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ABSTRACT

A magnetic field dynamo in the inner regions of the accretion disk surrounding the

supermassive black holes in Active Galactic Nuclei (AGNs) may be the mechanism

for the generation of magnetic fields in galaxies and in extragalactic space. We argue

that the two coherent motions produced by 1) the Keplerian motion and 2) star-disk

collisions, numerous in the inner region of AGN accretion disks, are both basic to

the formation of a robust, coherent dynamo and consequently the generation of large

scale magnetic fields. In addition we find that the predicted rate, 10 to 100 per year

at ∼ 1000rg, rg the gravitational radius, and the consequences of star-disk collisions

are qualitatively, at least, not inconsistent with observations of broad emission and

absorption lines. They are frequent enough to account for an integrated dynamo gain,

e109

at 100rg , many orders of magnitude greater than required to amplify any seed field

no matter how small. The existence of extra-galactic, coherent, large scale magnetic

fields whose energies greatly exceed all but massive black hole energies is recognized.

In paper II (Pariev, Colgate & Finn 2006) we argue that in order to produce a dynamo

that can access the free energy of black hole formation and produce all the magnetic flux

in a coherent fashion the existence of these two coherent motions in a conducting fluid is

required. The differential winding of Keplerian motion is obvious, but the disk structure

depends upon the model of ”α”, the transport coefficient of angular momentum chosen.

The counter rotation of driven plumes in a rotating frame is less well known, but

fortunately the magnetic effect is independent of the disk model. Both motions are

discussed in this paper, paper I. The description of the two motions are preliminary to

two theoretical derivations and one numerical simulation of the αω dynamo in paper II.

Subject headings: accretion, accretion disks — magnetic fields — galaxies: active

1. Introduction

The need for a magnetic dynamo to produce and amplify the immense magnetic fields observed

external to galaxies and in clusters of galaxies has long been recognized. The theory of kinematic
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magnetic dynamos has had a long history and is a well developed subject by now. There are nu-

merous monographs and review articles devoted to the magnetic dynamos in astrophysics, some

of which are: Parker (1979); Moffatt (1978); Stix (1975); Cowling (1981); Roberts & Soward (1992);

Childress et al. (1990); Zeldovich, Ruzmaikin, & Sokoloff (1983); Priest (1982); Busse (1991); Krause & Rädler

(1980); Biskamp (1993); Mestel (1999). Hundreds of papers on magnetic dynamos are published

each year. Three main astrophysical areas, in which dynamos are involved, are the generation

of magnetic fields in the convective zones of planets and stars, in differentially rotating spiral

galaxies, and in the accretion disks around compact objects. The possibility of production of mag-

netic fields in the central parts of the black hole accretion disks in AGN has been pointed out

by Chakrabarti, Rosner, & Vainshtein (1994) and the need and possibility for a robust dynamo

by Colgate & Li (1997). Dynamos have been also observed in the laboratory in the Riga experi-

ment (Gailitis et al. 2000, 2001) and in Karlsruhe experiment (Stieglitz & Müller 2001). Recently,

counter rotating, opposed jets or open-flow geometries, such as the the Von Kármán Sodium (VKS)

Experiment and the Madison Dynamo Experiment, have been designed to explore less constrained

flows (Bourgoin et al. 2004; Spence et al. 2006). So far, neither of these experiments have reported

sustained magnetic field generation despite predictions of positive gain in laminar flow theory and

calculations. The null result has been ascribed to the deleterious effects of enhanced turbulent

diffusion of large-scale turbulence.

1.1. The Need for a Robust Astrophysical Dynamo

Why, with all the thousands of research papers, very many successes, and even experimental

verification of dynamo theory in constrained flows is there a need for a new paradigm for the

generation of intergalactic scale astrophysical magnetic fields? We claim that the plume-driven αω

dynamo in the black hole accretion disk is a unique solution to the need for the largest dynamos

of the universe, because the flow is naturally constrained by a gradient in angular momentum and

by the transient dynamical behavior of plumes in contrast to the large turbulence of unconstrained

flows. (A discussion of the role of convective plume-driven αω dynamos in stars will be reserved

for another paper, because the mechanism of the production of large scale plumes in the convective

zone of stars is radically different from the production of plumes by high velocity stars plunging

frequently through the accretion disk.)

The minimum energy inferred from radio emission observations of structures or so-called radio

lobes within clusters and external to clusters by both synchrotron emission and Faraday rotation

(Kronberg 1994; Kronberg et al. 2001) are so large, ∼ 1059 ergs and and up to ∼ 1061 ergs respec-

tively, compared to galactic energies in fields 10−7 as large and gravitational binding energies 10−3

as large, that only the energy of formation of the central massive black hole (hereafter, CMBH) of

every galaxy in its AGN phase, ∼ 1062 ergs, becomes the most feasible astrophysical known source

of so much energy. This statement is based upon the recognition that ∼ 108 neutron stars have

been created in the galaxy in a Hubble time, or only ∼ 106 in the life time of a radio lobe of
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∼ 108 yr. Each supernova results in 1051 ergs of kinetic energy, the rest being emitted in neutri-

nos so that ∼ 1057 ergs of kinetic energy becomes available for the production of magnetic energy

within the necessary time. If one considers the difficulty of summing the magnetic field from many,

presumably incoherent sources, the likelihood of many stellar sources contributing to the coherent

field of radio lobes seems remote.

In order to access this energy of formation the conversion of kinetic to magnetic energy is

required. This in turn requires a mechanism to multiply or exponentiate an initial field up to the

back reaction limit. This limit is where the Ampere force does a large work to significantly alter

the accretion motion thus converting the kinetic energy to magnetic energy. Because the specific

angular momentum of matter accreted onto the CMBH is ∼ 103 to 104 greater than possible for

accretion at rg, the result is the universal Keplerian motion of an accretion disk and so the access of

this free energy must be in the form of a back reaction torque that transforms kinetic to magnetic

energy.

A robust dynamo is one that can potentially convert a large fraction of the available mechanical

energy or free energy of the accretion disk into magnetic energy. A further advantage of the αω

dynamo in the CMBH accretion disk is that the exponential gain within 100 gravitational radii of

the CMBH is so large, some fraction f per turn, or gain = efN , N ∼ 109 turns in the 108 years of

formation, that the origin and strength of the initial (seed) field becomes moot.

1.2. The Robust αω Dynamo

Such a dynamo has conceptually become feasible because of the recognition of a relatively new,

coherent, large scale, robust source of helicity. Helicity generation, in the sense of the αω dynamo,

is the driven deformation of the conducting fluid that converts an amplified (by differential winding)

toroidal field back into the initial, (radial), poloidal field. In our case it is caused by the rotation

of driven, diverging plumes in a rotating frame (Beckley et al. 2003; Mestel 1999; Colgate & Li

1999). The advantage of driven plumes as a source of helicity as compared to turbulent motions

within the disk is that the flow displaces fluid and entrapped flux well above the disk, several

scale heights, and then rotates the flux on average a quarter turn before merging again into the

disk. Such an ideal deformation is then a large coherent (single direction) source of helicity. These

plumes are presumably driven by many stars in orbits repeatedly plunging through the disk, but

comprising only a small mass fraction, ∼ 10−3, of the matter accreted to form and grow the CMBH

to ∼ 108 M⊙. The twisting or relative rotation of the plumes occurs because of partially conserved

angular momentum of the plume itself as its moment of inertia increases due to its expansion or

divergence while progressing in height. The repeatable fractional turn before merging with the disk

occurs because the cooling plume matter falls back to the disk in half a turn of the disk. This

translation and rotation twists the embedded toroidal magnetic field. Furthermore, the angle of

twist is in the same direction for all plumes, opposite to the rotation of the disk, and furthermore

the angle of this twist is limited to ∆φ ≃ −π/2 radians of rotation for each occurrence. This
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nearly ideal repetitive driven deformation leads to a robust dynamo, one where both motions are

not likely to be easily damped by back reaction except at the full Keplerian stress. Such a dynamo

is not dependent upon a net helicity derived from random turbulent motions. The limitation of

turbulently derived helicity due to early back reaction is discussed later, but first we discuss the

preference for a finite angle, specifically (2n + 1)π/4 angle of rotation in n periods of rotation for

an effective helicity. (Preferably n = 0.)

