrates the relationship between theggnaensities and theawe dis-
placement. Both the potential and the kinetic ggedensities are maximum where the
displacement is zero, because both the strain and the magdotyare maximal there.
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Reflection of Seismic Vives at the Earths Surface

Consider na a longitudinal or P ave incident on an unconstrained boundary to the
elastic material. An>ample of this phenomenon is the approach of aaf#wo the
earths surfice. Since the swa€e is unconstrained, the applied traction must be zero.
Under these circumstances, there are tather than one reflectedaes, a P \ave, with
an angle of reflectiof, equal to the angle of incidence of the incoming &®; and an S
wave, with a smaller angle of reflectiof,

reflected
S wave

incident P vave
\
\ /

reflected P ave

Tk=0atz=0

Figure 6.3. lllustration of the reflection of a Rw& from a stress-free bound-

ary at z = 0. Reflected P and &wss are created.

Figure 6.3 illustrates the situation.

The smaller angle of reflection of the &w is a consequence of the smaller speed
of the S vave relatve to the P wave. If a plane vave has the space and time dependence
exp[i(kx + mz —at)], the phase speed of theave is ¢ =a/(k? + )Y, Since all three
wave components must march in phase at z = 0, kaantust be the same for all. A
smaller phase speed with k aatheld constant implies a Iger \alue of m. Since the
incident or reflected angle i§=tarl(k/m), a lager m implies a smallef. Since
sin@= k/(k + m?)"? = kclw, the relationship betweefl, and 6; can be written
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sin6, ¢
R (6.20)
sing; ¢
This is nothing more than a&rsion of the Snel’ lav of optics.

We naw attempt to compute the amplitudes of the teflected \aves relatve to the
amplitude of the incident ave. To do this we assume a superposition of the three plane
waves, the trangrse oscillation of the Save being in the x — z plane:

(Uy, Up) = I(sin 8, — cos) expli(kx — myz —at)] +
P(sing,, cosd,)expli(kx + myz —at)] +

S(—cod;, sing;)expli(kx + mgz —at)], (6.21)

where |, P, and S are respeely the amplitudes of the incident Rwe, the reflected P

wave, and the reflected Save, and ng and m are respectely the vave numbers in the

z direction for P and S awes. The arnas in figure 6.3 she what are considered to be
positive directions for I, P, and S.

The condition of no traction at z = 0 is simply that T [k = 0 there. Since there is
nothing with ay dependence on y in the problem, this reduces,jc=T,, = 0. Since
T,, = 2UE,, and T,, = A(E,, + E,,) + 2UE,,, the zero traction condition reduces to the
two equations

ou, du,
—+—=0 6.22
0z O0X ( )
and
ou ou
A—=+(A+21) == =0. 6.23
Ix (A+24) 32 (6.23)

Substituting equation (6.21) in these, setting z =0, and canceling the coracton f
exp[i(kx — at)] results in

2sif 6,— 1
e I | 6.24
2 cost, sin G ( )
and
r?2 - 1) sin8, cosé
P+( )sinf, S =-1, (6.25)

Sir? 6, + r2cog 6,
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where we hee used r = sif),/ sin 6, m, = k/tang,, and ng = k/tané.

These equations can be sahvfor P and S in terms of B, and r, lut the solution
is quite messy Instead, we shalblore \arious limits to the equations as a means to
understand what tlyeare telling us.

For normal incidenceg; = 6, = 0. The only vay equation (6.24) can be satisfied is
to have S = 0. In this limit equation (6.25) tells us that P = — |. Thusydgithe sense
of the arravs in figure 6.3), the free sade oscillates up andwa with an amplitude that

is twice the amplitude of the incidentwe.

For nearly grazing incidence of the incoming Bv&; 6, — 772. In this limit equa-
tion (6.24) shars that S - 0 in this case as well. Thus, from equation (6.25) aie ag
have P - — I. The net oscillation of the free sack is thus zero, and we find that a free

surface doesii’'move at all in the limit of grazing incidence reflection of ad&ev

In the intermediate case the free aud undegoes a compieoscillatory motion in

response to a reflecting Rawe.

Problems

1. Shaev that in a transerse plane seismicawe the principal ags of strains are rotated
45° from the direction of \ave propagtion.

2. Look up the appropriate constants for steel to find the patpay speeds of plane P

and S vaves in this medium.

3. Consider a thin plate of elastic material of dengitywith its faces at z=0and z=d
stress-free. & longitudinal elastic wves maing in the x direction in the plate with
wavelength A > d, one can assume thaf,F T,,=T,, =T,,=0 and E,=0. This
implies a relationship betweenEand T,, for longitudinal waves. Find this relationship
and the resulting speed of suchves.

4. Consider longitudinal aves maing normal to a plate of thickness d. Since {the
reflect at the stress-free sacés of the plate, the general solution is a superposition of
waves meing in opposite directions through the plate, which together constitute a stand-
ing wave. Find the frequencies of such standing modes in terms of the plate thickness, its
density p, and the Lamconstants.
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5. Shav that the elastic potential and kinetic egyedensities are equal for traesse

elastic vaves.
6. Shav that suréce irrotational \@es mae more slaly than plane irrotational awes.

7. Compute the reflected P and 3w amplitudes when a Pawe encounters a fixed
plane surdce at angle of incidend®,. Is there a alue ofg, for which the amplitude of
the reflected P wve is zero?

References
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Chapter 7 -- Statics of Elastic Media

In the statics of elastic media we find it morevament to vork with the stress and
the strain tensors than with the displacement field. This is because boundary conditions
on statics problems are usuallpeessed as applied sace tractions, which impose con-
straints on the stress tensdn such problems there are three elements that must be con-
sidered. First, N@ton’s second la must be satisfied for the static case, i. e.,

OT + pB=0. (7.1)

In the usual situation in which the body force per unit mass isatdei from a scalar
potential, i. e., B = — [, and in which the mass densitis constant, the alve equation
can be written

(T - pJl)=0. (7.2)
In mary cases of intereglJ | is much smaller in magnitude than T, and can be ignored.

The second element is that boundary conditions on the stress must be satisfied. F
problems in which one seeks the response of a body to aulistnitof applied tractions,
one must be sure that T [h equals the applied tractiongeay @oint on the suatce of the
body

The third element is that the compatibility conditions on the strain tensor must be
satisfied. These translate, via equation (5.13), into conditions on the stress tBnsor
three dimensions, the three independent compatibility conditions plus the three relation-
ships implied by Neton’s second la are suficient to uniquely determine the six inde-
pendent stress components as long as the boundary conditions are properly applied. In
two dimensions, the single compatibility condition and the temponents of Neton’s
second lev similarly determine the three independent stress components.

Note that the strain tensor as a whole must satisfy the compatibility conditions. In
particular that part of the stress tensor resulting from body fogdék, may not by itself
generate a compatible strain tens¢®ee, for gample, problem 2.) In this case, the
above separation of T into inhomogeneous and homogeneous parts may or may not be
useful.
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In this chapter wexamine a number of simple problems in the statics of isotropic
elastic media. W first &«kamine torsion in ayindrical bar obtaining the macroscopic
torsional spring constant in terms of the shear modulus and the dimensions of e bar
then &plore pure bending of a beam. An approach t dimensional problems is then
outlined, and we finally look into the use of enemethods to understandidkling of

thin beams under compressional loads.

Torsion on a Cylinder

Imagine a right circulandinder of radius R and length |, as

o
(A O

v R

X B y

Figure 7.1. Definition skch for torsion applied to ends ofdicder.

illustrated in figure 7.1. The ends of thdicder are subjected to tangential tractions as
shawvn in the end vie in figure 7.1. The tractions on thedwends of theydinder tale
the opposite sense, so the tlygnoler is in torque balance, and the sides of fimder
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are assumed to be traction-free.

We assume a traction of the form t = (-Cy Cx 0) applied to end A ofytimeler,
where C is a constant, with minus this applied to end B. A stress tensor that matches
these tractions is

Tij =0 0 0 Cx [, (73)
Ocy cx o U

as is easily shwn by dotting T with = k. The zero stress condition is also satisfied on the
sides of theylinder. We shav this by noting that the unit ouésd normal on the sides of
the g/linder is n = (x/r y/r 0), where r = &+ y?)Y2. T [h = 0 in this case.

We nav compute the torque on each end of thiender resulting from the applied

tractions. The torque isgn by the formula
N:J'XXtdA, (7.4)

where t dA is the force applied to the saré element dA and x is the moment arm from
the pvot point, talen here as the origin. The igtation adds up the contubon to the
torque from all the susce elements, and the igtation is takn to be wer one or the
other of the glinder ends. The cross product in equation (7.4)esakhe form
x x t=—C(ix +jy)z + KCr2. The first two terms cancel by symmetry in the mtation,
and the z component of the torque, which is the only surgicomponent, is
R
CR
N, = 1!’ Cr?2m dr = — (7.5)
Thus, the constant C = 27iR*) in terms of the applied torque and the radius of the
cylinder.

We nav check the other tavelements to the solution of this problem. It is easy to
verify that [IT = 0 in this case, and it remains only to obtain the components of the
strain tensor and check to see that the compatibility conditions are satisfied. Since the

diagonal components of the stress tensor are zero in this case, equation (5.10) can be used

to shav that
H Hcy cx o O
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This strain tensor is easily shio to satisfy the compatibility conditions, equations (4.16)
- (4.21). Therefore, the stress tensor postulatedeaisandeed a solution to the problem
of torsional tractions applied to the ends of/encler.

Let us nev determine he much the glinder is twisted by the applied torqueso T
do this, we must obtain the displacement field u from E. From equation (7.6), we see that
since dy/ox = E,, =0, u, = f(y, z), where f(y) is an arbitrary function of y and z.
Similarly, uy, = g(x, z), and = h(x, y), where g(x, z) is an arbitrary function of x and z
and h(x, y) is an arbitrary function of x and y.w\o

_ 1 Puy +auZD_ 1f +6hm__ Cy

E._ E..=—- —+ —~-" = — 4+ — =-—_-
72 200z oxO 200z oxO  2u

, (7.7)

while

_ 1y +6uZD_ 1 99 +ahD_ Cx

E,=E,=- Y4zt Z 9 T2
¥ 200z oyO 20z oyd 2u

vz (7.8)

There is not a unique displacement field corresponding to this strain. témgar
ticular, displacement fields that tf by a translation or a rigid rotation yield the same
strain tensor However, displacements and rigid rotations doimterest us here, as we
seek only the amount that thglinder has been twisted. a\therefore look for a simple
particular solution from which we can deduce this twist. Such a solution is

u=(-Cyzl Cxzju 0). (7.9)
A quick check shars that Ky = 0 with this choice of u, as is necessary for consigtenc

Examination of equation (7.9) shie that the displacement is in the form of a rota-
tion about the z axis through an angle g£zs long as the angle of rotation is small.
Thus, the twisting of theytinder increases linearly along thglinder, and the rotation
angle of one end of thelinder relatve to the other isr = Cl/u= 2IN,/(R*1). Thus, the
torque required to twist thg/kinder through an angle is

N, = E%Ea = Ka (7.10)

wherek = iR*14(21) is the torsional spring constant for thdirder.

