Chapter 1

Hamilton’s mechanics

William Rowan Hamilton was an Irish physicist/mathematician from Dublin. Born in 1806,
he basically invented modern mechanics in his 60 years and laid the groundwork for the jump
to quantum mechanics a hundred years later. Two notable accomplishments bear his name,
Hamilton’s principle and Hamilton’s equations. He also invented quaternians, an extension
of complex numbers allowing an alternate representation of rotations in three dimensions,
just as complex numbers can be used to represent rotations in two dimensions. Quaternians
are closely related to the Pauli spin matrices that are used to represent the spin angular
momentum of electrons and other Fermions in quantum mechanics. They are also employed
in the software underlying many modern computer games. Finally, Hamilton generalized the
Langrangian approach to classical mechanics into the form we use today.

In order to properly appeciate Hamilton’s accomplishments, we first study the work of an-
other eminent physicist, Richard Feynman. Feynman invented the method of path integrals,
which has become the basis of modern quantum field theory. He popularized the idea of path
integrals in his book entitled QQED. This is an account of the fundamentals of the subject
that is very much worth the effort to read. The method of path integrals turns out to be
closely related to Fermat’s principle, which provides the entry point for our exposition.

1.1 Path integrals

According to Feynman’s ideas, the amplitude 1; of a matter wave associated with a particle
with momentum p and energy FE progressing along world line j in spacetime from one
eaccording to

W; = exp [z'/j@-dw—Edt)/h]. (1.1.1)

Notice that p/h is the wave vector k of the matter wave and F /R is just the angular frequency
w. In the case of constant momentum and energy, this equation reduces to

p; =expli(k - x — wt)], (1.1.2)

which we recognize as the quantum mechanical form of a plane wave.
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Figure 1.1.1: Example of multiple possible world lines of particle passing from event A to
event B.

The total amplitude for a particle to go from one point in spacetime (i.e., an event) to
another is the sum of the amplitudes computed over all possible worldlines connecting these

two events:
Y=Y v (1.1.3)

Different world lines result in different values of the complex phase of the wave amplitude 1;,
so a great deal of destructive interference will normally occur in the computation of the total
amplitude. However, as we shall see, groups of amplitudes associated with world lines close
to certain special world lines will have very close to the same phase, resulting in constructive
interference. In the geometric optics limit, these special world lines constitute the classical
paths along which the associated particles are observed to travel.

1.2 Constant energy and Fermat’s principle

Let us focus temporarily on the case in which the energy E' is held constant. In this case
the time contribution to the phase EAt/h, where At is the time difference between the
two bounding events, is the same for all world lines. This term therefore disappears in
the computation of wave interference and therefore can be omitted from our calculations in
this special case. The accumulated phase along the world line (ignoring the constant time
contribution) in this case just becomes

dx
@Dj:/jp-dm/h:/jk-dm:QW/jm:27rNj (1.2.1)

where A(z) is the position-dependent wavelength of the matter wave and N; is the number
of wavelengths exhibited by the matter wave along the world line between the two bounding
events.

Let us first assume that the momentum is also constant as the particle moves from point A
to point B (the space coordinates of the two bounding events) with possible alternate paths,
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Figure 1.2.1: Alternate trajectories for a particle to move from point A to point B.

as illustrated in figure 1.2.1. The distances travelled along each of the paths are

D, =L

Dy =L/ cos(e)

D3 =L/ cos(¢)

Dy =L/cos(¢p+¢€) = L/ [cos(¢p) cos(e) — sin(¢) sin(e)] . (1.2.2)

For |e| < 1, the difference in the number of wavelengths traversed along paths 1 and 2 may
be approximated to the lowest non-zero order in ¢ as

Dy—D, &L
AN, = 22 : L_ ZA (1.2.3)

while the difference in the number of wavelengths between paths 3 and 4 is approximately

D4 - D3 . el tan(gb)

ANy3 = = .
@ A A cos(o)

(1.2.4)

Constructive interference between paths 1 and 2 requires that |[ANy| < 1, or

le] < (%)1/2 (1.2.5)

while constructive interference between paths 3 and 4 requires that |[AN3y| < 1, or