1.3. The Original αω Dynamo

The original proposal of Parker (1955, 1979) of the αω dynamo in rotationally sheared conduct-

ing flows, seemed to be the logical answer to the problem of creating the large, highly organized

fields of stars and galaxies as revealed by polarized synchrotron emission and Faraday rotation

maps. Here the radial component of a poloidal field is wrapped up by differential rotation into

a much stronger toroidal field. Then as proposed by Parker, cyclonic motions of geostrophic flow

twist and displace axially a fraction of the toroidal flux back into the poloidal direction. Subsequent

merger of this small component of poloidal flux with the large scale original poloidal flux by resis-

tive diffusion or reconnection completed the cycle. The later process of merging the small scales to

create the large scales is referred to as mean field dynamo theory. There were two apparently in-

surmountable problems with this theory. The first, as argued by Moffatt (1978) and as discussed in

Roberts & Soward (1992) was that geostrophic cyclonic flows, with negative pressure on axis, make

very many revolutions before dissipating therefore reconnecting the flux in an arbitrary orientation.

Hence, the orientation of any newly formed component of poloidal flux would be averaged to near

zero. The star-disk driven plumes, on the other hand, avoid this difficulty by falling back to the

disk in less than π revolutions of rotation, thereby terminating further rotation by fluid merging

within the disk. The second difficulty was that the large dimensions of interstellar space and finite

resistivity ensured a near infinite magnetic Reynolds number, Rm = Lv/η (L the dimension, v the

velocity and η the resistivity), so that, in general, the resistive reconnection time would become

large compared to the age of the astrophysical object. Consequently newly minted poloidal flux

would never merge with the original poloidal flux.

Currently, although the details of reconnection are poorly understood, it is well recognized

in both astrophysical observations, theory, and in the many fusion confinement experiments that

reconnection occurs astonishingly fast, up to Alvén speed. As a result, physicists concerned with

the problem turned to turbulence as the solution, both to produce a small net helicity as well as

to produce an enhanced resistivity in order to allow reconnection of the fluxes. Furthermore mean

field theory was developed to predict the emergence of large scale fields from the merger of small

scale turbulent motions (Steenbeck, Krause & Rädler 1966; Steenbeck & Krause 1969a,b). Ever

since, mean field turbulent dynamo theory has dominated the subject for the last 40 years.
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1.4. The Turbulent Dynamo

There are two principle problems with turbulent dynamos: first, the difficulty of deriving a

net and sufficient helicity from random turbulent motions, and secondly, the ease with which the

turbulent motions themselves can be suppressed by the back reaction of the field stress, in this

case the multiplied toroidal field (Vainshtein, Parker, & Rosner 1993). Regardless of the source of

such turbulence, i.e., the α viscosity (Shakura & Sunyaev 1973), the magneto-rotational instability

(Balbus & Hawley 1998) or magnetic buoyancy (Chakrabarti, Rosner, & Vainshtein 1994), the tur-

bulent stress will be small compared to the stress of Keplerian motion. The stress of the magnetic

field produced will be limited by the back reaction on this turbulence. As discussed later the back

reaction would limit the stress of the dynamo fields to values very much less than the Keplerian

stress.

The problem of the origin of reconnection remains, but here turbulence in the disk can help

where one needs only assume that the flow of energy in turbulence is always dissipative and that

the fraction of magnetic energy dissipated by this turbulence may be very small yet satisfy the

necessary reconnection. Secondly, fast reconnection (at near Alvén speed) in low beta, collisionless

plasmas has been modeled (Li et al. 2003; Drake et al. 2003).

We note that we are not considering turbulence as a significant source of helicity in the αω

dynamo, yet at the same time invoking turbulence in order to enhance reconnection.

1.5. The Astrophysical Consequences

We are attempting to demonstrate that a robust dynamo in an accretion disk, dependent

upon a small mass fraction of orbiting stars, becomes a dominant magnetic instability of CMBH

formation. To the extent to which this indeed is so and since orbiting stars and Keplerian accretion

are universal, then it becomes difficult to avoid the conclusion that the free energy of formation of

most CMBHs would be converted into magnetic energy.

In our view the magnetic field, both energy and flux, generated by the black hole accretion

disk dynamo presumably powers the jets and the giant magnetized radio lobes. For us both of these

phenomena are most likely the on-going dissipation by reconnection and synchrotron emission of

force-free helices of wound up strong magnetic field produced by the accretion disk dynamo. (The

large scale magnetic flux, as indicated by polarization observations where the correlation length is of

order the distance between bright knots, M87, Owen, Hardee & Bignell (1980) is equally demanding

of the coherence of the dynamo process.) The electromagnetic mechanism of extraction of angular

momentum and energy from the accretion disk has been proposed by Blandford (1976) and Lovelace

(1976). Recently, the process of formation of such a force-free helix by shearing of the foot-points of

the magnetic field by the rotation of the accretion disk has been considered by Lynden-Bell (1996)

and Ustyugova et al. (2000); Li et al. (2001a); Lovelace et al. (2002). The magnetic dynamo in the
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disk is the essential part of the whole emerging picture of the formation and functioning of AGNs,

closely related to the production of magnetic fields within galaxies, within clusters of galaxies, and

the still greater energies and fluxes in the IGM. Black hole formation, Rossby wave torquing of

the accretion disk (Lovelace et al. 1999; Li et al. 2000, 2001b; Colgate et al. 2003), jet formation

(Li et al. 2001a) and magnetic field redistribution by reconnection and flux conversion, and finally

particle acceleration in the radio lobes and jets are the key parts of this scenario (Colgate & Li

1999; Colgate, Li, & Pariev 2001). Finally we note that if almost every galaxy contains a CMBH

and that if a major fraction of the free energy of its formation is converted into magnetic energy,

then only a small fraction of this magnetic energy, as seen in the giant radio lobes (Kronberg et al.

2001), is sufficient to propose a possible feed back in structure formation and in galaxy formation.

1.6. The Back Reaction Limit and Star-Disk Collisions

The main stream of astrophysical dynamo theory is the mean field theory where an exponential

growth of the large scale field is sought, while averaging over small scale motions of the conducting

plasma usually regarded as turbulence.

The behavior of turbulent dynamos at the nonlinear stage i.e., back reaction, when one can no

longer ignore the Ampere force, is not fully understood and is the process of active investigations

(Vainshtein & Cattaneo 1992; Vainshtein, Parker, & Rosner 1993; Field, Blackman, & Chou 1999).

However, as it was argued by Vainshtein & Cattaneo (1992), the growth of magnetic fields as a result

of the action of the kinematic dynamo should lead to the development of strong field filaments with

the diameter of the order of L/Rm1/2, where L is the characteristic size of the system and Rm is

the magnetic Reynolds number. The field in the filaments reaches the equipartition value much

sooner than the large scale field, causing the suppression of the α effect due to the strong Ampere

force or back reaction, acting in the filaments. As a result, turbulent αω dynamos may be able

to account for the generation of the large scale magnetic fields only at the level of Rm−1/2 of the

equipartition value. Finding the mechanism for producing and maintaining large scale helical flows

resulting in a robust α effect is thus very important for the generation of large scale magnetic fields

of the order of the equipartition magnitude.