Technically this result is only &lid if |a| < 1. Hawvever, when phrased in terms of

twist angle rather than displacements, the resukltlid ¥or arbitrary twist angles as long



-82-

as the twist angle for aylinder sgment of length comparable to thdinder diameter is
small. This may be understood by thinking of a long, skimplinder as a sequence of
shorter glinders, applying the theory rigorously to eaclgment, and adding up the
accumulated twist.

Bending of a Beam

The solution to the problem of the pure bending of a beam forms the basis for the
engineering theory of beams. It turns out that when a beam is much longer than it is
wide, the bending part of grgeneral deformation is the most important part. Thus, the
solution to this problem has broad application.

Az

/y

>0
<V

=

— T

Figure 7.2. Section of a bent beam. The upper part of the beam is in tension,
the laver part, compression.

Figure 7.2 shws a sgment of a bent beam. The amoindicate the ariation in
traction across a sade cutting the beam, with tensional stress occurring on thvexcon
side of the beam and compressional stress on thewasitke. These stresses are caused
by the stretching and compression in the x direction associated with the bending. It
therefore mas sense to postulate a trial stress tensor for the beam materialébdah&ak
form

DCZ 0 OD
;=00 0 00, (7.11)

Oo o0 ol
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where C is a constant. Thixkbits the necessary normal stress in the x direction, and
furthermore satisfies the stress-free boundary conditions on the sides of the beam. It is
also easy to shwthat [IT = 0, so Newton’s second M is satisfied.

Equation (5.13) shws that
E,. = T,,/Ey = Cz/E, (7.12)
while
Eyy = Ez, = = VT,/Ey = - \C2Z/E,. (7.13)

All off-diagonal components of the strain tensor are zero in this reference frame. This
strain tensor satisfies the compatibility conditions. grdaéng to obtain the displacement
field, we find that

u = %ty 2), (7.14)
Ey
uy = - "(E:yz+ (%, 2), (7.15)
Y
u,=- 22+f(x ) (7.16)
z ZEY 4 ’y ’ .

where f§, f,, and { are arbitrary functions of the indicatedanables. Setting
Ex = Ey; = E;x=0results in

of, of,

9, %y - 7.17

6y+6x ( )
of, oaf, WCy _
St B =0 (7.18)
0h , 0f [ Cx_y (7.19)

0z  ox Ey
A consistent solution to this problem occurs if we sef=f,=0 and
f, = - C(>¥ - vy?)/(2Ey), whence

_ __ __C e upe
UX—E—Y, Uy— EY ) u, = 2EY [X +V(Z y2)] (720)
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The assumed stress pattern thus results in a rather copgitern of deformation.
However, the most important aspect of the solution is thtical deviation of the center
line of the beam from it initial position. This isvgh by

Cx?

Upz = U,(X,0,0) = _E )

(7.21)

which shavs that the beam centerline bends into the form of a parabola tetém #at

the approximations uwoked are walid. Actually a beam with a tranevse stress distu

tion of the type discussed here which is uniform along its length should bend ito a se
ment of a circle rather than a parabola.wéeer, the small deformation approximation
limits the solution to relately short beam ggnents wer which it is dificult to tell the
difference between a parabola and tlggrsmt of a circle. The radius of cature of the
beam centerline is also the radius of the circle, and/éndyy

-1

9%uy, 0" E
R =DW‘2’ZD = ?Y (7.22)
0% o

Thus, we hee related the radius of cuature of the beam, R, to the gradient of normal x

stress, C, across the beam.

We naw relate C to torques applied to the ends of the beam. Figure 7v@ssthe
tractions that need to be applied to the ends of a beam to generate the stresss&msor gi
by equation (7.11). (The tractions slhtoare those occurring on the left end of the beam
and those acting across an imaginaryaugfthat cuts the beam normal to its centerline.)
Each set of tractions sums independently to zero net applied foragevéfothe net
applied torque is not zeroybrepresents a twist in the x — z plane. The non-zero compo-
nent of torque is thus the y componenj, M the coordinate system of figure 7.3. Since
the torque N =X x; x F;, where F is the ith force and;xs its associated moment arm,

Ny =2 (zFix - XiFi;). Fix =—-Cz dx dy and F; = 0, so the torque is computed as
h/2 w/2
Ny=-C Zdydz=-———, (7.23)
-h/2 -w/2
where the sum has been replaced by an aregrahtaver the end of the beam. Dropping
the minus sign and eliminating C between equations (7.22) and (7.23) results in a rela-
tionship between the torque applied to the ends of a beam and the radiusatfreunt
the beam:



-85-

Y

bt

I ah x
J

Figure 7.3. Tactions occurring at the ends and across asarhormal to a
beam that is undgoing bending. The tractions result in a torque (or bending
moment) in the y direction.

R=ZY = =Y (7.24)

where | = wh/12 is related to the moment of inertia of a small section of beam about the
y axis. The torque, | is often called the bending moment applied to the beam, and the
solution is called the solution for pure bending.

Two Dimensional Poblems

For two dimensional problems in which the displacements are all in the x — z plane
and are independent of y, and in which body forces are ignored, elastic body mechanics
takes on a simple form. In this casg/E E,, = E,, =0, and a single functiog(x, z),
called the Airy stress function, prides all the non-zero components of stress asaisllo

T o TZZ:@ :—62¢.
ax2 * 9x0z

XX = ﬁ (7-25)

(Do not confuse the Airy stress function with the scalar potential of chapter 6.) Since
EvEy = = UTx+ Tyy + T,) + (1 +V)Ty, = 0, we hae Ty, = UT, +T,,), and the stress
tensor becomes
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0 o%p 0 _0%p O
0 922 axoz U
T, :E 0 Tyx2z) O B. (7.26)
02 02
- 4 0 gy O
] 0x0z 0x2 [

It is easily \erified that [IT =0, and Nevton's second M is thus satisfied in the
absence of body forces. The only compatibility condition that is nadltyi satisfied is

equation (4.17):

0°Ey, _ O°Exx , 0°Ey

2 oxdz 022 Ix2

(7.27)

Using the stress-strain relationship for an isotropic elastic medium to represent the strain

components in terms @results in

0*p 0*p .\ ")

Pz Tor 0 (7.28)

which is called the biharmonic equation.

Buckling of a Thin Beam

The problems in the pveus sections alays assumed that avgh set of eternally
applied forces result in a unique response. Unfortunatiely is not avays the case.

You can easily casince yourself of this by trying

. .
A//xk
. .
. .
. .

Figure 7.4. Buckling of a thin beam under compression.

to compress a thin plastic ruler with your hands, as in figure 7.4. If the ruler xeetly/ e
straight and if the forces applied by your hands were centgestlyeon the axis of the
ruler, one would epect from the theory of elastic media that the ruleuld remain
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straight while simply shortening a small amount. Whatakt happens is that the ruler
bows in one direction or anotheFurthermore, the direction in which it s depends on
relatvely minor efects, such as precisely woit is held when the force is initially
applied. This is anxample of the bckling of a thin beam, which we wareat quantita-
tively.

The approach we use to understandiiing is to compute the elastic potential ener
gies of alternate responses of an elastic body toem giet of applied forces. Generally
speaking, the body will t&kon the lavest enagy configuration. Br a thin beam in par
ticular, we will compare the elastic potential emenf pure compression with that occur
ring in a baved beam. @ a good approximation, the wed beam can be thought of as
being in a state of pure bending.

Imagine a beam of rectangular cross section w by h, and with unstressed

F

Figure 7.5. Definition sich for luckling calculation.

length |, as shen in figure 7.5. If the beam is compressed by forces F applied to the
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ends such that the length after compression ig,lthen the xx component of the stress
(assuming that the x axis lies along the axis of the beam)is ¥ F/(wh) and the corre-
sponding strain component is,&= — dl. Since the sides of the beam are assumed to be
stress-free, we ha T,, = EyE,,, SO

IF
- 7.2
0= WhE, ’ (7.29)

and the potential engy of compression, IJ is

_ ExTyx lWh _ whE,&
- 2 20

U, (7.30)

In the alternate configuration in which the beam isdih as shon in

/

Y ~

Figure 7.6. Sktch of relationship between thefegtive shorteningd, of a
beam undeyoing huckling, and the radius of cuature, R, of the beam.

figure 7.6, we assume that the arc length of theeddobeam is unchanged from its
unstressedaltue of |, while the cord length across the arc isdl +f the arc is in the form
of a sgment of a circle of radius R, then from figure 766; I/(2R). Furthermore,
sin@= (I - 9)/(2R). Assuming only a slight boand epanding sird= 8- &/6, we find
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upon eliminatingdthat 5= 13/(24R). However, equation (7.22) relates the radius of-cur
vature of a bent beam to the tramse gradient of longitudinal normal stress, C, by
R = E/C. Eliminating R and solving for &yields C = 24E2J1°.

We nav compute the elastic potential egyelin boved state, . If z is the coordi-
nate across the beam in the plane of the bending, the potent@} ener

h/2 wi h/2
Up =Wl [ (ExTy/2)dz T T2dz =

-hi2 Y

wih®C? _ wh’Ey o
24E, 12

(7.31)

where we hee used T, = Cz.

Figure 7.7 summarizes these results. The potentiahgrmdrcompression is qua-
dratic in 4, and therefore starts out being less than the potentiajyeoEbaving, which
is linear ind. However, as the applied force, and hengeancreases, the compressional
potential endgy exceeds that for bwing at some point. Defining= & where the tw
are equal, we find that

o = 2K/, (7.32)
and the corresponding force
F" = 2E,wh®/1?. (7.33)

As the load slwly increases on the beam, the compressional mode isdficsed, since

it has the laver potential engy. However, asd exceedsd , the baving mode becomes
favored. Note that this can actually lead to catastropailufe of the beam. From the
work-enegy theorem, F @= d(total energy) = dU + dK, where U and K are respec-
tively the kinetic and potential emgges. The maximum force the beam can sustain in
static equilibrium (i. e., with K = 0) is thus dUddwhich undgoes an abrupt decrease at
d= 0. If the actual applied force doesnindego a corresponding decrease, static equi-
librium is no longer possible, and the beam rapidigktes and collapses. The question
of buckling is thus one that needs to beegi serious consideration in the design of struc-
tures.
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POTENTIAL ENERGY =U

compression

bowing

FORCE = dU/d 5

o

Figure 7.7. Potential ergy of a beam shortened by an amodninder the
influence of compresse forces on the ends, and the force required to maintain
this reduction in length. Note that at the transition from compressioncte b

ling atd= o, the required compressi force drops by attor of tvo.