A

le] < T (1.2.6)
The factor of 2 in equation (1.2.3) and the trig functions in equation (1.2.4) have been
dropped as they are both of order unity. Since we assume that each world line traverses
many wavelengths, \/L < 1. As a consequence, \/L < (A\/L)"/?, and the range of angles
over which constructive interference can occur for the 1-2 case is much greater than for the
3-4 case. From this we conclude that the straight line (path 1) is a special world line along
which particles travel in the classical limit when the momentum is fixed, whereas the crooked
line (path 3) is not. This is consistent with Newton’s first law.
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Figure 1.2.2: Dividing a line segments up into sub-segments.

The alternate paths in figure 1.2.1 represent only a small selection of the possible paths
between points A and B. However, one could divide the actual path between these points
into a set of sub-paths and apply the above reasoning to each sub-path, resulting in the same
conclusion; if the momentum is constant, the classical path is a straight line. Letting the
number of segments increase indefinitely generalizes the conclusion to include all possible
paths between points A and B.

Note that the path with the broadest spread of neighboring paths yielding the strongest
constructive interference is the one with the least number of wavelengths between the two
points. This is not a coincidence. If the momentum is not constant, i.e., if the particle
is subject to a conservative force or if a dielectric medium exists in the case of light, then
the path with the smallest number of wavelengths is no longer a straight line. However the
bundle of paths close to this path will still exhibit the strongest constructive interference
and will therefore be the preferred path for the associated particles in the geometrical optics
limit. The key point is that the path with an extremum in the number of wavelengths
(not necessarily a minimum) is the path with the largest bundle of nearby paths exhibiting
constructive interference.

For light, the path with the fewest number of wavelengths is also the path traversed by the
light in the least time, at least as long as the phase speed of the light u, equals its group
velocity u,. In this case

Az kAx  2rAx 27w

_Ar_ Av _ Ty (1.2.7)

At
Ug Up w WA w

where N is the number of wavelengths traversed. Thus, the principle of minimum number
of wavelengths traversed is equivalent to Fermat’s principle of least time. Note that if the
index of refraction depends on wavenumber, so that the dispersion relation for light in a
dielectric is dispersive, Fermat’s principle is not strictly true if “minimum time” means the
minimum time for a wave packet to traverse the path. (Minimum time in the context of
Fermat’s principle is defined in terms of the time calculated from the phase speed rather
than the group velocity.)

1.3 Hamilton’s principle

Let us return to the more general case in which the total energy may vary. Recognizing
dx/dt = v as the velocity of the particle, equation (1.1.1) can be rewritten as

W = exp {z /(p v — E)dt/h} . (1.3.1)

J

In the case in which we are dealing with a single non-relativistic particle with momentum
p = mv and total energy equal to the sum of the particle’s kinetic and potential energies
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E =T +V, the integrand in equation (1.3.1) equals the Lagrangian L:
p-v—E=m?-mv?2-V=mv?/2-V =L (1.3.2)

Thus the wave amplitude for the jth world line between the initial and final events becomes

¥ = exp (i/det/h> : (1.3.3)

Generalizing the result from the previous section, the classical particle world line will be that
which yields an extremum for the value of the integral inside the exponential function

S = /Ldt. (1.3.4)

This is called Hamzlton’s principle and S is called the action.

The above analysis applies to a single particle. For multiple particles (ignoring the issues
posed by identical particles), the total amplitude is the product of the single particle ampli-
tudes ¢

Uy =) -7 -7 =exp {2 /(L1 + Lo+ L+ )dt/h] = exp (i/Ldt/h) . (1.3.5)
j

j
The Ly are the Lagrangians for the individual particles and L(xy, @s, ..., @1, &3, ..., 1) is the
sum of the individual Lagrangians. In systems with constraints, the total Langrangian may

be rewritten in terms of appropriate generalized coordinates and velocities L(q;, ¢;,t) as we
have done previously.

1.4 Lagrange equations from Hamilton’s principle

We now use the calculus of variations to see if Hamilton’s principle implies the Lagrange
equations. If it does, then the circle is closed and we know that the geometrical optics limit
of quantum mechanics is equivalent to classical mechanics.