One way of alleviating the difficulty with the early quenching of the turbulent α-dynamo may

be a nonlinear dynamo, where the α-effect is maintained by the action of the large-scale magnetic

field itself rather than by a small-scale turbulent motions. Such a nonlinear dynamo due to the

buoyancy of the magnetic field in a rotating medium was first proposed by Moffatt (1978). As

magnetic flux tubes are rising, they expand sidewise to maintain the balance of the pressure with

the less dense surrounding gas. This sidewise velocity is claimed to cause the magnetic tube to

bend under the action of the Coriolis force.

Calculations of the nonlinear dynamo applied to the Sun was performed by Schmitt (1987)

and Brandenburg & Schmitt (1998). A somewhat different mechanism for the radial expansion of
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the buoyant magnetic loops (due to the cosmic ray pressure) was proposed in the context of the

Galactic dynamo by Parker (1992) and detailed calculations of the resulting mean field theory were

performed by Moss, Shukurov & Sokoloff (1999). In this case the matter, cosmic rays, would not

fall back to the galaxy surface, but the inertial mass of the cosmic rays is smaller than that of the

galactic matter by ∼ 10−10, again greatly reducing the back reaction limit. The buoyant dynamo

can amplify the weak large-scale magnetic field, Bc ∼ Rm−1/2Bequi, where Bequi is the magnetic

field in equipartition with the turbulent energy. However, the buoyant α is a fraction (generally, a

small fraction) of the velocity of the buoyant rise of the toroidal magnetic fields, uB = C(d/H)1/2vA,

where d is the radius of a flux tube, H is the half thickness of the disk, vA is the Alfvén speed,

and C is a constant of order unity. For Rm ∼ 1015 to 1020 in the accretion disk, Bc ∼ 10−8 to

10−10Bequi. Alfvén speed will be about 10−8 to 10−10 of sound speed. As we show below, star-disk

collisions lead to a large mass ejected above the disk and therefore result in robust, large scale

helical motions of hot gas with the rotation velocity exceeding the sound speed in the disk and,

therefore, 108 to 1010 times faster than the buoyant motions of the magnetic flux tubes. Thus, we

can safely neglect the buoyant dynamo in our calculations of the linear stage of star-disk collision

driven dynamo.

1.7. Star-Disk Collisions

It has now been long realized that the collisions of stars forming the central part of the

star cluster in AGNs with the accretion disk lead to the exchange and stripping (or possibly

growth) of the outer envelopes of stars and also, inevitably, a change in the momentum of the

stars. This makes an important impact on the dynamics of stellar orbits. Thus the evolu-

tion of the central star cluster may contribute to providing accretion mass for the formation of

the CMBH and can account for part of the observed emission from AGNs (Syer, Clarke, & Rees

1991; Artymowicz, Lin, & Wampler 1993; Artymowicz 1994; Rauch 1995; Vokrouhlicky & Karas

1998; Landry & Pineault 1998). Zurek, Siemiginowska, & Colgate (1994) considered the physics of

plasma tails produced after star-disk collisions (see also Zurek, Siemiginowska, & Colgate 1996).

They suggest that emission from these tails may account for the broad lines in quasars. Here we

suggest another consequence of stars passing through the accretion disk, the generation of magnetic

fields.

For this to happen on a large scale and at the Keplerian back reaction limit requires multiple,

repeatable coherent rotation through a finite angle and axial translation of conducting matter well

above the disk. We emphasize the importance of an experimental, laboratory demonstration of the

rotation and translation of plumes, driven by jets in a rotating frame (Beckley et al. 2003). These

laboratory plumes are the analogue of those produced by the star disk collisions, which are the

source of the helicity fundamental to this dynamo mechanism.
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1.8. The Structure of the Accretion Disk

The near universally accepted view of accretion disks is that based upon the transport of

angular momentum by turbulence within the disk. This is the α-disk model, which is also referred

to as the Shakura–Sunyaev and to many is the standard model. This model was developed by

Shakura (1972), Shakura & Sunyaev (1973), and Novikov & Thorne (1973) and since then it has

been widely used for geometrically thin and optically thick accretion disks in moderate to high

luminosity AGNs. In this model the viscous transport coefficient is limited by the vertical size

of an eddy that can ”fit” within the height of the disk, 2H, and the velocity of the eddy of less

than sound speed, cs, within the disk. Thus the maximum possible viscous transport coefficient,

νmax becomes νmax < Hcs, regardless of what source of turbulence or instability one invokes. The

consequence of this limitation is that using the Shakura–Sunyaev formalism, a constant mass flow

and the physics of radiation transport, pressure, and surface emission one obtains a disk around

a typical CMBH of 108M⊙ that has too great a mass thickness at too small a radius, ∼ 0.013 pc

to be consistent within several orders of magnitude with a generally accepted picture of galaxy

formation and angular momentum distribution of a ”flat rotation curve” disk. This difficulty

has been recognized for some time, (Shlosman & Begelman 1989), motivating the consideration

of various alternate transport mechanisms. However, a recent in-depth review of the problem by

Goodman (2003) finds no simple solution.

As an alternative solution we have found in recent years that large scale horizontal vortices can

be excited within a Keplerian disk by appropriate pressure or angular momentum distributions,

closely analogous to Rossby vortices within the disk (Li et al. 2001b). These vortices initially have a

horizontal dimension of ∼ 2 to 4 H. One might then ask what is the difference with the truncation

of eddy size at the disk height of a turbulent disk and the Rossby vortex disk, because both are

truncated initially at the same size. The difference is that the Rossby vortices act coherently and

so each vortex, regardless of size acts to transport angular momentum in one direction only, namely

radially outwards as compared to turbulence, which is a random walk process. Furthermore the

Rossby vortices have a further property of merging leading to larger vortices until rvortex ≃ R/3.

The transport process is then faster or a transport coefficient that can be larger by the ratio

νRossby/νturbulence ≃ r/H ∼ 104, thus making feasible an accretion disk that matches the flat

rotation curve mass and angular momentum distribution of typical galaxy formation. In addition

we also take note of the fact that we have recently suggested that the origin of CMBHs and

their correlated power law velocity dispersion can be surprisingly explained by forming the CMBH

accretion disk using the Rossby vortex instability mechanism rather than the Shakura–Sunyaev

turbulent model (Colgate et al. 2003). This prediction and confirmation by observations as well

as the mass thickness problem is sufficiently provoking that to consider the accretion disk dynamo

model based solely upon the Shakura–Sunyaev model may be misleading. Fortunately the Rossby

vortex instability predicts universally a thinner disk and all disk problems with the dynamo become

less difficult. Still, as it is described in a companion paper II (Pariev, Colgate & Finn 2006), star-

disk collisions driven dynamo operates at radii ∼ 200rg in the accretion disk, where too high mass
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thickness of Shakura–Sunyaev disk is not yet a problem for self-gravity and matching to outside

”flat rotation curve”. Shakura–Sunyaev model is also better developed than Rossby vortex model

at present. Hence, in order to minimize the number of speculative assumptions, we proceed with

our dynamo model based upon the Shakura–Sunyaev disk model and note the alternate differences

when necessary.

This work is arranged as follows: in section 2 we discuss the distribution of stars, in section 3

the structure of the accretion disk, and in section 4 the kinematics of star-disk collisions. Finally,

we end with a summary.

2. Star Clusters, and their Distributions

To proceed with the dynamo problem we need to address the following issues:

1. What is the distribution of stars in coordinate and velocity space in the central star cluster

of an AGN ?

2. What is the velocity, density and conductivity of the plasma in the disk and in the corona of

the disk ?