Problems

1. Shav that the displacement field arising from torsion orylander (equation 7.9) is

equivoluminal.

2. Shav that the displacement field arising from the bending of a beam (equation 7.20) is

neither equioluminal nor irrotational.

3. In the special case in which the displacement field is irrotational, the displacement can
be represented as the gradient of a scalar, u = [ip Shav that equation (7.2) reduces
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to
(A +20)0%p- pU = const
in this case.

4. A cubical block of material of constant densiyand height h sits on a table under the
influence of graity. Assuming that the only applied traction is a uniform apgvnormal
traction applied to the bottom of the block by the table, determine the ulism® of
stress, strain, and displacement field in the block.

5. Compute the elastic potential egerin a glinder twisted through an angke The
cylinder has length | radius R, and shear modplus

6. Consider the Airy stress functigp= AxX°z in a beam thatxends indefinitely in the

ty directions, where A is a constant. The lateeaels of the beam are at x =0, a and
z =0, b. a) She thatgsatisfies the biharmonic equation. b) Compute the stress tensor
c) Compute the tractions that need to be applied to the latcakfof the beam to match
the stresses there.

7. We desire to makas long a beam as possible to supporvengtompressional force,
F. However, we are limited to a mass M of material of dengitgnd Youngs modulus
Ey. If the beam has a square cross-sectiony lang can it be made without danger of
buckling?
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Chapter 8 -- Newtonian Fluids

We nav beagin the study of fluid dynamics. At rest, a fluid haseay\simple stress
tensor T = — pl. This is a consequence of the inability of a fluid to support a shear stress
while at rest. There can be nd-dfagonal components of the stress tensor in these cir
cumstances, which is withe stress tensor must ¢éathe form of a scalar times the unit
tensor This scalar is minus the pressure, the minus sign being a matteradrdomn -- a
positive pressure corresponds to a compressional normal stress, whigatigene

A Newtonian fluid is an isotropic fluid that has a linear relationship between the rate
of strain and that part of the stress related to the motion of the fluid. As for isotropic elas-
tic media, tvo independent constants arefigignt to characterize this part of the stress-
strain relationship. Heever, unlike the case of ideal elastic media, we also need an

equation of state to define the static relationship between pressure and fluid density

In this chapter we first delop the Naier-Stokes equation, which is the specializa-
tion of Newvton’s second M to the case of a Mgonian fluid. VW then inesticate the
equations of state for twidealized cases, namely an incompressible fluid and an ideal
gas. W then learn about the role of egyein a Nevtonian fluid, and we study fluid stat-
ics, a subject that is much simpler than the statics of elastic media. Fvaligvesti-
gate when terms wolving viscosity and compressibility are important.

In chapter 3 we dered an equation for mass continuitylass continuity plays an
important role in fluid mechanics, and so equation (3.11),

@,

must be included in the set of equations to beesbin ay fluid dynamics problem.

Navier-Stokes Equation

The starting point for our discussion of thevid&Stokes equation is equation
(3.21),

dv
pa:[m'+ pB, (82)
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which results from considerations of continuity of momentum. The problem is then to
derive the motion-dependent part of the stress tensor in terms of theefloadty

A
VA
v
A
T /|
|
— l
h |
A
Y al X

Figure 8.1. Sktch of eperiment to determine the resistance of a fluid to

shearing deformation.

Figure 8.1 shas a sletch of an gperiment to determine the resistance of a fluid to a
shearing deformation. wio parallel plates, each of area A and separated by a distance h,
are moed relatve to each other with a speed v. If the plates are immersed in a fluid, it is
found that the fluid generates a drag force of magnitude F between the platenodt
fluids it is found (if the plates are §afently close together and not ming too fast rela-
tive to each other) that F is directly proportional to v and A, aversely proportional to
h. Itis also found that the fluid is linearly sheared between the plates, with fluid immedi-
ately adjacent to each plate wirgg at the speed of the plate.

Two lessons arise out of thigperiment. First, it shes that fluids obg what is
known as a no-slip boundary condition -- fluid adjacent to aasarfnees with the sur
face. Second, it sins that a linear relationship holds between the shear stress and the
fluid shear in unidirectional fla:

ov
= TXZ = X

= 'HE . (8.3)

F
A

The constant of proportionaljty,, is called the co@€ient of viscosity, or simply the



-94-

viscosity for short, and is not to be confused with the shear modulus of elastic body
mechanics.

The sheardv,/dz, can be related to a component of the rate of strain, sjircé in
this case: 0y/0z = 2D,,. Thus, equation (8.3) can also be writteg ¥ 2uD,,.

Generalization of this relationship to arbitrarywflpatterns of an isotropic fluid can
be accomplished in the samawthat we devied the stress-strain relationship for iso-
tropic, elastic solids. In particulaif we assume a general linear relationship between
components of the stress tensor and components of the rate of strainttensondition
of isotropy forces this into a tensor relationshipotving only two arbitrary constantg/
andn:

Tij = — poj + (1 — 2u3)3; Dy + 2UDj; . (8.4)
The first term on the right side of the abeequation represents the conitibn from the
fluid at rest. Furthermore, the xz component of this equation isvagot to equation
(8.3) for the special case of sheared unidirectional. fldowever, the equation contains
an additional term that does®@nter into the static case, or in the case in which fluid ele-
ments dort change theirelume. This term imolves the constang, which is sometimes
called the second cdigfient of viscosity. Since the trace of the rate of strain tensor is the
fractional rate of change of thelume of a parcel, which in turn is minus the fractional
rate of change of parcel densitgking the trace of equation (8.4) results in

dinpn
~T./3= 50 +n dtpD' (8.5)

The quantity p is the thermodynamic pressure that appears in such things as the
ideal gas lav. We see thaty is a measure of the ddrence between minus the mean-nor
mal stress, —;l/3, and the pressure in situations in which a fluid is compressing or
expanding. In particularwhen a fluid is compressing, ddfdt > 0, and minus the mean
normal stress is enhanceaeo p as long agsy is positve. This preides additional
resistence to compression. On the other hand, whep/dtls O, the fluid is ¥panding,
and then term opposes the pressure invitig the &pansion. The ééct of 7 is therefore
to introduce dissipation intaxpansions and contractions of fluids, jusfuasauses dissi-
pation in shearing motions. The quantitatefects of these terms on fluid mechanical

enegy will be explored later in this chaptefThe codficient of the second term on the
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right side of equation (8.4) is written gs- 21/3 simply to isolate the twefects from

each other

Equation (8.4) may be written in terms of thedocities as follas:

_ [ﬁVi an Il _ aVk
le = pdj +'Ll|$7] + a_XID+ (I] 2/,#3) a_)(k dj . (86)

Substituting this into equation (8.2) yields, after a bit of xnaknipulation,

dv

pgr =~ Tp— (n+p3)IV]+ LTV +pB. (8.7)

This is called the Naer-Stokes equation, and forms the basis of fluid dynamias. aF

fluid that is incompressible, [TV = 0, and the ternvaiving 1 + /3 vanishes.

Equations of State

Strictly speaking, no matter is incompressible.wieer, it is sometimes a good
approximation, particularly for liquids, to assume that incompressibility holds. As noted

in chapter 3, the condition of incompressibility is simply

dp _0dp _
a_a+vE|]p—0, (8.8)
and mass continuity becomes
[(v=0. (8.9)

Equations (8.7), (8.8), and (8.9) imposeesfisonstraints (in three dimensions), and are
therefore siicient to sole for the fie unknavns \, vy, v;, p, andp. When the fluid is
not only incompressible,ub also homogeneous, the densityis constant, equation (8.8)
becomes tuiial, and we hee four equations in four unkmms. This is the simplest of all

fluid dynamical situations, and is applicable in snaases of flaving liquids.

When the fluid is an ideabg, we must hee recourse to thermodynamics. The ideal

gas lav for awlume V of @s is
pV = nRT , (8.10)

where p is the pressure, T is the temperature, n is the number of molas,adrgd R is
the gas constant. This can be written morewveorently for fluid dynamical applications
by dividing both sides by the mass M of the parcelas:g



: (8.11)

where MY is recognized as the densigy and m = M/n is the mass per mole a@fsg or

the molecular weight. Equation (8.11) introduces one additional constraint on the solu-
tion, but unfortunately also introduces amneariable, the temperature. Since the temper
ature itself canary in a compressible fluid fAg yet another constraint is needed.

The first and secondve of thermodynamics pvale an approximate answer that is
valid in mary situations. The first {& relates the heat added to a parcel, dQ, and the
work done by it, dW, to the change in internal gpeaU:

dU = dQ - dW . (8.12)

For reversible changes, theonk done by a parcel ofag is simply dW = p dV, where dV
is the change in parceblume, while the heat added is related to the change in gntrop
dS, of the parcel by dQ =T dS. The change in internabgrafran ideal gs is related

to the temperature change by dU =,idI, where ¢ is the specific heat of theag at
constant elume per unit mass and M isaag the mass of the parcel.

If ds = dS/M is the entrgpchange per mole, or specific ey, equation can be
solved for ds and written in the form

T _Rde (8.13)

s=CGT 4 0

where equation (8.11) has beewaked. This is in the form of anxact diferential, and
can be intgrated to

s=5+C,In(T/To) =~ In(oiy) (8.14)

where g is the specific entrgpat temperature gland densityp,. The temperature can
further be eliminated between equations (8.11) and (8.14) resulting in

s =g +C,In(p/po) — CpIn(olpp) (8.15)
where p = RTyop/m and G, = C, + R/m is the specific heat at constant pressure.

The second la of thermodynamics states that the engropa closed system wer
decreases. Furthermore, if parcel transformations are close to beergibée adiabatic,
and if very little heat flavs into or out of parcels, entrpjs nearly conseed. Thus, we

can often use the approximate equation
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ds o0s
a_E+VEI3~O (8.16)

to describe thewplution of the field of specific entrgp In this case equations (8.1),
(8.7), (8.15), and (8.16) represent six constraints on the six wnkng, vy, v,, p, o,
and s.