We now write Hamilton’s principle in terms of a Lagrangian that is a function of generalized
coordinates and velocities,

B
5 / g, s, t)dt = 0, (1.4.1)
A

where A and B are the fixed end points and § indicates the difference between integrals taken
over slightly different world lines. The ¢ acts like any other differential operator, resulting

1n
B B oL oL
5/ L(q, ¢, t)dt = / (—,6'Z~+—5i)dt:0 1.4.2
(q,4,t) ;Aaqiq 9 (1.4.2)

A i
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where the differencing is taken at fixed time. The quantity d¢; = ¢ — Qf , where the super-
script indicates neighboring paths, may be written

dg  dg] d d

a B
P = , 1.4.

i =

which shows that the total time derivative and the differencing commute. Integrating by
parts, we find that

oL d oL - \? B q (/0L
— — dt. 1.4.4
/A 5 ar 1 = (aqfq’)A /A it (aqi)(sqldt (144)

The first term on the right side of equation (1.4.4) is zero because by hypothesis dg; = 0 at
the end points. Substituting the second term into equation (1.4.2) results in

Z/[ <gi) gﬂé%dt—o (1.4.5)

Since the d¢; are independent and of arbitrary form, the quantity inside the square brackets
must be zero to satisfy this equation, resulting in the Lagrange equations:

d (0L oL
— — = 0. 1.4.

1.5 Hamilton’s equations

An alternate approach to mechanics developed by Hamilton emphasizes the generalized
momenta p; = OL/Jq; over the generalized velocities ¢;. In this approach Hamilton defined
a new function, now called the Hamiltonian, as

H( J7QJ7QJ’ ZH’LQZ q]7QJ7 ) (151)

where for now we leave II; unspecified.

It is clear that

oH
— = ;. 1.5.2
oI1, 4qj ( )
Furthermore,
OH oL d (0L )
9q; 9q; 9q;
where Lagrange’s equation has been used to relate 9L/dg; to p,. Finally,
0OH oL
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We now set II; = p;, which has two results. First, equations (1.5.2) and (1.5.3) become what
are called Hamilton’s equations

OH .  OH

— = — = —p,. 1.5.5
8]7]' J aqj J ( )
Second, equation (1.5.4) shows us that

oOH

— =0, 1.5.6

0 (15

i.e., the Hamiltonian is not a function of ¢;, but only of p; and ¢;, and possibly of time ¢:
H = H(pj,q;,1). (1.5.7)

Hamilton’s equations constitute an alternative expression of Newton’s second law. In addi-
tion, the Hamiltonian is used extensively in most formulations of quantum mechanics. This
is the primary reason we introduce it here.

Since the Hamiltonian in most cases is just the total energy, we can just write the energy in
terms of the generalized positions and momenta to get the Hamiltonian. However, the safe
way to do this comes from equation (1.5.1)

H=> pigi—L (1.5.8)
with ¢; eliminated in favor of p;. The Hamiltonian equals the total energy when

Zpidi = 2T, (1.5.9)

so that we have
H=2T—-L=2T-T+V=T+V=E. (1.5.10)

Equation (1.5.8) isn’t satisfied in odd situations in which the system under consideration is
not isolated.

The Hamiltonian has another interesting property

d_H—a_H_|_Z a_H_|_8_H —a_H
at ot ap L g ) T o

(1.5.11)
where the last step invokes Hamilton’s equations (1.5.5). Thus, if the Hamiltonian has no
explicit dependence on time, it is conserved in real dynamical processes. This is true whether
or not the Hamiltonian equals the total energy. Thus, there are four possibilities:

e The sum of the generalized momenta times the corresponding generalized velocities
equals twice the kinetic energy and the Hamiltonian is time independent: The Hamil-
tonian equals the energy and is conserved.
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e The sum of the generalized momenta times the corresponding generalized velocities
equals twice the kinetic energy but the Hamiltonian is time dependent: The Hamilto-
nian equals the energy but is not conserved.

e The sum of the generalized momenta times the corresponding generalized velocities
does not equal twice the kinetic energy but the Hamiltonian is time independent: The
Hamiltonian does not equal the energy but is conserved.

e The sum of the generalized momenta times the corresponding generalized velocities
does not equal twice the kinetic energy and the Hamiltonian is time dependent: The
Hamiltonian does not equal the energy and is not conserved.