3. What is the hydrodynamics of the flow resulting from the passage of the star through the

disk ?

Each of these problems is difficult to solve. Moreover, there are no detailed solutions to these

problems up to date. Furthermore they all interrelate. In the following three subsections we present

a brief (far from complete) analysis of each of the problems based on available research and some

of our own conjectures. Because each of these problems interrelate to some degree with each other,

the justification of some assumptions must be delayed. However, as noted above, we will predict

a dynamo gain so large that details of the disk and of the star disk collisions and their frequency

become of secondary importance compared to the existence of the disk, a few stars and the CMBH.

2.1. Kinematics of the Central Star Cluster

By now there is strong observational evidence (e.g., Tremaine et al. 2002; Merritt & Ferrarese

2001; van der Marel 1999; Kormendy et al. 1998; van der Marel et al. 1997) that many galactic

nuclei contain massive dark objects in the range of ≈ 106 − 109 M⊙. Numerical simulations of the

evolution of central dense stellar clusters indicate that they are unstable to the formation of black

holes, which would subsequently grow to larger masses by absorbing more stars (Quinlan & Shapiro

1990). Recent observations and the interpretation of very broad skewed profiles of iron emission line
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(e.g., Tanaka et al. 1995; Bromley, Miller, & Pariev 1998; Fabian et al. 2000) in Seyfert nuclei pro-

vide direct evidence for strong gravitational effects in the vicinity of massive dark objects in AGNs.

This leaves us with conviction that the nuclei of AGNs indeed harbor black holes with accretion

disks (Fabian et al. 1995). Although the observations of star velocities and velocity dispersion are

used to obtain an estimate of the mass of the supermassive black hole, a measurement of the num-

ber density of stars is limited by resolution to about 1 pc for M32 and M31 and about 10 pc for the

nearest ellipticals. From these observations we infer a star density of n(1 pc) ≈ 104 − 106 M⊙pc−3

at 1 pc (Lauer et al. 1995).

One needs to rely on the theory of the evolution of the central star cluster in order to obtain

number densities of stars closer to the black hole. The subject of the evolution of a star cluster

around a supermassive black hole has drawn significant interest in the past. The gravitational po-

tential inside of the central 1 pc will be always dominated by the black hole. Bahcall & Wolf (1976)

showed that, if the evolution of a star cluster is dominated by relaxation, the effect of a central New-

tonian point mass on an isotropic cluster would be to create a density profile n ∝ r−7/4. However, for

small radii (≈ 0.1−1 pc) the effects of physical collisions between stars become dominant over two-

body relaxation. Also, the disk produces a drag on the stellar orbits, which accumulates over many

star passages. The result of the star-disk interactions is to reduce the inclination, eccentricity, and

semimajor axis of an orbit, finally causing the star to be trapped in the disk plane, and so mov-

ing on circular Keplerian orbits (Syer, Clarke, & Rees 1991; Artymowicz, Lin, & Wampler 1993;

Artymowicz 1994; Rauch 1995; Vokrouhlicky & Karas 1998). Closer to the black hole (≤ 100rg ,

rg = 2GM/c2, the gravitational radius) general relativistic corrections to the orbital motions and

tidal disruption of the stars by the black hole must be taken into account. Considering all these

effects and furthermore that the star-star collisions cannot be treated in a Fokker–Plank (or dif-

fusion) approximation, an accurate theory becomes a difficult endeavor, which has not yet been

completed to our knowledge.

To obtain a plausible estimate of the number density and velocity distribution of stars in the

central cluster we will follow the work of Rauch (1999), which addresses all these effects on the

star distribution mentioned above, except the dragging by the disk. Rauch (1999) showed that

star-star collisions lead to the formation of a plateau in the density of stars for small r because of

the large rates of destruction of stars by collisions. We adopt the results of model 4 from Rauch

(1999) as our fiducial model. This model was calculated for all stars having initially one solar mass.

The collisional evolution in model 4 are close to the stationary state, when the combined losses of

stars due to collisions, ejection, tidal disruptions and capture by the black hole are balanced by the

replenishment of stars as a result of two-body relaxation in the outer region with n ∝ r−7/4 density

profile. Taking into account the order of magnitude uncertainties in the observed star density at

1 pc, the fact that model 4 has not quite reached a stationary state can be acceptable for the

purpose of order of magnitude estimates.

For the mass of the black hole we take M = 108M8 M⊙. The radius of the event horizon of

the black hole is rg = 2GM/c2 = 3.0 · 1013 · M8 cm = 9.5 · 10−6 · M8 pc. We then approximate the
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density profile of model 4 as

n = n5 · 105
M⊙

pc3

(

r

1pc

)−7/4

for r > 10−2 pc,

n = n5 · 3 · 108
M⊙

pc3
for 10rt < r < 10−2 pc, (1)

n = 0 for r < 10rt,

where rt = 2.1 · 10−4 pc · M
1/3

8
= 21rg is the tidal disruption radius for a solar mass star, n5 =

n(1 pc)

105 M⊙/pc−3
, M8 = M/108M⊙. An integration of expression (1) over volume produces the number

of stars with impact radii inside a given radius, N(< r), as:

N(< r) = n5 ·
[

106

(

r

1pc

)5/4

− 1.9 · 103

]

stars for r > 10−2 pc,

N(< r) = n5 · 12
[

(

r

10rt

)3

− 1

]

stars for 10rt < r < 10−2 pc, (2)

N(< r) = 0 stars for r < 10rt,

such that N(< 10−2 pc) = 1.3 · 103 n5 stars. Thus in this conservative view there are no star disk

collisions and therefore no dynamo inside 200rg. One notes that the total mass of stars inside

central 0.1 pc remains a small fraction (< 10−2) of CMBH mass.

This extrapolated lack of stars within the inner most regions of the disk presumably occurs

because of star-star collisions and tidal disruption of stars and is independent of disk structure.

The zero n at r < 10rt is a crude approximation to actual decrease in the number density of stars.

This is because we recognize that distant gravitational scattering will lead to some diffusion of stars

from distant regions and thus feeding of stars to the inner regions, limited by rt.

We shall comment further on the influence of the drag by the disk on the above density profile.

Following the formula [1] from Rauch (1999) the probability that the solar mass star on the elliptic

orbit with eccentricity e and the minimum distance from the black hole rmin will experience a

collision with another star during one orbital period is

τcoll = 2 · 10−5 · n5M
−3/4

8
(3 − e)

(

rmin

rg

)−3/4

. (3)

This probability at 100rg or ∼ 10−3 pc becomes

τcoll = 6 · 10−7 · n5M
−3/4

8
(3 − e). (4)

This probability is sufficiently small that the drag of the disk during star-disk collisions can be

more important. In order to evaluate that drag we need to know the surface density in the disk.
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3. Disk Structure and Star Collisions

We adopt the α-disk model, which we also refer to as the Shakura–Sunyaev (Shakura 1972;

Shakura & Sunyaev 1973) model. We also consider the Rossby vortex model for reasons outlined

in the introduction. As noted before, fortunately the Rossby vortex instability predicts universally

a thinner disk and all disk problems with the dynamo become less difficult. Hence we proceed with

our dynamo model based upon the Shakura–Sunyaev disk model and note the alternate differences

when necessary.

For thirty years, the Shakura–Sunyaev disk model has been the most widely used model of the

accretion disk. The expressions for the parameters of the α-disk can be found in original articles

(Shakura 1972; Shakura & Sunyaev 1973) and in many later books (e.g., Shapiro & Teukolsky

1983; Krolik 1999; Bisnovatyi-Kogan 2002). Here, we give the complete set of these expressions

conveniently scaled for our problem (supermassive black hole, radius about 200rg or 10−2 pc) in

Appendix A.

