
Chapter 1

Solid body motion

In this chapter we extend what we have learned about the two-dimensional motion of solid
bodies to three dimensions. We first show that any combination of translations and rotations
of a solid can be represented as a displacement of some point in the solid plus a single
rotation about some axis passing through this point. On this basis we calculate the angular
momentum and the kinetic energy of rotation of a solid, introducing the moment of inertia
tensor in the process. After this, a number of examples are considered.

1.1 Displacement and rotation of a solid

Suppose we pick three points in a solid body, O, A, and B. In the arbitrary movement of
the body to a new location with a new orientation, the point O will undergo a displacement.
Furthermore, the points A and B will be relocated relative to O. Let us call the locations
relative to O of these relocated points A′ and B′, as illustrated in figure 1.1.

The fact that these points are all fixed in a solid body imposes certain constraints. In
particular, the distances OA and OA′ must be the same, which reduces the three degrees of
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Figure 1.1: Finding the axis of rotation of a solid. Points A and B are shown relative to
point O before the arbitrary displacement of the solid. Points A′ and B′ are their location
relative to O after the displacement.
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freedom of this point to two. Second, OB must equal OB′ for the same reason. In addition,
the distances AB and A′B′ must also be equal. These two conditions on point B reduce
its degrees of freedom to one. Thus, the relocation of these three points accounts for three
translational degrees of freedom in the displacement of point O, two rotational degrees of
freedom in the displacement of point A relative to point O, and one rotational degree of
freedom in the displacement of point B relative to points O and A. The total of six accounts
for all of the degrees of freedom of a three-dimensional solid body, so by specifying these
displacements, we have completely specified the translation and reorientation of the body.

To begin, we note that the locus of all points equidistant from A and A′ is a plane normal to
the line connecting A and A′. Furthermore, this plane must intersect the line at its midpoint.
Let us call this the bisector plane for A and A′. A similar bisector plane may be defined for
B and B′.

In solid body rotation each point in the body maintains a constant distance from the rotation
axis. Thus, the rotation axis must lie in each of the bisector planes discussed above and
is therefore defined by their intersection. Furthermore, the point O must also lie in this
intersection.

Figure 1.1 illustrates the points considered as well as the bisector planes. The arcs connecting
A, A′ and B, B′ are also shown, and illustrate the paths followed by these two points in
the rotation. The rotation angles are the same for both of these points. Since all degrees of
freedom have been accounted for, any other point in the solid must execute a similar arc as
the solid body rotates to its new orientation. Therefore, we have shown that the arbitrary
displacement of a solid body may be represented by the displacement of a point in the body
followed by a rotation about this point, and we have shown how to construct the rotation
axis.

We now consider infinitesimal rotations with rotation angle dφ. For a mass element in the
solid dm starting at location r relative to some point on the rotation axis, the change in
position of the of the element is

dr = n× rdφ (1.1)

where n is a unit vector parallel to the axis of rotation. Defining dt as the time for this
rotation to take place, the velocity of the mass element is

v =
dr

dt
= n× rdφ

dt
= Ω× r (1.2)

where Ω = n(dφ/dt) is the rotation rate vector, the magnitude of which is the rotation
rate and the direction specifies the orientation of the rotation axis. Recall further that the
position of the rotation axis is important, as the tail of r lies on it. (Any point on the axis
will do.)
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1.2 Angular momentum and kinetic energy

Let us use the above result to calculate the angular momentum and kinetic energy of a solid
body. Integrating over all mass elements in the body, the angular momentum is defined as

L =

∫
r × vdm =

∫
r × (Ω× r)dm. (1.3)

Using standard vector analysis, the integrand can be reduced to

r × (Ω× r) = Ω(r · r)− r(Ω · r). (1.4)

Evaluating term by term, the components of this double cross product can be represented
in matrix form as (y2 + z2)Ωx − xyΩy − xzΩz

−xyΩx + (x2 + z2)Ωy − yzΩz

−xzΩx − yzΩy + (x2 + y2)Ωz

 =

 y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 Ωx

Ωy

Ωz

 . (1.5)

With this form, the rotation vector can be drawn out of the integral, and the angular
momentum may be written

L = I ·Ω (1.6)

where

I =

∫  y2 + z2 −xy −xz
−xy x2 + z2 −yz
−xz −yz x2 + y2

 dm (1.7)

is called the inertia tensor.