1.6 Electromagnetism

Adding electromagnetism to Lagrangian and Hamiltonian mechanics requires an extension of
the theory because the magnetic force on a charged particle is not derivable from a potential
and also depends on the velocity of the particle. In physics 222 we introduced the concept
of potential momentum @ as well as the kinetic and total momenta, p and II, related in the
following way:

II=p+Q. (1.6.1)

In advanced mechanics the total momentum is called the canonical momentum and the ki-
netic momentum is just called the “momentum” or the “ordinary momentum”. The potential
momentum doesn’t have a special name, but in the case of electromagnetism it is just ¢A
where ¢ is the charge on the particle of interest and A is the vector potential.

The canonical momentum is related to the wave vector of the matter wave associated with
the particle by the de Broglie relation

II = 7k (1.6.2)

whereas the ordinary momentum is related to the particle mass and velocity in the usual

way. In the non-relativistic case:
p=muv. (1.6.3)

Thus, the total or canonical momentum may be written
IT = mv 4 qA. (1.6.4)

The total energy is written similarly as a sum of kinetic and potential parts

1
B = Zmv’ +q¢ (1.6.5)

where ¢ is the electrostatic potential. The total energy is related to the matter wave fre-
quency by the Planck relation £ = Aw while the kinetic energy is related to the velocity.

Looking back on the derivation of Hamilton’s principle from Feynman’s path integral formu-
lation of quantum mechanics, it is clear that the momentum in equation (1.3.2) is the total
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or canonical momentum since it originates as the wave vector times h. Thus, the Lagrangian
for a single charged particle in the presence of electric and magnetic fields becomes

L=Il-v—-F
=(mv+qA) - v — %va —q¢
1
=—mv? —q(¢p —v- A) (1.6.6)

2

where ¢ is the electromagnetic scalar potential. The components of the generalized momen-
tum are obtained from the Lagrangian

oL 0L OL

— Y —— | =mv+ A=11 1.6.7
(8% v, 8%) ( )
as expected, verifying that the generalized momentum in this case is actually the canonical
momentum. Lagrange’s equations can be written in vector form as

dIl dlIl
—VL=—+4+¢gV(p—v- A 1.6.
i i qV(p—v-A), (1.6.8)

or using the definition of IT in equation (1.6.7), as

dv dA
= g —v-A). 1.6.
m— ¢ —aV(¢o—-v-A) (1.6.9)
The total time derivative of the vector potential is the time rate of change of the potential

at the location of the charged particle on which it is acting. Using the chain rule, it may be

written JA  9A
—_— = -VA 1.6.10
a o Y (1.6.10)
where we recognize dx/dt = v since x(t) is the position of the particle. Equation (1.6.9)
thus becomes 4 oA
me =q|-Vo— 22| 4 q[-v - VA+V(v- A)]. (1.6.11)
dt ot
We recognize the quantity inside the first set of square brackets as the electric field E.
Application of a vector identity shows that the quantity inside the second set of brackets
is v x (V x A). Noting that V x A is just the magnetic field B, equation (1.6.11) finally
becomes

d
md—’t’ — ¢E + qv x B, (1.6.12)

which is the Lorentz force law of electromagnetism. This verifies that the assumption that ¢ A
and q¢ represent the potential momentum and the potential energy of a particle with charge
¢ in electric and magnetic fields is equivalent to the results of classical electromagnetism.
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Figure 1.8.1: Sketch of active oscillator.