There have been a number of works perfecting and improving the simple analytical Shakura–

Sunyaev model and determining the limits of applicability of this solution to real AGN accretion

disks. Here we leave aside the complex physics of the innermost (≤ 10rg) parts of the accretion flow

because the innermost regions are devoid of stars and so star-disk collisions are almost non-existent

in this region. More realistic bound-free opacities were included by Wandel & Petrosian (1988),

non-LTE models were developed by Hubeny & Hubeny (1997, 1998) in disks with arbitrary optical

depth, and optically thin and optically thick disks, were considered in Artemova et al. (1996).

If one is looking at the interval of disk radii ∼ 100 to ∼ 1000rg , these improvements have some

quantitative effects on the disk structure such as the emitted spectrum may be significantly different

among models. More exact descriptions of the accretion disk come at a price of loosing analytic

simplicity of the expressions for the radial profiles of the density, temperature, disk height, etc.,

while gaining a factor of only a few in accuracy. Because of the approximate nature of our model

(mandated by the poor accuracy of its other ingredients), we prefer to use the simplest of the disk

models, and therefore use the analytic results given in the original works of Shakura and Sunyaev.

The surface density of the α-disk in the inner radiation dominated part, where Compton opacity

prevails, is given by expression (A4) in the Appendix A. When expressed in units of M⊙/R2
⊙, it

becomes

Σ = 9.9 · 10−10
M⊙

R2
⊙

( αss

0.01

)−1
(

lE
0.1

)−1
( ǫ

0.1

)1
(

rc2

GM

)3/2
(

1 −
√

3rg

r

)−1

, (5)

where αss is the “α”-parameter of the disk model, lE is the ratio of the luminosity of the disk to

the Eddington limit for the black hole of mass M , ǫ is the fraction of the rest mass energy of the

accreting matter, which is radiated away. Thus close to rg, Σ = 404 g cm−2. The expression (5)

is valid for a radiation pressure supported disk where r < rab given by expression (A2). For

typical values αss = 0.01, ǫ = 0.1, lE = 0.1, M8 = 1, we obtain rab = 2.3 · 10−3 pc ≈ 240rg and
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Σab = Σ(rab) ≈ 4.2 · 106 g cm−2.

When the disk becomes self gravitating, it may become subject to a gravitational insta-

bility. In Appendix A we check that by calculating the Toomre parameter To =
κcs

πGΣ
(e.g.,

Binney & Tremaine 1994), where κ is the epicyclic frequency and cs is vertically averaged sound

speed. The gravitational instability develops if To < 1. As follows from the analysis in the

Appendix A the disk has a well defined radius of stability rT , such that for r > rT it becomes un-

stable. In the case when rT < rab, the expression for rT is given by formula (A33). For the values

αss = 0.01, ǫ = 0.1, lE = 0.1, M8 = 1 the radius of stability rT falls close to the radius of transition

rab between radiation dominated and gas pressure dominated parts of the disk. The development of

the Jeans instability should lead to the formation of spiral patterns and fragmentation of the disk

(Shlosman & Begelman 1989), which will happen on the radial inflow time scale at a radius ≈ rT .

Therefore, for estimating the drag produced by the disk on the passing stars, we can limit ourselves

to consider only the inner portion of the disk at r < rab and use equation (5) for the disk surface

density. The gas beyond rab may also influence the motion of stars. It is difficult to evaluate the

drag produced on stars passing through gravitationally unstable outer parts of the disk for r > rT .

However, we note that the rate of star-disk collisions is maximized at r . 10rt ∼ rab, so most of

the star-disk collisions happen inside the radiation dominated zone (zone (a)) of the disk.

The Rossby vortex model of the disk predicts a mass thickness of a near constant, 100 g cm−2 <

ΣRV I < 1000 g cm−2. This is about the same as the Shakura–Sunyaev model near to the BH,

but becomes very much less at large radius. Consequently the self gravity condition occurs at a

much larger radius, 3 to 10 pc, and matches smoothly onto the galactic flat rotation curve mass

distribution.

Hereafter, we will use disk parameters in zone (a) listed in Appendix A for the estimates of

star-disk collisions. The disk half-thickness (expression (A5)) expressed in units of rg is

H = 1.15 · rg

(

lE
0.1

)

( ǫ

0.1

)−1

M8

(

1 −
√

3rg

r

)

, (6)

expressed in solar radii

H = 370R⊙

(

lE
0.1

)

( ǫ

0.1

)−1

M8

(

1 −
√

3rg

r

)

, (7)

and expressed as a fraction of rab

H = 3.7 · 10−3rab

( αss

0.01

)−2/21
(

lE
0.1

)5/21
( ǫ

0.1

)−5/21

M
−2/21

8

(

1 −
√

3rg

r

)

. (8)

It is natural to expect that the dynamo growth rate will be also maximized at small radii

primarily within zone (a) where the disk is radiation dominated, but outside of the region, rt ≃ 21rg,

of tidal destruction of stars. However, we should also point out that although proof of principle
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of the dynamo is most likely where the growth rate is maximum, we also expect that regardless of

where the growth rate maximizes, that the back reaction will limit the maximum fields and that

subsequent diffusion outwards (as for the angular momentum) and advection inwards (as for the

mass) will ensure a redistribution of the magnetic flux reaching a new equilibrium presumably less

dependent upon where the maximum dynamo growth rate occurs.

3.1. Star-Disk Interaction

The orbital period of the star is

torb = 3.1 · 103 s · M8

(

rminc2

GM

)3/2

(1 − e)−3/2. (9)

where, as before, rmin is the minimum impact radius of the star’s orbit. The typical velocity of the

star relative to the disk is close to the Keplerian velocity at rmin. Since the speed of sound in the

disk is much smaller than the Keplerian velocity, by the ratio H/r ≃ 3.7 · 10−3, stars pass through

the disk with highly supersonic velocities. The drag force on the star consists of two components,

collisional and gravitational. The collisional or direct drag is produced by intercepting the disk

material by the geometric cross section of the star. Assuming the star to have a solar mass and

radius, this force is Fdrag = πR2
⊙ρv2

∗ , where ρ is the mass density of the gas in the disk, and v∗ is

the velocity of the star relative to the disk gas. Radiation drag is negligible compared to gas drag as

soon as the speed of sound is nonrelativistic, i.e. cs ≪ c. The second component of the drag force is

due to deflection of the gas by the gravitational field of the star. Rephaeli & Salpeter (1980) found

that the latter component is nonzero only for supersonic motion and gave the following expression

for that force in the limit v∗ ≫ cs

Fgrav = 4π
G2M2

⊙

v2
∗

ρ ln Λ, (10)

where Λ is the Coulomb logarithm. The ratio of the two forces is

Fdrag

Fgrav
=

R2
⊙v4

∗

G2M2
⊙ 4 ln Λ

. (11)

Using for v∗ its Keplerian value v∗ = (GM/r)−1/2, and using for the Coulomb logarithm its maxi-

mum possible value Λ = r/R⊙, one obtains the ratio of the forces as

Fdrag

Fgrav
=

1.03 · 1010

1 + 0.19 ln(M8
c2r
GM )

(

GM

c2r

)2

. (12)

One can see from equation (12) that the force due to the direct interception of gas by the

star is much larger than the drag caused by the gravitational drag for all values of r of interest

to us r . 105rg. Thus, we can consider the change of momentum caused by the disk on passing
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stars as purely due to the interception of the gas by the geometrical cross section of the star πR2
⊙.

Hence, the characteristic time needed to substantially change the star orbit as a result of star-disk

interactions, tdisk, is approximately equal to the time needed for the star to intercept the disk

mass equal to the mass of the star. A star will pass through the disk twice per one orbital period.