Kinetic Energy in Fluids

In elastic body mechanics the only sources of ggnerre the applied tractions.
Stress forces simply redistute enegy within the elastic material, and in the elastic ide-
alization there is no dissipation or interaction with internal (i. e., thermalyen&he
situation is ery different in fluid mechanics. The pressure part of the stress radistrib
enepy as in elastic body mechanicsit the viscous parts cause dissipation of mechanical
enegy into heat. In addition, internal eggrcan be corerted into mechanical ergr
via the pressure part of the stress. Indeed, if this wiesenheat engines such as steam
turbines and automobile engine®wdn't work. Accounting for engy flows is thus
more complicated in fluid dynamics than it is in elastic body mechanics.

We are able to learn a great deal aboutgnftows in Nevtonian fluids by deelop-
ing an equation for theubiget of kinetic engy. We do this by dotting equation (8.2)
with the \elocity and then manipulating it into a useful form with the use of equation
(8.4) and (4.24). Wo tricks are used in this deation. First of all, v [@(dv/dt) can be
written pd(v V/2)/dt =pd (V/2)/dt. Hovever, since mass continuity states that
do/dt + p[I¥ = 0, we can multiply the left side of this equation by/2 and add it to the

above term without changing itsalue:
p% + (V2/2) dd—f + (V22)py =

d(pv?/2)
dt

+ (V?/2)py =

(pv?/2)
ot

+v [0 pv?/2) + (VI2)py =

o(pv’/2)

P [T( pv2I2)v] . (8.17)

We recognizepv?/2 as the kinetic engy density and @v?/2)v as the flux of kinetic
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enegy via mass transport. It is therefore clear that this process is going to lead to a conti-

nuity equation for kinetic engy.

The second kind of trick is used on terms elikvIp. Since
[(IVvp = v [Ip + pllV, we can write

vIp=[OVp - plv. (8.18)
Similar tricks can be performed on the viscosity terms, with the final result that

a(pv/2)
ot

+ I( pvI2)v + pv = ilv 212) = (7 + p3)(TV)V] =

P(CY) = HN| 2 = (+p3)(V)  + pv [B. (8.19)

Let us nav try to understand this equation. The first term on the left side is simply
the time rate of change of kinetic egerdensity at a point. The terms inside the square
braclets constitute a kinetic emgr flux, the dvergence of which leads to the deposition
or remwal of kinetic enggy. The important point is that these terms simplyvadinetic
enegy around without creating or destnog it. This can be shln by integrating equa-
tion (8.19) wer some wlume and applying thed@rgence theorem:

%J’(pVZIZ)dV+J'[---]EhdA:---. (8.20)

This states that the time detive of the wlume intgral of the kinetic engly density i.
e., the time rate of change of the total kinetic gynén the wlume, is only d&cted by the
contents of the square bratk at the suaice bounding theolume. Furthermore, the
integrand of the sudce intgral is simply the component of the kinetic agyeflux paral-
lel to the unit normal, n.

The kinetic enagy flux is much more complicated than the mass flux because
kinetic enegy can be corerted to and from other types of emer The first term within
the square braeks in equation (8.19) is simply mass transport of kineticggnefow-
ever the second term,valving the pressure, corresponds to transport associated with
work done by one part of the fluid on another by the pressure force. The third and fourth
terms representevk done on one part of the fluid by another via the viscous stresses.

The right side of equation (8.19) represents/svin which kinetic engy may be
added to or subtracted from alwme of fluid other than by flang through the alls of
the wlume. Since [1V is the fractional time rate of change of parcelume, the first
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term on the right side is simplyork per unit wlume done by pressure forces, and repre-
sents cowersion of internal engy into kinetic enayy. An example wuld be the free
expansion of a gs released from a container intoa@wwum. The second and third terms
involving the two coeficients of viscosity are afys n@ative, and represent dissipation
of kinetic enegy into heat. The fourth term is simply thenk done by eternal body
forces on the fluid.

The enegy budget is simpler if the fluid is incompressible. Setting [TV = 0 elimi-
nates all g&cts of the second cdelient of viscosity More importantlyit eliminates the
possibility of cowerting internal engly into mechanical engy, since the first term on
the right side of equation (8.19) themamshes. This marks the primary feifence

between compressible and incompressible.flo

Statics of Fluids

The static behaor of fluids is much simpler than the static baba of elastic
media. This is due to the inability of ordinary fluids to sustain a shear stress in static
equilibrium, and the consequent reduction of the stress tensorety aimple form. In

static equilibrium mass continuity isvially satisfied and the N#&r-Stokes equation

reduces to
b= pB. (8.21)
For the case in which B is deable from a potential U, equation (8.21) becomes
b=- pU. (8.22)

For a homogeneous, incompressible fluid in wheés a constant, this reduces to
p=-pU+p, (constantdensity), (8.23)

where p is the pressure where U = 0. Thus, the pressure is greater deeper in the poten-
tial well, and the pressure gradient force balances the body foocehd-case of a con-
stant graitational field, U = gz, equation (8.23) reduces to the usual elementdrg-h

static relationship for a fluid of constant density

The lav of Archimedes specifies the upml luoyancy foce on a body immersed in
a constant density fluid in a uniform gitational field as the weight of the displaced
fluid. This is easy to dere from our knwledge of the stress tensoAs figure 8.2
shaws, the traction of the fluid on the body is simply t = T [h = — pn, where n is the unit
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dA

TL[h

Figure 8.2. lllustration of the tractiorestor T [h, in a fluid at rest. This rep-
resents a normal compressional force on the fluid.

normal \ector pointing outard from the suefce of the body The total stress force on
the body is thus

F:—IpndA:—IplmdA:J'(pgz—n))IEhdA. (8.24)
Applying the dvergence theorem to the right side of this equation yields

F=[ (g pz - m)dV = govk, (8.25)

where V is the glume of the body Since gV is the weight of fluid with elume equal

to the wlume of the bodyArchimedes’ lav is verified.

When a fluid is not of constant densigguation (8.22) is not irgeated so easily
However, taking the curl of this equation she that

Opx@ =0. (8.26)

In other words, surfices of constant density and potential mwsryavhere coincide.

From equation (8.22), the pressure gradient and potential gradient are parallel, so these
surfaces are also sades of constant pressure. Thus, pressure and density can be written
as functions of potential alone: p =l p= p(U). Finally, the density may be written

as a function of pressure alone as wek: p(p).
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In mary cases, these functions will be singbdued. Haovever, if isolated potential
wells «ist, than separate pressure-density-potential relationshipsxisrfoe the sepa-

rate wells. Br instance, imagine the situation

S5

normal density high density «

Figure 8.3. Contours of constant density of a fluid at rest in a container with an
undulating bottom. Fluid parcels at the samellén “valleys” isolated from
each other can ke different densities. This cannot occur for parcelsraltbe

“ridgeline”.

shawvn in figure 8.3, in which a fluid ofaviable density is bounded underneath by an
undulating suidice. The horizontal lines represent agds of constant pressure, and their
spacing is igersely proportional to the fluid density according to equation (8.22)veAbo

the undulating bottom the spacing of pressureased doesh'vary horizontally How-

ever, within different depressions in the bottom, the spacing of constant pressaesurf

and the consequent density different. For example, if we are talking about the ocean,

the right depression in figure 8.3 may contaitreamely saline \&ter from a sub-oceanic
spring, whereas the left depression contains ordinary ocaten Wensity is greater with
higher salinity and there is a greater increase in pressure with depth in the right depres-

sion.
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For an ideal gs, if density and pressure are constant oracesfof constant poten-
tial, the temperature and entyomust also be constant on these aues, since both these
guantities are uniquely specified by the pressure and defsityan ideal gs at constant
temperature, the ideahg lav, given by equation (8.11), may be combined with equation
(8.22) to yield

mp
=- — U, 8.27
P RT ( )
which may be intgrated to yield
= [y ex H_ —U H T = constant (8.28)
P= Po”RTD - ’ '

where p is agin the pressure at U = 0. If U = gz, then the pressure decreqeesen-
tially with height in proportion to»@( — z/z), where z= RT/(mg) is called the scale
height.

Reynolds Number

Under some circumstances the viscous terms in tiveeN&tokes equations (i. e.,
those iwolving ¢ and i) can be ignored, whereas in other circumstancesdbminate
the evolution of the flav. The art of deciding when certain terms can be safely discarded
in the Naier-Stokes equations is aided by a process of estimation called scale analysis.
In this process, dependerdariables are replaced by estimates of their typiahle; and
space and time desdtives are replaced by thevarse of estimates of typical space and
time scales respeeély. The magnitudes ofarious terms in the equation of interest are

then compared.

Let us irvestigate the magnitude ofwious terms in the N&r-Stokes equation for a
homogeneous, incompressible fluid, i. e., one with [I¥ = 0 gndonstant. Ignoring

body forces, equation (8.7) becomes

dv
pPg = MOV (8.29)
If velocities hae a typical magnitude of V, and thevflstructure of interest has a spatial
scale L, the time for a parcel to &dv through the flo pattern is of order T = M. If
this is the characteristic time scale of thevflpattern, then the ratio of the acceleration
and viscous terms in equation (8.29) is
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R is a dimensionless number called thgridds number after Osborne yRelds, a 19th
century British scientist and engineéf R > 1, viscous terms can be ignored, whereas if

R < 1, the acceleration can begtexted.

Notice all the ceeats in this estimation process. The conditions of incompressibil-
ity and absence of body forces are easily ndpas is the constant density condition.
However, these conditions do indicate that the notion ofrieéds number does apply pri-
marily in those instances in which the essential character of thelles not depend on
compressibility or the »stence of gternal forces. More important is the notion that
there is only one length scale in the problem, a condition that is easily and frequently vio-
lated. Under these circumstances the appropriate length is some combination af the tw
or more length scales in the problem. Altenely, it may be appropriate to define multi-
ple Rg/nolds numbers. Finallyhere is the assumption that the primary source of tempo-
ral variation in the elocity of parcels of fluid is m@ment of the fluid through some
established fl pattern. This assumption can be violated in at least aye Mvthe flow
is evolving on a time scale more rapidly tharVl.the ratio of the acceleration and vis-
cous terms will be Iger than indicated by the Reolds number as cwantionally
defined. An gample of this wuld be agy wave phenomenon in which theave speed,

C, is much greater than the material speed, V. In this case, a better estimate of the ratio
of the two terms wuld be R 50CL/u.