1.7 Relativity and Hamilton’s principle

Hamilton’s principle is a perfectly relativistic concept. Writing equation (1.3.4) in the form

5/Ldt:6/(p-v—E)dt:0, (1.7.1)

(so that the Hamiltonian is the energy) we note that the Lagrangian is the dot product of
two 4-vectors divided by 7:
L=p-v—-E=p-uly (1.7.2)

where p = (p, E/c) is the 4-momentum and u = (yv,yc) is the 4-velocity. Recall that the
4-momentum for a free particle is just the mass m of the object times the 4-velocity p = mu,

SOp-u=mu-u= —mc?. The relativistic free particle Lagrangian is therefore
mc? 2 2 2 2y /,.211/2
L=——=—-mc[l— (&% + 9> + 32) /"2 (1.7.3)
Y

Hamilton’s principle may be expressed alternately as an integral over proper time. This is
because dt/~y = dr where dr is the increment of proper time along the world line of the
particle under consideration. Thus, Hamilton’s principle for a free particle in the relativistic
case can be written

6/Ldt = —5/ (me®/v) dt = —m625/d7' =0. (1.7.4)

Hence the world line traversed by the free particle is one with an extremum in the elapsed
proper time. A world line with constant velocity leading directly from the starting point to
the end point satisfies this criterion as expected.

1.8 Problems

1. Hamiltonian method test run:
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X

Figure 1.8.2: Illustration of world line to be varied.

(a) Derive the Lagrangian for a mass-spring system with mass m and spring constant
k in terms of x and & where x is the deviation of the mass from its equilibrium
position.

(b) Compute the generalized momentum of the mass associated with the variable .

(c) Derive the Hamiltonian for this system using equation (1.5.1). Be sure to eliminate
the generalized velocity in favor of the generalized momentum.

(d) Derive the Hamiltonian governing equations for this case.

(e) Solve Hamilton’s equations for x(t) and p.(t).

2. A mass m slides horizontally on a frictionless table constrained by a string passing
through a hole in the table that can be pulled or released arbitrarily, resulting in a
string length from the hole to the mass of (¢). The mass is also moving around the
hole with azimuthal angle ¢.

(a) Derive the Lagrangian for the motion of the mass.

(b)

)
)

Compute the generalized momentum associated with ¢. Is it conserved?
(c

(d) Solve for ¢ in terms of pe. Hint: Do you even have to derive the governing
equations from the Hamiltonian in this case?

Derive the Hamiltonian of the system.

(e) Is the energy of the system conserved? Explain.

3. Active harmonic oscillator: Figure 1.8.1 illustrates an actively controlled mass-spring
system in which the left end of the spring (point A) is moved in lockstep with the
motion of the mass such that the displacement d of A to the left is somehow made
proportional to the time rate of change of the right end of the spring (point B)

d=azx

via some servomechanism, where a is a constant.
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(a) Realizing that the net extension of the spring from its equilibrium length is = +
d, write down the Lagrangian for the mass-spring system. Is the Lagrangian
quadratic in z7

(b) Derive the governing equation and determine the general solution z(t).

c) Derive the generalized x momentum p, and write the Hamiltonian in terms of p,

Derive th lized t d write the Hamiltonian in t f
and z. (Note: This expression can be greatly simplified into one term containing
(pe + kax) plus another term kz?/2. Carry out this simplification.)

(d) Is the Hamiltonian conserved?

(e) Is the Hamiltonian equal to the total energy? If not, explain the process by which
energy is transferred in and out of the mass-spring system. Hint: Re-express
the Hamiltonian in terms of © and z and compare with the potential and kinetic
energies used to derive the Lagrangian.

4. Using Lagrange’s method, determine the conserved generalized momenta for a rela-
tivistic free particle, starting with equation (1.7.3).

5. Relativistic electromagnetic force.

(a) By appropriate modification of equation (1.6.6) show that the relativistic La-
grangian with electromagnetism is

L=-mc[l — (02 +v]+02) /" — q(ve A, + v, 4y + VA, — @).

Hint: Seek help in section 1.7.
(b) Compute the generalized momenta for the variables z, y, and z.

(c) Derive the governing equations using the method of Lagrange. Compare the
results with equation (1.6.9).

6. Evaluate the elapsed proper time from A to B in figure 1.8.2 as a function of Xj.
Assume that ¢ = 1 in this calculation. Find the value of X; for which the elapsed
proper time is an extremum. Determine whether this extremum is a minimum or a
maximum.