Assuming all stars as having a solar mass and radius, the ratio of the orbital period to tdisk is

τdisk =
torb

tdisk
≈

2ΣπR2
⊙

M⊙

.

Using expression (5) for Σ in the region r < rab one obtains

τdisk = 6.2 · 10−9

( αss

0.01

)−1
(

lE
0.1

)−1 ǫ

0.1

(

c2rmin

GM

)3/2(

1 −
√

3rg

rmin

)−1

. (13)

The corresponding star-disk interaction time scale tdisk is given by

tdisk = 1.58 · 104 yr · αss

0.01

lE
0.1

( ǫ

0.1

)−1

M
−1/2

8

1

(1 − e)3/2

(

1 −
√

3rg

rmin

)

, (14)

and is independent of the semi-major axis of the star orbit. As was shown by Rauch (1995) secular

evolution of all orbital elements of a star happen at the same time scale tdisk from equation (14).

The ratio of τdisk to τcoll (equation (3)) is given by

τdisk

τcoll
= 1.8 · 10−4 n−1

5

1

3 − e
M

3/4

8

( αss

0.01

)−1
(

lE
0.1

)−1
( ǫ

0.1

)1
(

c2r

GM

)9/4(

1 −
√

3rg

rmin

)−1

. (15)

For orbits with rmin ≤ 30rg one has τdisk < τcoll and the effect of star-star collisions dominates

over the effect of star-disk collisions (assuming typical parameters for the disk). For the radii

30rg ≤ rmin ≤ rT the orbit evolution is more influenced by the drag from the disk rather than by

star-star collisions. (We note that this radius, 30rg, is only slightly greater than the gravitational

disruption radius by the CMBH, rt ≃ 20rg.) Only a fraction of stars from the outer region located

beyond ≈ 1000rg will not be put into the disk plane by star-disk drag. Results of Rauch (1995)

show that it takes a considerably longer time than tdisk to reorient the retrograde star orbits.

During this reorientation process the semimajor axes of initially retrograde star orbits decreases

by ≈ 10 times. Before the alignment process for such stars could be completed they will move in

radius closer than ≈ 30rg into the star-star collisions zone, where their orbital inclinations would

be randomized. Another factor preventing all stars from being trapped into the disk plane is that

there is always a fraction of stars which are injected by two body relaxation into the neighborhood

of the black hole from large (much larger than rT ) radii. These stars can be brought directly into

the region r ≤ 30rg (or close to it) and contribute to the collisional core of the stellar cluster.

To summarize, both star-disk and star-star collisions can be important for determining the

distribution function in the central star cluster. However, it seems unlikely that the drag by the

disk can trap all stars into the disk plane and denude the central ≈ 10−3 pc of all stars not in the

disk plane. Trapping of stars by the disk will reduce the numbers of stars given by (1) but this
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requires more evolved computations, which are beyond the scope of the present work. Both star-

star collisions and the effect of trapping by the disk of the stars having lower eccentricities faster

than the stars having larger eccentricities leads to highly eccentric orbits of stars in the central

≈ 10−3 pc. Drag by the disk will also lead to the prevailing of prograde orbits over the retrograde

orbits. However, for our purpose, we assume that the star density is given by equations (1), all

stars have e = 1 and their orbits are randomly oriented in space. (This approximation is better in

the model of the disk driven by Rossby vortices.)

3.2. The Rate of Star-Disk Collisions

We shall use the number density of stars, n, given by equation (1) in order to evaluate the

rate of star-disk collisions. The flux of stars through the disk coming from one side of it is nv/4,

where we assume that all stars have the same velocity v =
√

2(rΩK) (parabolic velocity) and are

distributed isotropically. One obtains then for M8 = 1

1

4
nv = 2.4 · 10−39

1

cm2s
n5

(

r

10−2 pc

)−9/4

for r > 10−2 pc,

1

4
nv = 2.4 · 10−39

1

cm2s
n5

(

r

10−2 pc

)−1/2

for 10rt < r < 10−2 pc, (16)

1

4
nv = 0 for r < 10rt.

Integrating the flux of stars coming from both sides of the disk over an area of πr2 inside some

given radius r, one can estimate the rate of star-disk collisions within the radius r. Let us define

the time ∆Tc = ∆Tc(r) as the inverse of this rate, i.e. one star passes through the disk area inside

the radius r during the time ∆Tc on average. The result is (see equation (1))

∆Tc =
2π

ΩK(r)
· 2.8 · 10−5 · n−1

5

(

r

10−2 pc

)−3/2

for r > 10−2 pc,

∆Tc =
2π

ΩK(r)

1.9 · 10−2

n5

(

r
10rt

)3/2
(

(

r
10rt

)3/2

− 1

) for 10rt < r < 10−2pc, (17)

∆Tc = ∞ for r < 10rt (no collisions),

where 2π/ΩK(r) = TK(r) is the period of Keplerian circular orbit at the radial distance r from

the black hole. We see that the number of star-disk collisions happening per Keplerian period,

TK(r), is ∝ r3 inside the collisional core of the star cluster, e.g. within ≈ 10−2 pc. For the outer

region of the stellar cluster beyond ≈ 10−2 pc this number continues to increase with r but more

slowly, as ∝ r3/2. The number of collisions per Keplerian period at 0.01 pc is ∼ 30, 000, leading to

fluctuations of the order of 1% within an orbital time of several years.

If these collisions should produce broad emission and absorption lines regions, (BLRs), then

this result may not be inconsistent with observations. Estimates of the density of the matter
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leading to the broad emission lines from the interpretation of allowed and forbidden transitions

give a density of ρBL ∼ 10−11 to 10−13 g/cm3, (Sulentic, Marziani & Dultzin-Hacyan 2000). The

geometrical thickness of the disk H in radiative pressure dominated inner zone is independent of

the disk model and the mechanism of angular momentum transport and is given by equation (A5).

In thermal pressure dominated part of the disk, H weakly depends on Σ as H ∝ Σ1/8. Only in

the case of the RVI disk does the low thickness, ΣRV I ∼ 102 to 103 g/cm3, lead to a sufficiently low

density, ρRV I = ΣRV I/H ≃ ΣRV I · 3 · 10−14 g/cm3, which is consistent with the above estimates for

the density of the star-disk driven matter emitting the broad emission lines. On the other hand,

the Shakura–Sunyaev disk would be expected to have a density ρSS given by expression (A6) in

the radiation dominated zone (a) and expression (A25) in the pressure dominated zone (b). If one

equates the observed width of broad emission lines (∼ 7·103 km/s) to the Doppler shift at Keplerian

velocity, one obtains an estimate of the location of the broad lines region at r ∼ 103rg. This radius

falls not far from the boundary between zones (a) and (b) in the Shakura–Sunyaev disk model

(see expression (A2)). The density of the Shakura–Sunyaev disk at this radius is ∼ 10−6 g/cm3 to

10−8 g/cm3 depending upon the parameters of the model. This is at least 5 orders of magnitude

larger than ρBL required by observations. The differences in ρ for Shakura–Sunyaev and RVI disks

are almost completely attributable to the much lower column thickness ΣRV I than Σ for Shakura–

Sunyaev model. Regardless, the function of the plumes for producing the helicity for the dynamo

should be independent of these differences in the models of the disk.