The kinetic energy of a solid in motion is

T =
1

2

∫
v · vdm

=
1

2

∫
(Ω× r) · (Ω× r)dm

=
1

2
Ω ·
∫
r × (Ω× r)dm

=
1

2
Ω ·L

=
1

2
Ω · I ·Ω (1.8)

where line 3 derives from the vector identity (A×B) ·C = A · (B ×C). Thus the kinetic
energy can also be expressed in terms of the rotation vector and inertia tensor.

The inertia tensor is symmetric and it therefore has real eigenvalues and orthogonal eigen-
vectors, the latter of which, when normalized, form the rows of the orthogonal matrix U
that transforms vectors and tensors to the principal axis reference frame. If the eigenvalues
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of the inertia tensor are (I1, I2, I3) and the components of the rotation vector and angular
momentum in the principal axis frame are (Ω1,Ω2,Ω3) and (L1, L2, L3), then we have

L1 = I1Ω1 L2 = I2Ω2 L3 = I3Ω3 (1.9)

and
T =

1

2

(
I1Ω

2
1 + I2Ω

2
2 + I3Ω

2
3

)
(1.10)

in this frame.

1.3 So, what is a tensor???

You may be wondering what a tensor is at this point. We start by reminding ourselves that
a vector is a quantity with direction and magnitude. For purposes of calculation, we express
a vector in terms of its Cartesian components, say, A = (Ax, Ay, Az). However, a set of three
numbers is not itself a vector; we have to know in which coordinate system these components
are expressed and we need to be able to get the components in a different coordinate system.

Let us consider the following matrix:

U =

 Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

 (1.11)

suppose that (Uxx, Uxy, Uxz) form the x unit vector in a new reference frame (call it the
primed frame) expressed in terms of the components in the old reference frame (call it the
unprimed frame). The second and third rows are the y and z unit vectors respectively. Thus,
the components in the primed frame of the vector A are given by A′x

A′y
A′z

 =

 Uxx Uxy Uxz

Uyx Uyy Uyz

Uzx Uzy Uzz

 Ax

Ay

Az

 (1.12)

The components of the U matrix take the form

Uij = e′i · ej (1.13)

where e′i is the ith unit vector in the primed frame and ej is the jth unit vector in the
unprimed frame. All this makes sense if you multiply out the matrix product in equation
(1.12), getting three equations for the three components of A in the primed frame. Try it!
It is also evident that the transpose of U , denoted UT , transforms the primed form of A
back to the unprimed form. Matrices of type U are called orthogonal matrices and we refer
U to a rotation matrix. Orthogonal matrices also have the property that the transpose is
also the inverse: U−1 = UT , so that U · UT = UT · U = J , the identity matrix, i.e., the
matrix with 1 on the diagonal and 0 off the diagonal. (We use J rather than I so as not to
confuse the identity matrix with the inertia tensor.)
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So, what about tensors? The physical definition of a tensor, analogous to the definition of a
vector as a quantity with direction and magnitude, is a quantity that converts a vector into
another vector via a dot product. An example of this is given in equation (1.6): L = I ·Ω.
The inertia tensor I gives us the angular momentum vector L when dotted with the rotation
vector Ω. Note that the resultant vector L only points in the same direction as the applied
vector Ω in special cases that we discuss below.
Tensors in particular reference frames are represented by square matrices. Thus, the above
relationship between Ω and L can be expressed Lx

Ly

Lz

 =

 Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

 Ωx

Ωy

Ωz

 . (1.14)

Just as with vectors, there is a rule allowing us to obtain the matrix representation of a
tensor in a new reference frame, given the matrix representation in the original reference
frame. To see what this rule is, let us dot the angular momentum vector with the rotation
matrix U that gives us the components of this vector in a new, primed reference frame:

L′ = U ·L = U · I ·Ω = U · I ·UT ·U ·Ω = I ′ ·Ω′ (1.15)

where the representations of the inertia tensor and the rotation vector in the primed reference
frame are

I ′ = U · I ·UT Ω′ = U ·Ω. (1.16)

Some words of clarification: First, from the above analysis we see that a tensor is not a ma-
trix; it has a broader physical meaning independent of a given coordinate system. A tensor
can be represented by a matrix in a particular coordinate system, but the matrix represen-
tation of the tensor in a different coordinate system is different, just as the representation
of a vector in terms of a row or column matrix differs between different coordinate systems.
Second, the rotation matrix U is not a tensor – it is just a matrix with a particular purpose;
translate the representations of vectors and tensors from one coordinate system to another.
Examination of the definition of the inertia tensor in equation (1.7) shows that this tensor is
symmetric; in other words, Iij = Iji for all i and j. Another way to represent this condition
is that IT = I; the transpose of a symmetric matrix is equal to the original matrix. Let us
ask the following question; is there a coordinate system in which the matrix representation
of I is diagonal, i.e., Iij = 0 for i 6= j? If there were such a coordinate system, then the
dot product of a coordinate axis unit vector e with the tensor should yield e back again
multiplied by a constant I (why?):

I · e = λe = IJ · e (1.17)

which we rewrite in the form
(I − IJ) · e = 0. (1.18)

The matrix representation of this in the original reference frame gives us a set of three
homogeneous linear equations in the components of e: Ixx − I Ixy Ixz

Iyx Iyy − I Iyz
Izx Izy Izz − I

 ex
ey
ez

 = 0. (1.19)
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This set of equations has non-trivial solutions (components of e not equal to zero) only
if the determinant of the I − IJ matrix equals zero. This determinant leads to a cubic
polynomial in I. According to linear algebra, the roots of this polynomial are real. These
roots are called the eigenvalues or characteristic values. For each of these roots there are
values for the components of e. As this is a linear, homogeneous system, if e is a solution,
then any number times e is also a solution. Since we are seeking a unit vector, we resolve
this ambiguity by normalizing e so that |e| = 1.

If the three values of I, which we name I1, I2, and I3, are distinct, then the corresponding
unit vectors e1, e2, and e3 are mutually orthogonal. The ei are called eigenvectors or
principal axes and they define the coordinate axes of a new coordinate system which we call
the principal axis coordinate system. In this coordinate system the inertia tensor is diagonal,
with the eigenvalues as the diagonal components:

IPA =

 I1 0 0
0 I2 0
0 0 I3

 (1.20)

The rotation matrix that carries vectors and tensors in the original coordinate system into
the principal axis system is expressed in terms of the components of the eigenvectors:

U =

 e1x e1y e1z
e2x e2y e2z
e3x e3y e3z

 (1.21)

An important special case occurs when two or more of the eigenvectors are equal to each
other. In this case, the ei are not automatically orthogonal. However, in this case it is always
possible to choose eigenvectors so that they are orthogonal. This choice is not unique, but any
pair of orthogonal eigenvectors that lie in the plane defined by two non-orthogonal solutions
to equation (1.19) associated with the non-unique eigenvalues are valid eigenvectors. If
all three eigenvalues are equal, then any choice of three mutually orthogonal unit vectors
constitutes a set of valid eigenvectors.

1.4 Forces and torques

If the force on a mass element dm of a solid is fdm, then the total force on the solid is

F =

∫
fdm (1.22)

and the total torque is

τ =

∫
r × fdm. (1.23)

If the reference system in which calculations are being done is accelerated with acceleration
A, then the force per unit mass has a physical part f p and an inertial part −A. In this case
the total force takes the form

F =

∫
f pdm−MA (1.24)



CHAPTER 1. SOLID BODY MOTION 7

CMd

φ

L L

θ

side view top view

τ

Figure 1.2: Sketch of a spinning top under the influence of gravity.

where M is the total mass of the solid body, and the torque is

τ =

∫
r × f pdm−

∫
rdm×A =

∫
r × f pdm−RCM ×A (1.25)

where the definition of center of mass has been used. In the special case in which the origin
of the coordinate system is at the center of mass, then RCM = 0 by definition, and the
inertial force produces no torque. The same is true for any other force that has a constant
value per unit mass, such as that from a constant gravitational field.