The typical instance in which twlength scales are important is where fluivfidoy
a rigid body Figure 8.4 shas flov past a thin plate that is aligned with thenfloThe
flow is parallel &r upstream and has a uniform speed V therew Rear the plate is not
uniform because fluid immediately adjacent to the stationary plate nugszéie eloc-
ity. A sheared flov ensues near the plate, resulting in a tangential viscous stress, which
slows the fluid in the vicinity of the plate. Thegien of thickness D in which the fluid
has been significantly si@d as called the boundary layer. In order for this to happen,
the mean deceleration of parcels asythmass by the plate must be of order
V/IT =VI(LN) = V?/L, where L is the distance from the point under consideration to the
front of the plate. If this deceleration is caused primarily by the viscous force, then this
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Figure 8.4. Initially uniform flav past a flat plate aligned with thewlo A
boundary layer forms méto the plate, in which the fluidelocity is reduced
from its initial value. The boundary layer thieks with increasing distance
behind the leading edge of the plate.

force must be equated to the deceleration. In otledsy the ratio of acceleration to vis-

cous force per unit mass, which is precisely thgn@kls numbermust be of order one.

The viscous force per unit mass may be estimategd/ {»pD?), since the strongest
gradients, which contriie most hedly to 02 are perpendicular to the plate. The
Reynolds number therefore becomes
_ pVD?

uL

in this case. Setting R =1 alls us to use equation (8.31) to estimate the depth of the

R

(8.31)
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boundary layer as a function of distance back from the leading edge of the plate:
. 2 42
TovO
The boundary layer thickness increases as the square root of L, as indicated in figure
(8.4).

(8.32)

Two lessons can be learned from thewv&banalyses. First, it is not safe to pick
length, time, or glocity scales arbitrarijyplug them into equation (8.30), anxpect the
resulting Rgnolds number to mean yhing. Some thought has to bevgn as to ha
changes in parcelelocity actually come about in order to define griRéds number that
truly reflects the importance of viscosityhe second lesson is that in estimating tae v
ues of \ariables, dort’ worry about numerical coiefients. For instance, in the abe
estimation of the parcel deceleration as it passes the plate/etiagea elocity would be
somavhat less than the free streaelocity, V. The transit time, T, ould therefore be
someavhat greater than W/ This defect could in principle be rectified by inserting a
numerical codicient of the proper size in equation (8.31)f ti would not be wrth the
effort. The purpose of scale analysis is to obtain the functional form of relationships, for
example, the square root dependence of D on L. Obtaining numerichtierg$ should

be left to computers.

Sound Waves in an ldeal Gas and Mach Number

We nav obtain a solution to the Ner-Stokes equation for small amplitude sound
waves in a homogeneous ideasgthat is otherwise at rest. This will then lead to a scale
analysis that neeals when the compressibility of aggneeds to be consideredor lRav
we ignore the éécts of viscositywhich tend to be small in marcases imolving gas
flow.

A homogeneous idealag will have constant entrgp If the entroly is constant,
equation (8.15) can be sel¥ for the pressure in terms of the density and a constant K

containing the entrgp

0=Kp. (8.33)

The constany= C,/C, is the ratio of the specific heats at constant pressure and at con-
stant wlume for the gs. It respectely takes on the alues 1.67 and 1.4 for ideal
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monatomic and diatomicages.

Ignoring viscosity and body forces, theuia-Stokes equation (8.7) tak the form

dv _yp . _
Gt =0 (8.34)

where y =Inp, and pressure has been eliminated avoif of density using equation
(8.33). In dening this equation, we ka used [p =y’ 'K Op and then eliminated K
using equation (8.33) am. Similarly the mass continuity equation can be written in
terms ofy as

dy
— + [V =0. .
it + 0 (8.35)

In both these equations the relationship=dd In p = dp/p has been used.

For small amplitude soundawes in a medium at rest, parcels of fluid will notvao
far from their original positions. Therefore, the total timedgkies can be replaced by
partial devatives. Also, deiations in pressure and density from constant ambiat v
ues, @ andg,, will not be lage, so we can sep/p = ypo/py = ¢ The resulting equa-
tions

A cOy=0 (8.36)
ot
Z—)t( +0V=0 (8.37)

are linear with constant cdiients, and can be combined into a single equatioyy fyr
taking the drergence of equation (8.36) and eliminating [TV with equation (8.37):

’x 2M2., —

This is simply the \ave equation for aves with speed c. Note that using the ideas g

law, ¢ = (/RT,/m)*2, where T is the ambient temperature of thagy

Note that from equation (8.36) we find that
v:—IczD)(dt:—DJ'cz)(dt. (8.39)

The flov due to sound aves is therefore irrotational, as it is dexd from a scalar poten-
tial. Thus, as for irrotational seismic ames, plane sound awves are longitudinal.
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Furthermore, sound aves are fundamentally dependent on gynéransfers due to com-

pression, and therefore canngisein an incompressible medium.

The enegy equation (8.19) helps us understand the velathportance of compres-
sional efects in fluids. In a fluid with no body forces andjingible viscosity this equa-
tion can be written

a(pv?/2) _ o dy

+TA =
at Pt

(8.40)

with the help of equation (8.35), where Agvt/2 + p)v represents transfer of kinetic
enegy from parcel to parcel in the fluid by mass transport and pressure forces. Since this
term simply meoes eneagy around, intgration aver the entire @lume of fluid dispenses

with it, leaving pressure wrk as the only source of kinetic eggr If N is an estimate of

fluid density P of pressure, V ofelocity, and X of the log density &ition, x, then
equation (8.40) implies

NVZ P
— = 8.41
T T ( )
where T is the characteristic time scale of the/florhus,
NVZ V2
X=—=— =M?, 8.42
P c? (8.42)

where we hee used the result that the square of the sound speegpéo. The dimen-
sionless quantity M =V/c is called the Mach numbdrM << 1, the abwe equation
shaws that the fractional compression angb@nsion occurring in an ideaag is small.
Under these circumstances it ialid to assume that the Wois incompressible ven
though the fluid is a highly compressiblasg ecept, of course, when consideration of

sound vaves is &plicitly desired.

Problems
1. Derive equation (8.19) using the hints presented in ttte te

2. A sphere of gs in space is initially at rest and has initial radius R, mass M, and pres-
sure p. After it @pands 1% in @lume, find the total kinetic erggr and the root mean
squared zerage fluid elocity. Ignore viscous éécts and body forces. (Hint: Inpeate

the kinetic enggy equation wer a wlume lager than the ®ume of the sphere, noting

that the kinetic engy flux is zero at the boundary of thislume. fr a 1% &pansion
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the change in pressure and density can be ignoredth& purposes of this problem you
may assume that the pressure is uniform inside the spheas,@rgl zero outside it.)

3. Derve the lydrostatic pressure as a function of height for an ideslof constant spe-
cific entropy, s, in a constant gvdational field.

4. If a small parcel of gs in an isothermal atmosphere in a constantitgtenal field
undegoes an adiabaticevtical displacement, shothat the resultant ofumyang/ and
gravity forces act to return the parcel to its initiatde If these are the only twforces
acting, find the frequegcof small \ertical oscillations of a parcel about its equilibrium
level. (Hint: Assume that the pressure in the parcel is the same as that in the surrounding
gas at the samevel, and note that both the density of the parcel and the surrourading g
change with height.)

5. Assume that a spherical planet of radius a andaserfraity g has an isothermal at-
mosphere of temperature T and molecular weight m. If thesaipressure isgpfind

the pressure as a function of height. Does the pressure go to zero an infinite distance
from the planet?

6. Assume that some fluid flohas characteristic space and time scales L and T, and a
characteristic ®locity V. (Dont necessarily assume that V =Ly Do a scale analysis
on the tvo parts of the parcel acceleration,

— +v IV,
ot

and define a dimensionless number A which is the ratio of the timeatlegi part to the
space deviative part. Under what circumstances may one or the other of these terms be

neglected?

7. A liquid compresses slightly under thefesft of pressure, with the relationship
0= po+ Kp, Wherek is a constant, p is the pressupeis the densityandp, is the den-
sity at zero pressure. Find the speed of sound in this liquid. (Hou:wMl need to red-
erive equation (8.34) for the wepressure-density relation.)
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Chapter 9 -- Creeping Flav

In the preious chapter we diseered that the ternp(dv/dt) can be ignored when
the Renolds number is ey much less than unityln this circumstance, the Ner-
Stokes equation reduces to the simple relationship

p= (v, (9.1)

where we hee ignored body forces and the viscous termsliing [(IV. F or most cases
of creeping flay, this is justified, since the fluid can be considered incompressible, thus
making the continuity equation

Mv=0. (9.2)

Low Reynolds number fiw is often called creeping fAg since in most\ery day &am-

ples the fluid tends to ooze along, such as when pouring syrup out of a bottle.

Plane Couette Flov

The simplest xxample of creeping fl® occurs when fluid is confined to a channel
between tw parallel plates, one of which is stationattye other maeing. Figure 9.1
shavs the configuration with tovplates separated by a distance d and the upper plate is
moving at a speedgyv The flav velocity in this case changes from thelocity of the
lower plate (zero) to that of the upper plate as one crosses the channel, due to the no-slip
boundary condition, i. e.,

vV = Vp(z/d)i . (9.3)
In this example, the flar requires no pressure gradient tovdrit. Under the condition
(b = 0 it is easy to \erify that equation (9.3) satisfies equations (9.1) and (9.2).

The strain rate tensor associated with this/ fls easily calculated from equation
(4.24) to be

0 0 0 VO/ZdD
Dj=0 0 0 0 [ (9.4)
Ove/2d 0 0 U

Using equation (8.4), we then find the stress tensor in the fluid:
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Figure 9.1. Creeping flo between tw parallel plates, one of which is mo
ing.

o O 0 wv/d
T,=0 0 0 0 [ (9.5)
Omgd 0 o0 O
The pressure has been ignored, since ypothesis it is constant. It is clear from the
above equation that the upper plateeds a tangential traction t zaf/d)i, on the fluid,
which is consistent with equation (8.3).

Pipe Flov

A somevhat more comple flow occurs when a pressure gradienvesia viscous
fluid through a pipe of circular cross-section. As figure 9.2 illustrates, creepmg flo
under these circumstances is parallel to the axis of the pipe, with ele@ty at the
walls of the pipe and maximunebcity on the axis. Defining aylindrical coordinate
system, (r,6, z), with its z axis aligned with the axis of the pipe, and assuming that the

velocity points only in the z direction and is a function of r alone, then

00
2 = _ =
v gar r ae azmiﬁ o 1 ae Rz Nk
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Figure 9.2. S&tch of laminar flv through a pipe of radius R.

9, k d g dv,0

EBr2 r ar d/Z() rdrQJ dr O (9.6)

Assuming that the only pressure gradient is a uniformly decreasing one in the z direction,
the left side of equation (9.1) becomes

(b = - ak = constant . (9.7)
Equation (9.1) is therefore
which integrates to
ar?
vz=—4—y+AInr+B, (9.9)

where A and B are constants of igitation. This elocity satisfies mass continyisince
there are no elocity components normal to the axis of the pipe, and sinds not a
function of z.