Star disk collisions were first suggested as the source of the BLRs by Zurek, Siemiginowska, & Colgate

(1994), Zurek, Siemiginowska, & Colgate (1996), but a detailed calculation of the phenomena has

not yet been performed, because it requires 3-D hydrodynamics with radiation flow and opacities de-

termined by multiple lines. An approximation to this problem was calculated by Armitage, Zurek & Davies

(1996) for the purpose of determining the mass accretion rate of giant stars by dynamic friction

with the disk, but the radiation flow in thin disks was not considered. We recognize that very

many additional variables of hydrodynamics, radiation, and geometry must be taken into account

in order to positively identify BLRs with star disk collisions. With these caveats we proceed to

analyze the star collisions with the disk and the resulting plume formation from the standpoint of

the fluid dynamics that has consequences for the dynamo.

4. Plumes Produced by Star Passages through the Disk

The first result of a star-disk collision is to cause a local fraction of the mass of the disk to rise

above the surface of the disk because of the heat generated by the collision. Two plumes expanding

on both sides of the accretion disk will be formed. A second result is the expansion of this rising mass

fraction relative to its vertical axis in the relative vacuum above the disk surface and again because

of the internal heat generated by the collision. A third result is the rotation (anticyclonic) of this

expanding matter relative to the Keplerian frame corotating with the disk because of the Coriolis

force acting on the expanding matter. Again we emphasize that this rotation through a finite angle
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has been measured in the laboratory and agrees with a simple theory of conservation of angular

momentum and radial expansion of the plume (Beckley et al. 2003). All three effects are important

to the dynamo gain. However, we will find that the dynamo gain during the life time of the accretion

disk, ∼ 108 years, is so large that the accuracy of the detailed description of these ”plumes” becomes

of less importance compared to the facts of: (1) their axial displacement well above the disk; (2)

their finite, ∼ π/2 radians, coherent rotation every star-disk collision; and (3) their subsidence

back to the disk in ∼ π radians. In this spirit we will estimate the hydrodynamics of the star-disk

collision, attempting to establish the universality of this phenomena as the basis of the accretion

disk dynamo. As far as we know no hydrodynamic simulations of the behavior of the disk matter

due to stars passing through the disk have yet been performed. (This is because of the difficulty of

3-dimensional hydrodynamics with radiation flow.) The star passes through the disk at a velocity,

close to the Keplerian velocity of the disk at whatever radius the collision happens. The sound

speed in the accretion disk is much less than the Keplerian speed vK : cs ≃ vKH/r ≃ 3 · 10−3 vK at

rab, where H is the disk half-thickness given by expression (A5) in zone (a). Hence, the star-disk

collisions are highly supersonic. The temperature of the gas in the disk, shocked by the star moving

at a Keplerian velocity, is of the order of the virial temperature in the gravitational potential of

the central black hole. This pressure must include the radiation contribution, which in general, will

be much larger than the particle pressure. Because of the high Mach number of the collision, the

pressure of the shocked gas is very much greater than the ambient pressure in the disk. This over

pressure will cause a strong, primarily radial shock, radial from the axis of the trajectory, in the

wake of the star, because of the large, length to diameter ratio of the hot channel, H/R⊙ ≃ 4 · 102.

After the star emerges above the disk surface (i.e. higher than the half thickness of the disk), the

heated shocked gas in the wake of the star continues to expand sideways and furthermore starts to

expand vertically because of the rapidly decreasing ambient pressure away from the disk mid-plane

where the pressure of the disk drops as ∝ exp(−z2/H2). Thus this expansion can be treated as

an adiabatic expansion into vacuum after the plume rises by a few heights H above and below the

disk, provided the radiative loss is fractionally small. We would now like to estimate the size, or

radius, rp, of the matter that rises ∼ 2H above the disk, or to a height l ≃ 3H above the mid-plane.

Although smaller mass fractions with greater internal energy corresponding to smaller radii of the

shock will expand to greater heights above the disk, nevertheless we are concerned with only this

modest height, because we expect that the mass and hence entrained magnetic flux to be positively

correlated with plume mass, and we wish to maximize the entrained flux. On the other hand, by

conservation of energy, a larger mass will rise or expand to a smaller height. We also desire the

plume to rise sufficiently above the disk such that there is ample time for radial expansion and

hence torquing of the entrained magnetic field during the rise and fall of the plume material. This

will be our standard plume.

The radial extend of the plume should be somewhat less than its vertical extend because the

density gradient in the disk is largest in the vertical direction. The action of the Coriolis force

leads to an elliptical shape of the horizontal cross section of the plume. This is due to the fact that

epicycles of particles in the gravitational field of a point mass are ellipses with an axis ratio of 2
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and with an epicyclic frequency of ΩK . We performed simple ballistic calculations of trajectories

of particles launched from a point at the mid-plane of the disk with initial velocities in different

directions in the horizontal plane. We obtained that at the time of maximum height of the plume,

≈ TK/4, the position angle of the major axis of the ellipse is approximately −π/4 from the outward

radial direction er. At the time of the fall back to the disk plane at ≈ TK/2, the major axis of the

ellipse is close to the azimuthal direction. Such a distortion in the shape of an otherwise cylindrical

plume will only slightly affect the rotation of the entrapped toroidal flux and hence will not alter

the dynamo action.

Before calculating the size or radius, rp, we first verify the adiabatic approximation in that

the diffusion of radiation is fractionally small compared to the hydrodynamic displacements. In

this circumstance of a Shakura–Sunyaev disk, this will allow us to treat the star-disk collisions as

strong shocks within the disk matter. Subsequently we will consider the thinner, lower density

Rossby disks (Li et al. 2001b) where radiation transport will dominate over shock hydrodynamics.

However, for the purposes of the dynamo, the production of helicity from either plumes will be

similar.

4.1. Radiation Diffusion in the Collision Shock

During star-disk collisions the total energy taken from the star is ≈ Σv2

KπR2
⊙. This energy

is distributed over a column of radial extent, ∆Rrad, due to radiation transport. For an estimate

of ∆Rrad one can take the distance from the star track where the sideways diffusion of radiation

becomes comparable with the advection of the radiation by the displacement of the disk matter

with the star velocity vK (since the velocity of strong shock is of the order of vK). This results in

∆Rrad =
c/3

κρvK
, (18)

where for ρ we consider the density ahead of the shock in the undisturbed disk matter to compare

the radiation flux with the transport of energy and momentum by the shock. We assume κ =

0.4 cm2g−1, Thompson opacity. Then using ρ from expression (A6) at rab,

∆Rrad = 108 cm = 1.4 · 10−3R⊙. (19)

Since ∆Rrad ≪ R⊙, the radiation will remain local to the shocked fluid. The state conditions in

this shocked matter will depend upon the rapid thermalization between the matter and radiation.

The number of photon scatterings, nhν within the time of traversal of the radiation front,

∆Rrad, becomes

nhν = (∆Rradκρ)2 =

(

c/3

vK

)2

= 50

(

r

rab

)

. (20)

Therefore the radiation will be fully absorbed and thermalized with the gas within ∆Rrad. Since

the gas pressure is radiation dominated for r < rab and the shock has a high Mach number,
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cs/vK ≈ r/H ≃ 280 at rab, then the shocked matter will have a still higher entropy and be even

further radiation dominated. In a strong shock the energy behind the shock will be half kinetic

and half internal energy, where in this case the radiation pressure dominates. Thus the subsequent

evolution of the radiation dominated gas will be governed by adiabatic hydrodynamics of the fluid

with a polytropic index γ = 4/3.