The necessary conditions for static equilibrium of a solid body are simply

F = 0 τ = 0. (1.26)

1.5 Elementary treatment of top

Figure 1.2 shows two views of a spinning top, with angle φ giving the tilt of the top from the
vertical and θ giving the azimuthal organization in the horizontal plane. In this treatment,
we assume that the top is spinning rapidly so that assuming that the angular momentum
vector L is aligned with the axis of rotation is a good approximation. The angular mo-
mentum changes with time due to the torque (illustrated in the right panel) exerted by
the gravitational and the surface forces on the top. The top is assumed to be free to slide
without friction on the horizontal surface, but is subject to an upward normal force equal in
magnitude to the downward gravitational force which acts at the center of mass of the top.
The magnitude of the torque due to these two forces is

τ = mgd sinφ (1.27)

where m is the mass of the top and g is the gravitational field strength, so that in time dt
the change in the angular momentum is

dL = τdt = mgd sinφdt. (1.28)

The change in angular momentum is in the horizontal plane and normal to the angular
momentum vector in the sense of increasing θ with time. The change in θ in time dt is

dθ =
dL

L sinφ
=
mgd sinφdt

L sinφ
(1.29)
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so that the precession frequency of the top is

Ω ≡ dθ

dt
=
mgd

L
. (1.30)

The angular momentum can be expressed in terms of the moment of inertia I = n · I ·n of
the top (n is the unit vector aligned with the axis of rotation) and the angular rotation rate
of the top ω, L = Iω, which means that

Ω =
mgd

Iω
. (1.31)

Thus, the precessional frequency of the top is independent of the tilt angle φ and increases
as the spin rate of the top decreases.

1.6 Problems

1. Show that the motion of a solid body may be described by a single rotation (without
an accompanying translation) if some point in the solid body remains stationary in
this motion.

2. Show that an eigenvector of a symmetric tensor yields the eigenvector back again times
a scalar when dotted with the tensor. Hint: Work in the principal axis coordinate
system. If the result is valid in this system, it is valid in all coordinate systems.

3. Prove that the eigenvalues of a symmetric tensor are real.

4. Prove that any two eigenvectors of a symmetric tensor are orthogonal when the asso-
ciated eigenvalues are not equal.

5. Asymmetric rotator:

(a) Compute the inertia tensor for the asymmetric rotator in figure 1.3.

(b) Find the eigenvalues and normalized eigenvectors of this tensor.

(c) Show that the eigenvalues are orthogonal.

(d) Find the orthogonal rotation matrix U that transforms vectors and tensors into
the principal axis reference frame.

(e) Calculate U · I ·UT and verify that the result is diagonal with the eigenvalues on
the diagonal.

(f) What happens to the eigenvalues and eigenvectors if w = d? In particular, is
there an alternate set of eigenvectors?

6. If the rotation vector lies along the x axis for the rotator of problem 5 and is given
by Ω = (Ω, 0, 0), find the angular momentum vector and the kinetic energy when the
rotator is oriented as in figure 1.3. You will need the results of problem 5.
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Figure 1.3: Configuration of 4 masses connected by very light rods.

7. Laterally constrained top:

(a) Recalculate the precessional frequency of the top derived in section 1.5 on the
assumption that the bottom point of the top is constrained to remain in one
place. Hint: In this case the center of mass executes a circular motion due to the
precession of the top. In the reference frame of the center of mass of the top, there
is therefore an outward centrifugal force acting at the center of mass, balanced
by a corresponding centripetal force acting at the base of the top. This force pair
exerts an additional torque on the top.

(b) From the above results, determine the minimum angular momentum needed to
keep the top from falling over.