We rule out infinite glocity on the pipe axis on péical grounds, and therefore set
A = 0. Adjusting B so that,¥R) = 0 results in the final solution
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v,(r) = a(R% - r)/(44) . (9.10)

The wlume flav rate, F, through the pipe is simply mtegrated oer the cross-sec-
tion of the pipe:

21 R R
4 271 maR?

_ _ </a 2 _ .2 -
F-!!vzrdr dé= 4:“£(R r<) rdr 8 (9.11)

Note that this flev rate is ery sensitre to the diameter of the pipe, with a doubling of
pipe diameter yielding aattor of 16 increase in fiorate for a gien pressure gradient
and viscosity Note also that the fle rate is a linear function of pressure gradient.

Flow in Porous Media

The undeground flav of water or oil is anxample of creeping fle. In this case
the fluid is meing slovly through small pores in the rock, resulting in anflaith
extremely small Rgnolds number Such a flav is quite comple in detail, lut may be
relatvely simple in someweraged sense.

Generally speaking, gray must be considered in the ungeyund flav of fluids.

Thus, equation (9.1) becomes

b= pd?v - pgk, (9.12)
where g is the acceleration of gigy, assumed to act in thegative z direction. In the

case of a homogeneous fluid in which the densitya constant independent of position,
equation (9.12) may be written

[p + g pz) = 0%V . (9.13)

The quantity h = p + gz, or something closely related, is generally called the total head.
As we hae defined it, it is the pressure with thedlostatic lirden of the werlying fluid
subtracted. When gviy is present, creeping flooccurs when a gradient of head rather
than of pressure occurs. (See problem 5.) The pipesgtample &plored abge may be
solved with graity present simply by replacing the pressure gradient with the head gradi-
ent.

For flow in porous media, theolume flux of fluid, g, is normally considered to be
the most interesting obseaie. g [h is the wlume of fluid per unit area per unit time

passing through a sade with unit normal n. This has the same unitselsaity, but is
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less than the spatiallweraged fluid locity by a &ctore, the poosity, because the fluid
only occupies the pores in the medium. The porosity is defined asithgolume in a
medium dvided by the total @lume.

Darg/’s Law is an empirical k&, established by observing theWlof water through

a bed of sand, that relates g to the head gradient:

Kk
g=—--—[0. (9.14)
u
The constant k is called the permeability, and has the units of length squared. It plays the
role of a fluid conductvity’’, i. e., the lager its \alue, the greater the fluid Wofor a

given head gradient and viscositiyjor an incompressible fluid, theme flux obgs
[Tg=0. (9.15)

A simple flov model will sere to clarify the piasical basis of Dakcs

XA

Figure 9.3. Flw through a porous medium idealized asvftbrough a parallel
array of pipes.

Law. Consider a block of solid material, as shoin figure 9.3. The block has numerous
holes of radius R drilled through it, amounting to N holes per unit area in the x — y plane.
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We consider the fle of a fluid with viscosityu and densityp through these holes subject
to a head gradient in the z direction dh/0z @.— The wlume flav for each hole is

rmaR?/8ufor each hole. Thealume flux in the z direction is just N times this, or

_NmaR* _ eR? oh

8u 8u 0z’

(9.16)

z

where = N7iR? is the fractional area in the x — y planeveged by holes, or just the
porosity The permeability is\édently k =£R?/8 in this case, as comparison with the z
component of equation (9.14) st& For a gven porosity equation (9.16) shes that
bigger holes result in more ¥lofor a gven head gradient, since the permeability then
scales with the square of hole radius.

Real porous media i@ much more compkeflow channels than thexample of fig-
ure 9.3. Hwvever, a scale analysis of equation (9.13) leads to the same conclusion. The
Laplacian of the elocity in this equation will be of order V7= Q/(cL?) where L is a
characteristic pore dimension, V is a characteristic fleldaity, and Q =&V is an esti-
mate of the glume flux. Equation (9.13) therefore becomes (inva@naed sense)

__¢cu
n=- La, (9.17)

where C is a numerical constant of order unifjhe minus sign arises because the cross
channel second dedtive of the elocity arising from the Laplacian is gegive for a posi-

tive flov with zero elocity on the boundaries of the channel. Identifying & %C as

the permeability mads equations (9.14) and (9.17) identical. Thus, for a pore pattern of
the same shapeubscaled den by a &ctor of two, the permeability wuld be decreased

by a factor of four

Actually, the porous medium illustrated in figure 9.3 is saneple of an anisotropic
medium, in the sense that fluid canwaahrough it in only one direction. The usual form
of Darg/’s lav shawvn in equation (9.14) assumes that the medium is isotropic. A-gener
alization of Darg’s law that tales anisotrop into account is

1
=--K0Oh. 9.18
a=- (9.18)

The permeability becomes a symmetric tengoiin this formulation, and the fluid flo
is not necessarily in the direction of minus the head gradiemt.tHé unidirectional
medium of figure 9.3, we ould have
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00 0 0 [
Ki=g0 0 0 [ (9.19)
Uo o0 er8 U
It is clear that a head gradient in the x or y directiaule result in no flav for the
medium of figure 9.3. This is easilgnfied by substituting equation (9.19) into equation

(9.18).
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Figure 9.4. Wo horizontal layers of soil with déring thickness and perme-

ability. (See problem 7.)

1. From equation (8.19) we see that the ggpatissipated per unitolume per unit time
by viscous forces in an incompressible fluid is
Praads
D?XJ aXJ O
Using this result, shv that the wrk per unit time done by the wiag plate in plane
Couette flav just balances the viscous dissipation in the fluid between the plates.
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2. Shov that equation (8.19) is satisfied in the case of Couettebijoa balance between
the last term in square brastk on the left side of the equal sign and the term considered
in problem 1.

3. Sole the incompressible Couettevilgroblem (i. e., the fls between tw parallel
plates with one plate mtng) for the situation in which a pressure gradient
dp/ox = —a = constant gists between the plates. When theoeity of both plates is
zero, this is called plane Poiseuillewlolt is the slab-symmetric analog of pipewio

4. Find the strain rate and stress tensors for pips. fi(Hint: You can obtain these in
Cartesian coordinates by realizing thatrx? + y?, where x and y are the Cartesiaesix
normal to the axis of the pipe.) Using the stress teshaw that the force per unit length
exerted by the pipe on the fluid just counterbalances the pressure gradgnaté@uerer
the cross-section of the pipe.

5. Shav that for a fluid of constant density at rest, the total head is constant.

6. Prose equation (9.15) from first principles. Whwouldn't a version of (9.15) with q
replaced by a spatially smootheélacity work? (Hint: Suppose that the porositgned
from place to place.)

7. Consider flav of water dovnward through tw horizontal layers of saturated soil, the
upper layer hang thickness ¢ and permeability k the laver layer with thickness and
permeability g and k. (See figure 9.4) If the total head ig &t z = 0, find the head at
all levels in the soil. Assume that the pressure is the same biedobottom layer as it is
above the top layer

8. Gwen the permeability tensor in equation (9.19), find the fior a head gradient
(h = — A[cos(a)i + sin(a)k], where A andr are constants. What is the component of the
flow in the direction of the head gradient?
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Chapter 10 -- High Reynolds Number Flov

When the Rgnolds number isery lage it is reasonable to assume that the viscous
terms in the Naer-Stokes equation can be ignored.eWaw explore the consequences
of this assumption. When a fluid is in contact with a solidaserfwe will find that the
assumption is not strictly defensible. Wiwver, it remains a useful approximation under

mary circumstances.

When the viscous terms are dropped, theid&te&Stokes equation reduces to the
Euler equation,

p%’ =-{p+ pEB. (10.1)

Since terms wolving second order spatial deatives hae been ignored, the boundary
conditions needed to insure a uniqgugptal solution are changed. The no slip bound-
ary conditions required for the Mar-Stokes equation werconstrain the Euler equation,
resulting in no solution in most circumstances. It turns out that free slip boundary condi-
tions are appropriate for the case in which viscosity is ignoregsid¢atly, this means

that the only constraint on a fluid adjacent to a solid boundary is that the fluidwot flo
through the boundaryFlow tangent to the boundary is unconstrained. Mathematically
the free slip condition may be written

(V-vg)[h=0, (10.2)

where v is the fluid glocity, vg is the \elocity of the bounding swate (often zero), and n
is the unit normal to the bounding sacé.

Figure 10.1 illustrates the flonext to a plate for lage, small, and no viscosityhe
sheared @on near the plate in the firstaveases is called a boundary |lgyes discussed
in chapter 8. Other things being equal, as viscosity decreases, the boundary layer
becomes thinnerHowever, the shear in the boundary layer becomes strofegeing the
product of the shear and the boundary layer thickness the same. Thus, as long as there is
ary viscosity no matter hew small, there will be a thin sheared boundary layére third
case in figure 10.1, in which the viscosity is identically zero, is quiterelift. Since the
boundary condition here is free slip, no shear layste
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Y

large
viscosity

small
viscosity

no viscosity
(free slip)

Figure 10.1. lllustration of flw parallel to a flat plate in the case ofguvis-
cosity small viscosity and no viscosity The last case dérs fundamentally
from the other tw in that no layer of orticity exists at or just abe the swr

face.

The distinction between aky thin shear layer near the ¢ and no shear layer
may seem tvial, and so it is as long as fluid adjacent to theaserhger departs from it.
However, as we shall see, the distinction is crucial when the phenomenon of flow-separ
tion occurs. In the case of small viscositiie shear layer is sometimes strippacya
from the surdce and transported into the interior of the fluid, where it has significant

dynamical consequences. Awistid fluid has no shear layevadlable for transport into
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the interior

In order to obtain a better understanding of these matters, weeidethe concepts
of vorticity and circulation. W then study Bernoul8’ equation and irrotational .
Finally, we use these tools tovestigate flav in the presence of solid sades.

Kelvin’s Theorem

In chapter 4 thearticity was introduced as twice the duaictor of the rotation rate

tensor and it wvas shan to be equal to the curl of thelacity:
WKV . (10.3)

The \orticity plays a crucial role in high Reolds number fluid dynamics.

A closely related quantityhe ciculation, is defined
FszEdI, (10.4)

where the intgral is a line intgral around a closed loop. The circulation around a loop is
therefore theaerage alue of the component of thelecity tangent to the loop times the
circumference of the loop. Figure 10.2 illustrates streamlines ofvgpittern, a circula-
tion loop, and the elocity v and line element dlectors at one point on the circulation
loop.

