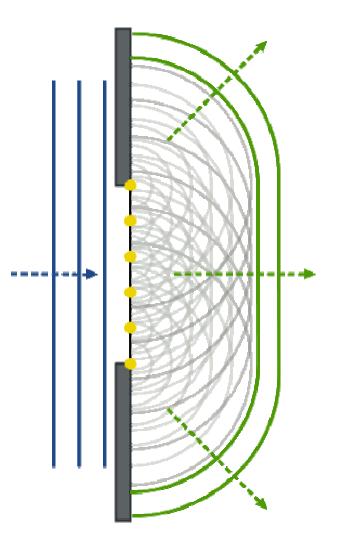
# Diffraction

M. Creech-Eakman Radiation and Optics

#### Overview

- Basis for Diffraction
- Fraunhofer Diffraction
- Diffraction Gratings
- Fresnel Diffraction
- Fresnel Lenses

# Diffraction


- The wave/physical optics behavior of any wave that encounters an obstacle
- It is closely related to interference in terms of how the downstream waves, after the obstacle, interact with one another
- Diffraction occurs when obstacle is of the order of the wavelength of the wave
- Sometimes we differentiate based on the number of sources: i.e. two slits = interference; many slits = diffraction

# **Diffraction History**

- First carefully discussed by Grimaldi ~ 1665
- Term diffraction comes from Latin *diffringere* meaning to break into small pieces
- Others who studied it included Newton, Gregory, Young, Fresnel
- Large fight at the time as Newton was a proponent of corpuscular theory and Young reinvigorated wave theory with double-slit experiment
- Not until Einstein proposed wave-particle duality that this was settled

### Huygens-Fresnel Principle

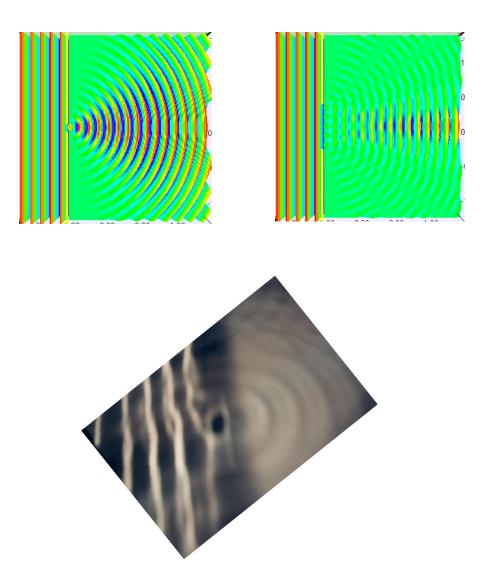
- Multiple points on the wavefront act as sources for the secondary wavelets
- These sources at the opening are able to create a wave which expands past the edge of the opening



# Types of Diffraction

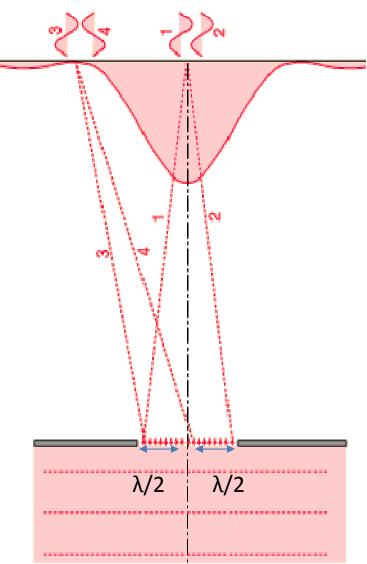
- Far-field Called
   Fraunhofer
  - When diffraction pattern is viewed far from diffracting obstacle

$$rac{W^2}{L\lambda} \ll 1$$


W –aperture size, L – distance away

- Near-field Called Fresnel
  - When diffraction pattern is viewed very close to diffracting obstacle

$$\frac{W^2}{L\lambda} \ge 1$$


# Simplest – Single Slit Diffraction

- There is a downstream spreading of the wave for slits ~ wavelength of the wave
- As the slit gets wider, the diffraction pattern narrows
- Treat the slit as made up of multiple halfwavelength pieces



### Fraunhofer Diffraction Concept

- Assume intensity is measured in the far field
- Break up the slit into λ/2 sections and look at how parts combine in the far field

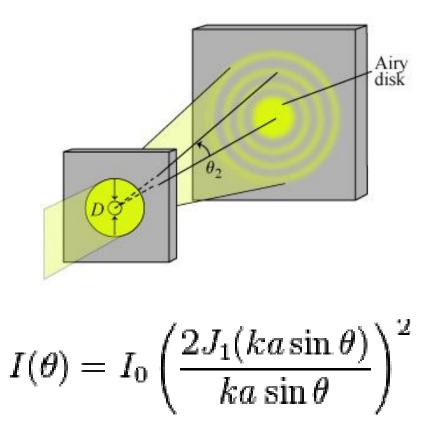


#### The Calculations

- The path difference is given by:  $\frac{d \sin \theta}{2}$
- Minimum intensity at an angle Θ<sub>min</sub> given by:

$$d\sin\theta_{\min} = \lambda$$

 From the Fraunhofer diffraction equation you can calculate the intensity:

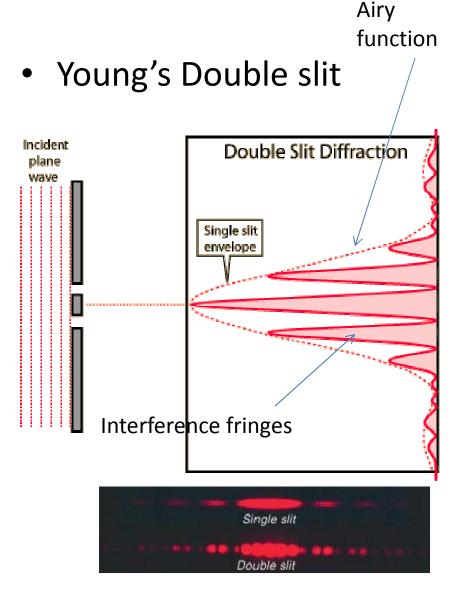

$$I(\theta) = I_o \sin c^2 \left(\frac{d\pi}{\lambda} \sin \theta\right)$$

 Divide the slit into an even number of n sections:

$$d\sin\theta_n = n\lambda$$

#### A Circular Aperture

- Think of projecting your slit into a circle by spinning it about the midpoint
- You produce a diffraction pattern with a series of decreasing intensity rings around it
- This is called an Airy disk




k is wavenumber, J<sub>1</sub> is Bessel function

# **Other Types of Patterns**



Spreading is inversely proportional to the size of the slit relative to the wavelength of the light. It is also perpendicularly directed.



### Many Slit Diffraction

Five Slit Diffraction

Single slit envelope

- As you add more slits, you need to account for extra interference terms
- The single slit diffraction envelope remains the same

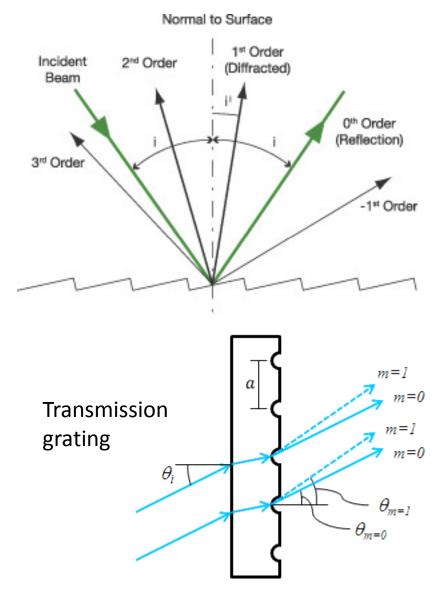
diffraction  

$$I = I_o \left(\frac{\sin \beta}{\beta}\right)^2 \left(\frac{\sin N\alpha}{\sin \alpha}\right)^2$$

 $\beta = \frac{1}{2}kb\sin\theta$  $\alpha = \frac{1}{2}ka\sin\theta$ 

b is slit width, a is slit separation, k is the wavenumber




### Notes about Many Slit Diffraction

- If a "zero" from the diffraction envelope lands on top of a "max" from the interference, you may appear to have missing orders in your intensity plot
  - See discussion pages 286-288 in your text
- The many-slit diffraction is the basis for an often used device for resolving spectral lines called a diffraction grating

#### **Diffraction Grating**

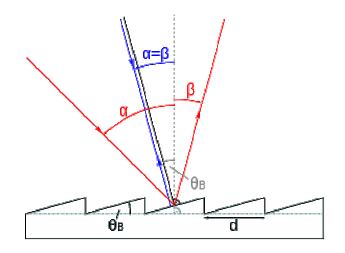
Reflection grating

- Gratings use either reflection or etching in a substrate to produce "multiple slits"
- Dispersion and spectral resolution use the same defn. as with prisms – table 12-1
- Orders, m, go to different locations on your screen



# Grating Equation and Blaze

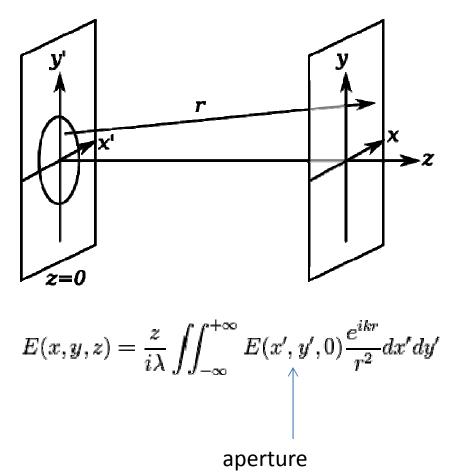
- For normal incidence the equation is simple
- We need an equation for arbitrary incidence angle, Θ<sub>i</sub>, on the grating


$$d\left(\sin\theta_i + \sin\theta_m\right) = m\lambda$$

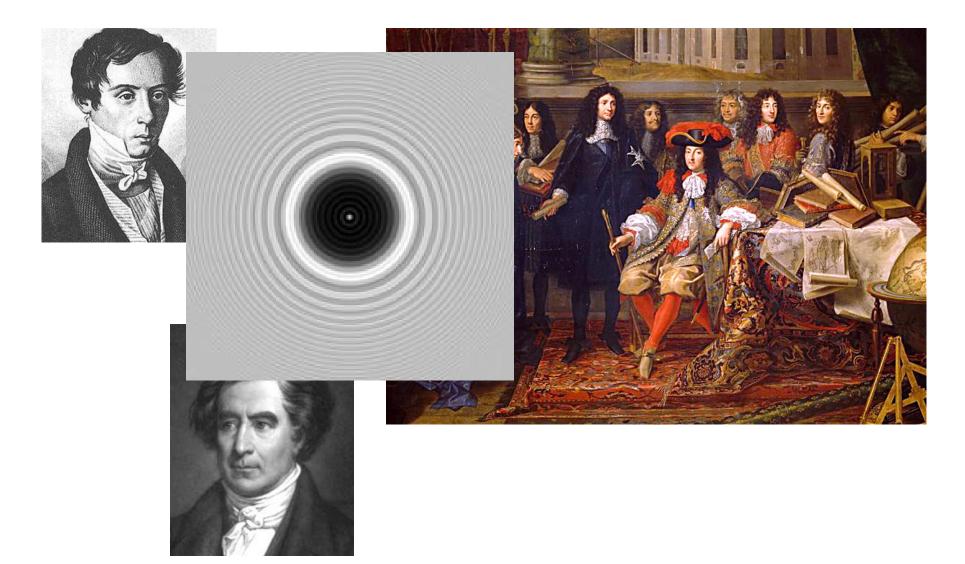
 $\Theta_m$  is order maximum angle, m is order and d is separation between grooves

- Grating blaze is an angle you add to the face of the grating to improve its efficiency
- A blazed grating works best for a particular waveband and order, m
- Littrow is a term used when the incident light is brought in along the groove face normal

### Blazed Grating con't

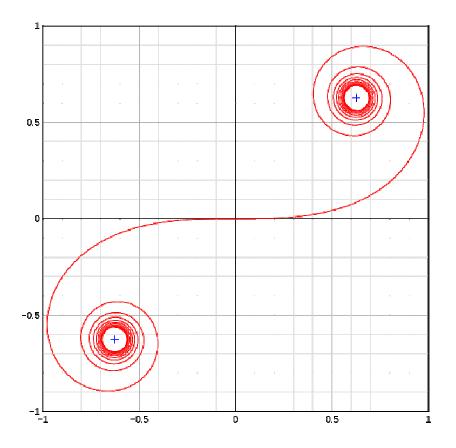

- Grating equation for Littrow configuration is a little simpler
  - d is line spacing
  - $-\alpha$  is incidence angle
  - $-\beta$  is diffraction angle
  - m diff. order
- Can have a blaze angle on a reflection or transmission grating
- Often referred to as echelle gratings if the blaze angle is > 45 deg.




$$d\left(\sin\alpha + \sin\beta\right) = m\lambda$$

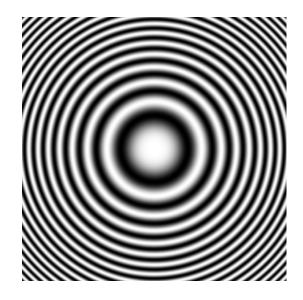
# **Fresnel Diffraction**

- Near-field diffraction
- Dealt with by calculating the detailed E field using a Fresnel-Kirchoff integral and usually not with "nice" geometry
- Can be calculated with convolution and a FT
- Can be approximated by considering phase zones




### Story of Fresnel, Arago and Poisson




#### One Way to Do This

- Using an Euler or Cornu Spiral
- There are examples shown for you in sections 13.7 to the end of that chapter in your text
- If you ever find yourself in need of doing this, consult an expert as the math is not for the faint of heart



#### **Fresnel Zone Plate**

- Device manipulating phase in an aperture to get it to perform like a lens or other optic
- It is in some sense the FT complement of the Poisson spot
- Huge advantage of being compact and light weight
- Used in situations where "glasses" are hard to manufacture





# Applications

- Non-destructive testing of optics or edges for smoothness on wavelength scale
- Fresnel optics
- Use in precision controlled systems and for microscopic cutting

- New types of diffraction gratings
- Changes in seismic structure of ground at radar wavelengths
- Laser speckle applications – beam shaping
- Scattering experiments