The relationship with erticity comes from applying Stek’ theorem to equation
(10.4):

I‘:IDEVEhdA: ImEhdA=c_uhA. (10.5)

The intgyral is nav an area intgral over the surdce (actuallyary of the mag suriaces)
bounded by the circulation loop. Since n is the unit normal to theasair{see figure
10.2), the intgral picks out the component adnicity normal to the suaice. Ifw, is the
average walue of the component obrxticity normal to the sudce, then the inggal can
also be written as the area A of the aoceftimesuy,.

In the special case of badimensional flv the only nonzero component of therv
ticity is that component normal to the plane of thavflé\ point vortex results when all
vorticity is concentrated in aewy small rgion. Ary circulation loop that encompasses
the \orticity has the same circulation in this case, by virtue of equation (10.5). Thus, in

particular two circular loops concentric with the concentration arfticity have the same
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circulation path

Figure 10.2. Definition skch for circulation theorem.

circulation, as illustrated in figure 10.3. By symmegthe circulation around a concen-
tric, circular loop of radius r is simply I =72v,, where vy is the tangential @locity
around the loop. As a consequenges V/(27r) for a point wrtex. Thus, the circulation
is a conenient measure of the strength of a poortex. The equralent of a point @rtex
occurs in three dimensions when alkrticity is concentrated into a pencil-shapegioa
aligned with the wgrticity vector

Let us see if we can compute the time rate of change of the circulation around a loop
that maes with the fluid. @ do this it is easiest to approximate the circulatiorgnateas
a finite sum:

dr:d—J’v[dI:

d
ot dt — 2V [Xis1 — %) . (10.6)

dt 5

The finite diference analog of dl is tek as the diérence between twposition ectors
representing successi points along the circulation path. Bypothesis these points
move with the fluid, so dxdt =v;. Applying the product rule for diérentiation to the
right side of equation (10.6), we see that
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Figure 10.3. Wo circulation loops around a poinbnex. The circulations are
equal,i.e., [ =T,.

dr

a:I%/EdHJ'VEdv (10.7)

upon passing back to thgaet integral form.

The second term on the right side of equation (10.7) is easily disposed of by noting
that v (dv = d(¥/2). This is an eact diferential, and intgration around a closed loop
yields zero. The first inggal may be ealuated by eliminating dv/dt with the Euler
equation, (10.1). If the body force per unit mass is coafieey i. e., B = -], where
U is the potential engy per unit mass of fluid, then the igtal oftll Cdl = dU around
a closed loop is zero, since dU is also a perfedertnhtial. Aspl[dl = dp, equation
(10.7) becomes

w5 (10.8)
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This is called the Klvin circulation theorem, and it states that the ordy whe circula-
tion around a closed loop wiag with an iwviscid fluid can change is when the gradient
of pressure and the gradient of density tpnint in the same direction.

Imagine a tank filled with ater containing aariable concentration of disseld
salt, and hence aaviable density If left to itself, the saltiermore dense ater will end
up at the bottom of the tank, making the density gradieatov point ertically davn-
ward. The pressure gradient also pointevdward due to theydrostatic lav. If the tank
is somehw perturbed so that the denser fluid isveabto the left side of the tank and the
lighter fluid to the right, the density gradient will thenvéaaa horizontal component,
while the pressure gradient will remain approximatedytical, as shen in figure 10.4.
According to equation (10.8), a circulation will thervelep which will tend to restore
the fluid to its equilibrium configuration. Maver, the flav will overshoot, which will
result in a tilt of the constant density sucés the otheray. This will slow dowvn the cir
culation that has deloped, gentually stopping and versing it. Oscillations will con-

tinue until damped by viscosity

A fluid for which the density canavy independent of the pressure is called @-bar
clinic fluid, and the process described abas called the baroclinic generation afrtic-
ity. A barotropic fluid has a unique relationship between pressure and deositg(p).
A simple kample is a homogeneous, incompressible fluid for which the density is con-
stant. Anotherxample is an idealas with constant specific entgoplt is easy to she
from equation (8.14) that p =4~ in this case, where C is a constant apd C,/C,.
Thus, (= yCp¥™ ¥Dp, andp xq= 0 since the gradients of pressure and density
are automatically parallel. Equation (10.8) states that the circulation aroyptmbarthat
moves with the fluid is constant in time for a barotropic fluid.

Lines everywhere parallel to theovticity vector are called vortelines. The more
closely spaced the lines, the stronger tbdieity. Since the wrticity is the curl of the
velocity, its dvergence is zero. This means thattex lines cannot kgin or end in the
fluid. For a barotropic fluid, ertex lines can be thought to w® with the fluid. This fol-
lows from the Kelvin circulation theorem. (Wit?)

The derelopment of strongaortices in a barotropic fluid can be understood using the
circulation theorem and equation (10.5). If such a fluid deforms so dheax Vines are
brought closer togetheas in figure 10.5, then thenticity is intensified. If the fluid is
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Figure 10.4. Ewelution of the orientation of the constant density ates in a
tank with salt vater of \arying concentration. In the upper panel the density
gradient has a component to the left, which induces a clockwise circulation.

-
—

The middle panel shes the elocity field when the circulation has made the
constant density swaes horizontal. The fluid configuration in the last panel is
opposite of that in the first panel. In all panelg|(itlthe the density gradient
andflis the pressure gradient.

incompressible, the shrinking of the circulation loop around tivéev lines must be
accompanied by stretching in the perpendicular direction, as illustrated by the change in
shape of theyinder shaevn in figure 10.5. This constanblume deformation is often
characterized as a process of stretching treevlines. Ary increase in the length of

vortex lines must be accompanied by a decrease in their spacing such thaluthe,v
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hl

Figure 10.5. lllustration ofvortex stretching. The dashed lines areovtex

lines.

Ah = A’'h’, remains constant for an incompressible fluidr this reason, the spinup of a
vortex from weak ambientarticity by such a deformation process is often called xorte
stretching. Examples of ertex stretching are the delopment of the'bathtub \ortex”

when vater drains out of a bathtub, and the formation of tornados and hurricanes. Note,
however, that the spinup is not a consequence of‘gtieetching’, but of the reduction in

the cross-sectional area normal to tbeigity vector

Inviscid Irr otational Flows and Benoulli’ s Equation

An irrotational flav is one in which thearticity is everywhere zero. If the fluid is
also irviscid and barotropic, as we shall generally assume in this section, it will remain
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irrotational for all time if it starts out thatay -- a consequence of thelkin circulation
theorem. It is therefore useful to study this special case of flud flo

If @=1v =0, then the v elocity field can be represented as the gradient of a
scalar called the velocity potential:
v=Tge (irrotational flow) . (10.9)
If the flow is also incompressible, then
My=0 2p=0, (10.10)
i. e., the elocity potential,g satisfies Laplace’equation. The free slip boundary condi-

tion evaluated in terms apis derved from equation (10.2):

Mol =v . (10.11)

Equation (10.10) and these boundary conditions contain all of trscplof incom-
pressible, igiscid, irrotational flavs, and represent a considerable simplificaticer the
more general problem of fluid motion. Equation (10.10) also contains no timratweri
so the fluid flev at ary time depends only on the conditions at that time, and not on pre
ous times. In other erds, such a fluid does not remember its histand ag time
dependence can only enter through the boundary conditions.

We nav derive the Bernoulli equation for anviscid, irrotational, barotropic fluid.
Using a ‘ector identity v IEH{M ~ %/2) - v x @ and assuming that the body force is
derivable from a potential, B = U], the Euler equation, (10.1), can be written

Dy dp O
M T +V/2+[ = +U_= 10.12
Lot / I Jo, UD 0, (10.12)
which immediately intgrates to Bernoulls equation,
0@ dp
“Trv2+E+U=H 10.1
3t / J' ’ U , (10.13)

where H is a constant called the Bernoulli constante e able to takthe density
inside the gradient operation in equation (10.12) because the fluid is barotropic by
hypothesis. The density is a unique function of the pressure, and tlygahie therefore
unique. In the case of a time-independentvflof a homogeneous, incompressible fluid,
Bernoulli’'s equation reduces to the moaeniliar form

V22+ plp+U =H . (10.14)
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Since the elocity is determined by 4= 0 and the free slip boundary conditions,
Bernoulli's equation may be thought of as a diagnostic equation for the pressure in the
case of imiscid, incompressible, irrotational ¥lo Thus, between Bernoulli’ equation
and Laplaces equation for thealocity potential, the entire problem of computing this
type of flav is in principle soled.

In the special case of tadimensional flv in the x — y plane, further simplification

occurs. In this case the continuity equation reduces to

=0. 10.15
ox 0y ( )
This can be satisfied by assuming that
__9y _ oy
VX - a—y Vy - a—x . (1016)

The \ariable ¢ is called the seamfunction, since lines of constapitare streamlines.
This is easily erified by noting that the abe equations imply vi=0. Thus, v is
parallel to lines of constant. A corollary is that Ty [T1p= 0, i. e., lines of constant

and gare perpendicularFinally, since the srticity is zero in irrotational fiw,

JO v O Y

™ ay — W a_yz = Dzw: 0. (1017)

Thus both the @locity potential and the streamfunction satisfy Lapkeguation in tw-
dimensional, incompressible Wp and solving for either one leads to a solution for the
velocity field. In a steady flo situation (i. e., the boundaries dbmove), ¢ is simply
constant on each boundary

Boundary Layers and Forces on Immersed Objects

With new tools in hand, we e return to the question of flonear solid boundaries.
In particular we try to understand the forcesegted on an object as it mes through a

homogeneous, incompressible fluid atywhigh Rgnolds number

An alternatve way to interpret figure 10.1 is that a layer ofticity exists where a
moving viscous fluid comes in contact with a solid hods the viscosity is decreased,
the layer becomes thinndwt the \orticity becomes strongethus keeping constant the
circulation around a genent of this layer Vorticity generated at the sade meoes
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outward by molecular difision, so the smaller the viscosityhich can be thought of as

the difusion coeficient for momentum andovticity, the smaller the spread.

-

Figure 10.6. Deelopment of a wake behind streamlined and unstreamlined

bodies.

The main dect of the flov is to transport thisarticity dovnstream. The result for
a streamlined bodys shan in the upper part of figure 10.6, is the creation of a narro
wake behind the bodyThe wake is a rgion in which the denstream flav speed is less
than the upstream flospeed. It is created by thedawoundary layers from the opposite

sides of the body coming together

In the irviscid approximation, these layers dajrticity, and hence the ake, dont
exist. For high Rgnolds number the boundary layers and tiagesbecome @ry thin for
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a streamlined bodylt seems reasonable under these circumstances to suppose that in the
limit of large Rgnolds number the iscid approximation to the flg and hence to the
force on the bodyis \alid.

How do we ®aluate the force on a body due to its motion through\ascia, irro-
tational fluid? The most straightfoand way is to intgrate the traction of the fluid on the
body over the surdce of the body. e.,

F=J'TEhdA:—J'pIEhdA:—J'pndA, (10.18)

where n is the outard unit normal to the swate of the bodyand the stress for anvie-
cid fluid, — pl, has been substituted. If we place ouesein the reference frame of the
body so the fl is steady the pressure can be obtained from thev fleeld with
Bernoulli's equation, assuming no body forces:

p = — pv?/2 + constant . (10.19)

For flow around a sphere or glimder, or ary other object thatxibits side-to-side
and upstream-denstream symmetrysubstitution of equation (10.19) into equation
(10.18) yields zero force.

Figure 10.7. Schematic of floaround a sphere oylnder.

This may be seen byxamining figure 10.7, which illustrates such avlorThe symmetry
of the object causes thewildo have similar symmetry For instance, the points C and D
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both hae zero elocity, and are called sgaation points. By Bernoull equation, C and

D have pressuresxeeeding the pressure in the distant quidob&/Z, where ¥ is the flov
speed &r from the object. On the other hand, the points E and F bpirience pres-
sures less than the distant flualue, since the fle@ speeds at these pointsceeds y. In

the more general case of points A and B, the pressures are equal by syamddtrgre-
fore equal bt opposite tractions areerted on the object at theseotpwoints. Since the
total force on the object can bgpeessed as the sum of pairs of tractions on opposite

sides of the object, the total force on the object is zero.

It turns out that the alve agument can be generalized to a finite-sized object of any
shape. Thus, gnsuch object mang through a homogeneous, incompressiblesaid
fluid experiences no drag force. This result, called D’Alembepradox, is not in
accord with our intuition (dered, sayfrom riding a bigcle into a strong wind!), so there

must be a fla in the agument.

The flav turns out to be the assumption that trekevalvays tends to zero thickness
as the Rgnolds number increases. Thevkr part of figure 10.6 sias what more com-
monly happens when an objectwas through a fluid. In the illustrated case tbigity
generated in the boundary layer of the object separates from the object before it meets its
companion werticity from the other side of the object. In the illustrated case the separa-
tion is induced by the sharp corner at the back of the unstreamlined objeateib in
less &treme cases such as actual (as opposed to idealpftaund a sphere, separation
occurs at high Renolds numbers. The result is ery broad vake, comparable in diame-
ter to the cross-stream diameter of the object. In suchka kggion the flav is typically
time-dependent and turlent, though for simplicity it is slwen as being zero in the illus-

tration.

An estimate of the drag on such a blunt object can be made using thenigltea-
soning. The pressure at the front stagnation point on the bottom object in figure 10.6 is
Va2 by Bernoullis equation. If the object has a projected cross-sectional area normal to
the flav of A, the drag from pressure perturbation forces on theafdri&ce of the object
is of orderpAv3/2. For pure irrotational fiw, this force vould be countered by an equal
and opposite force on the reacé of the object, and the net forceuld be zero. Ho-
ever, the pressure in theake region must be the same as the pressure in the ambaent flo
far from the object, since there can be no pressure jump across the shear line that defines
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the boundary of the ake (why?). Thus, there is no rear pressure perturbation, and no
countenailing thrust force. The net drag can therefore be written

Farag = CoPAV/2 , (10.20)

where G is a dimensionless cdefient of order one called the drag domént. The

drag codficient accounts for thea€t that we only estimated the drag on the frane$ of

the object and didh’precisely calculate it. Drag cdefents are hard to calculate from
first principles in ap but the most idealized cases, and are generally obtained by measur
ing the force on an object placed in aving stream of air or ater

We nav need to ask whflow separation tads place. Let usxamine the behaor
of parcels muing around the sphere in figure 10.7r Eruly inviscid flov, a parcel start-
ing out near point C will hae neaizero \elocity and higher than normal pressure. The
pressure gradient is such that it will accelerate in its trajectory around the sphere until it
reaches point E, the location ofrest pressure. From point E to point D it will then
decelerate until it reaches nearly zerloeity at the rear stagnation point. Wiwer,
when viscous drag is added, the acceleration from C to E is less than in the idealized
case, and the deceleration aftards is greaterThus, the fluid near the sade of the
sphere comes nearly to a halt before it reaches point D. By mass confloigdtgannot
pile up at this n@ stagnation point, so it must m®avay from the sudce, carrying its
boundary layer articity with it. Thus, separation of the Wofrom the surdce of the
object is an in@table consequence of viscous drag in the boundary. layer

As might be gpected, the separation process is one tha¢ng sensitre to may
things, and is @ry hard to predict. In addition, it turns out that the boundary layréexv
sheet that peels fobf the object is itself unstable. This generally causes thie Wwo
evolve in a comphe and unpredictableathion. The subject of high Reolds number
flow past objects thus becomes one of the mostulif areas of study in fluid mechanics.
Nevertheless, the simplearments made here figé to gve a qualitatie picture of what
happens in these circumstances.

We naw turn to the subject of lift. Lift is the component of the fluid force on an
object normal to the direction of thewito Imagine an infinitely longyinder of radius R
aligned normal to a fl@ that is uniform &r from the glinder. As is shavn in problem 3,

a solution for the streamfunction that satisfies free slip boundary conditions at

x? + y?* = R? and has uniform fl in the minus-x direction at Ige distances is
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R? O
l//: Voyg - XZTyZD (1021)

However, this isnt the most general solution possible, since

@=Clog(¥ +y?), (10.22)

where C is a constant, also satisfies Lapla@gjuation. This solution has a singularity at
x =y =0, lut is irrotational way from this point. Application of equation (10.16) siso
that this represents thelcaround a pointortex at the center of theylinder with circu-
lation ' = 47€C. Thus, the worticity associated with this flo is confined to the ggon
inside the glinder, and is imaginary in the sense that wotieity is actually found in the
fluid. Nevertheless, since the circulation around tiknder in this case is nonzero, a
bound vort® is said to &ist inside the glinder.

The bound wertex flow satisfies free slip boundary conditions on theam#fof the
cylinder, as does the zero circulationvilaepresented by equation (10.21). Since the
governing equation for streamfunction in the irrotationavflcase, By =0 is linear a
linear combination of equations (10.21) and (10.22) ialia ¥low solution that also sat-
isfies boundary conditions on thglinder. The characteristics of this combined solution,
written here in glindrical coordinates,

W= vyrsin 81 - RIr?)+((T2i)logr , (10.23)

are quite interesting. Since the tangenteouity is simply dy/dr, the tangential ®locity
at the surdice of the glinder is

_ r
Vi(R, 0 = 2\, sin 6+ R (10.24)

and the pressure at the suoé of the glinder is

Fsing I?
+ D+ constant (10.25)

A V,
p:_p%"%s'n29+ OnR 872Re[]

by Bernoulli's equation. Inserting this into equation (10.18) results in thexfolgpforce
per unit length of @inder:
F=pvolj (10.26)

This is the Kitta-Zhulovskii theorem, which states that the force on an infinitely long
cylinder oriented normal to a uniform Wois proportional to the product of the wilo
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speed and the circulation around tlyénoler, and is directed perpendicular to the direc-

tion of the flav. This theorem can actually be pexl for a glinder of arbitrary cross-sec-

tion. A condition of the Kitta-Zhulovskii theorem is that there be no significarake:

Though we hee proved the theorem for the special case of a circylamaer, this condi-

tion can be realized in practice only with streamlined shapes so that boundary layer sepa-

ration doesn’'take place.

higher \elocity
y‘ lower pressure

@

r \/\
lower welocity

higher pressure Vo

Figure 10.8. Lift acting on a rotatinglmder.

It is possible to understand theitka-Zhulovskii theorem from figure 10.8, in which
a circular glinder is subjected to the translationaMfiplus bound @rtex described by
equation (10.23). On top of thglinder the circulation associated with the boundex
and the translational floreinforce resulting in a lger elocity than at the bottom of the
cylinder, where thg act aginst each otherBy Bernoulli's equation, the pressure is
therefore laver on the top than on the bottom of thiraer, resulting in a net upavd
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force. Note that this lift force requires both translation of tggncler through the fluid

and the gistence of a circulation. Neitherfett by itself will generate lift.

wingtip vortices

Figure 10.9. Lift from a wing of finite length.

The Kutta-Zhulovskii theorem strictly applies only to infinitely long/limders.
However, it is approximately correct for finiteylinders that are much longer thanyhe
are broad. ér a finite glinder, the bound ertex inside the glinder must emeye into the
fluid at some point, asovtex lines cannot end. This occurs typically at the end of the
cylinder. As the glinder is maing through the fluid, theortex line trails devnstream
from the end of thewinder. This is called a wingtip ertex, and is illustrated in figure
10.9, which shas the circulations around the airfoil and the wingtiptices for an ide-

alized “flying wing’'.

Problems

1. Water flavs irrotationally in a channel as st in figure 10.10. When it is going
around the cum, is the vater on the inside or outside of the auflowving faster? Hint:
Apply the circulation theorem around the pathvemo

2. Compute the motions of twpoint \ortices with knavn circulations separated by a dis-
tance d in tvo cases, a) when the circulations around trtices are the same, and b)
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circulation path

Figure 10.10. \ater flaving irrotationally in a cured channel.

when thg are equal bt opposite in sign. Hint: Recall thabreicity moves with the fluid
flow, including that flav induced by otherartices.

3. Shav that the streamfunction
R? [
‘//— Voyg‘ - X2 + y2[|
represents terdimensional, imiscid, irrotational flov about a glinder of radius R with
axis perpendicular to the ¥lo

4. Find the pressure field surrounding a poiottex using Bernoullis equation in a fluid
of constant densityAlso find the streamfunction. Ignore body forces and assure tw
dimensionality

5. Shav that if a flav is steadyinviscid, and has consetie body forces, Uit is rota-
tional, Bernoullis equation is alid along streamlines,ub that diferent streamlines may
have different Bernoulli ‘constants:

6. For an ideal gs with constant specific entsgshav that
I dp/o = C,T/m + constant ,

where G, is the molar specific heat of theag at constant pressure, m is its molecular
weight, and T is the temperature.

7. Apply Bernoullis equation for an idealag to a rockt engine to find thexbaust
velocity of the engine as a function of thasgtemperature inside the engine, the
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molecular weight of theasg, and its molar specific heat at constant pressure. Assume that

no body forces are acting, and that the edbdék in \acuum.

8. For a viscous fluid shva that wortex lines cannot end on a solid sac€. Hov then are
“bound vortices’ explained in the viscous case?
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