4.2. The Shock Produced by the Collision and Its Radial Expansion

Since the initial radius of the shocked gas is that of the star and since this radius is small

compared to the path length through the disk, H, or H/R⊙ ≈ 370 at r = rab, we make the

assumption that the collision can be approximated as a line source of energy with the energy

deposition per unit length Σv2

KπR2
⊙, and consider the shock wave as expanding radially from the

trajectory axis. This can be well described as one of the sequence of Sedov solutions (Sedov 1959)

of an expanding cylindrical shock in a uniform medium. However, for the purposes of the accuracy

required for our plume approximation it is sufficient to note that the energy density left behind

the shock, ǫshk, is nearly inversely proportional to the swept-up mass, or ǫshk ≃ ǫshk,R⊙(R⊙/Rshk)
2

where ǫshk,R⊙ ≃ v2

K/2. This increase in energy density leads to an increase in the pressure of the

shocked gas Pshk relative to the ambient pressure Po: Pshk,R⊙
(z) ≃ ρv2

K ≫ Po(z) for all z. The high

pressure of the shocked gas near the axis of the channel will drive the shock to larger radii while

expanding adiabatically behind the shock. Near the surface, Rshk ≃ z the shocked gas can expand

vertically as well as horizontally. However, to the extent that when the shock is strong, Rshk ≪ H,

the radial shock will have decreased in strength before the star reaches the surface and the over

pressure becomes too small except for a small mass fraction of the surface mass, ∆z ≃ Rshk ≪ H,

that will expand vertically above the disk surface.

However, a larger mass will expand above the disk due to buoyancy. In this case the vertical mo-

mentum is derived primarily from the difference of gravitational forces on the buoyant matter versus

the ambient matter. The buoyant force is proportional to the entropy ratio. A strong shock leaves

behind matter whose entropy is higher than the ambient medium. Since the entropy change due to

a shock wave is third order in the shock strength (Courant & Friedrichs 1948; Zeldovich & Raizer

1967), only strong shocks result in significant changes in entropy. In this limit the entropy change

∆S from the ambient entropy So is ∆S/So ∝ ∆(P/ρ)/(Po/ρ) ≃ (Pshk/Po)((γ − 1)/(γ + 1)) where

γ is the usual ratio of specific heats, and ρ is the ambient density. The compression ratio is

ηCR = ρshk/ρ = (γ + 1)/(γ − 1) = 7 across a strong shock for γ = 4/3. Thus, for example, for

a plume to rise well above the disk requires an estimated ∆S/So ≥ 2 and thus Pshk/Po ≃ 14 .

Once the hot shocked gas rises to the surface of the disk and assuming that this flow is adiabatic

thereafter and thus does not entrain a significant fraction of surrounding matter, the subsequent

expansion above the disk is determined by its initial internal energy.

Let us consider the neighborhood of a point r = r0 at the mid-plane of the disk where a star

disk collision occurs. One can introduce a local Cartesian coordinate system x, y, z in the Keplerian
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rotating frame with the origin at the point r = r0 such that the x-axis is directed radially outward,

the y-axis is directed in the positive azimuthal direction, and the z-axis is perpendicular to the disk

plane. Then, the effective gravitational and centrifugal potential in the Keplerian rotating frame

in the neighborhood of the point r = r0 is

∆Φ =
GM

2r3

0

(z2 − 3x2). (21)

The thermal energy of the hot column of gas is a fraction of the loss of kinetic energy of the star

due to the hydrodynamic collision with the disk. This latter energy loss during one passage is

Fdrag2H = 2HπR2
⊙ρv2

∗ = πR2
⊙Σv2

∗ .

Without a hydrodynamic simulation in 3-dimensions an accurate description is missing. Nev-

ertheless it is sufficient to approximate the solution as that fraction of the disk matter that has

an internal energy density, ǫshk greater than that of the ambient disk by that factor such that it

will rise to a height, z, determined by its potential energy, or ∆Φ =
GMz2

2r3
(equation (21)). Since

∆S/So = ǫshk/ǫo, where ǫo ≃ ∆Φ(H) =
GMH2

2r3
, then in order for a plume to rise above the disk

mid-plane to a height, l,

(

l

H

)2

≃
(

ǫshk

ǫo

)

≃
(

vK

cs

)2( R⊙

Rshk

)2

≃
( r

H

)2
(

R⊙

Rshk

)2

. (22)

We are concerned with plumes that rise well above the disk so that they can expand horizontally

by a factor several times the plume’s original radius. In this case the moment of inertia of the

plume about its own axis will be increased by several times before falling back to the disk. This

causes the plume to reduce its own rotation rate relative to the frame of the disk, that is to untwist

relative to that frame. For this expansion to take place, the plume must rise roughly ∼ 2H above

the disk, or l ≃ 3H. At this height the pressure of the hydrostatic isothermal atmosphere with the

density profile as ∝ exp(−z2/H2) becomes negligible compared to that of the plume, and so the

hot gas of the plume can expand both vertically and horizontally as a free expansion. With this l

we get
Rshk

R⊙

≃ 1

3

r

H
. (23)

Using expression (8) for H/r at r ≤ rab we obtain

Rshk ≃ 0.24H
( αss

0.01

)2/21
(

lE
0.1

)−26/21
( ǫ

0.1

)26/21

M
−19/21

8

r

rab

(

1 −
√

3rg

r

)−2

, (24)

Thus a plume, starting from a size, Rshk < H will expand to a size ≃ 2H both vertically and

horizontally, thus producing a near spherical bubble with radius rp = H above the disk. Post shock

expansion will increase the estimate of Rshk somewhat. For simplicity we will use Rshk = H/2 for

estimates of the toroidal flux entrained in the plumes in paper II. This is our standard plume.
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Finally we note that the rise and fall time of this plume should be the half orbit time, corre-

sponding to a ballistic trajectory above and back to the surface of the disk. Hence, tplume ≃ π/Ω

or a plume rotation angle of π radians. We next consider the twisting of the plume leading to its

effective helicity.

4.3. The Untwisting or Helicity Generation by the Plume

Thus the plume should expand to several times its original radius by the time it reaches the

height of the order 2H. The corresponding increase in the moment of inertia of the plume and the

conservation of the angular momentum of the plume causes the plume to rotate slower relative to

the inertial frame (Beckley et al. 2003; Mestel 1999; Colgate & Li 1999). From the viewpoint of the

observer in the frame corotating with the Keplerian flow at the radius of the disk of the plume, this

means that the plume rotates in the direction opposite to the Keplerian rotation with an angular

velocity equal to some fraction of the local Keplerian angular velocity depending upon the radial

expansion ratio. Since the expansion of the plume will not be infinite in the rise and fall time of

π radians of Keplerian rotation of the disk, we expect that the average of the plume rotation will

be correspondingly less, or ∆φ < π or ∼ π/2 radians. Any force or frictional drag that resists this

rotation will be countered by the Coriolis force. Finally we note that kinetic helicity is proportional

to

h = v · (∇× v). (25)

For the dynamo one requires one additional dynamic property of the plumes. This is, that the total

rotation angle must be finite and preferably ≃ π/2 radians, otherwise a larger angle or after many

turns the vector of the entrained magnetic field would average to a small value and consequently the

dynamo growth rate would be correspondingly small. This property of finite rotation, ∆φ ∼ π/2

radians, is a fundamental property of plumes produced above a Keplerian disk.

5. Summary

Thus we have derived the approximate properties of an accretion disk around a massive black

hole, the high probability of star-disk collisions, the three necessary properties of the resulting

plumes all necessary for a robust dynamo. What is missing from this description is the necessary

electrical properties of the medium. However, since the required conductivity is so closely related to

the mechanism of the dynamo itself, we leave it to the following paper II (Pariev, Colgate & Finn

2006), a discussion of this remaining property of the hydrodynamic accretion disk flows necessary

for a robust accretion disk dynamo. With this exception we feel confident that an accretion disk

forming a CMBH with its associated star disk collisions is nearly ideal for forming a robust feed-

back-limited dynamo and thus, potentially converting a major fraction of the gravitational free

energy of massive black hole formation into magnetic energy.
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A. Parameters of Shakura–Sunyaev Disk

In the subsequent estimates of the disk physical parameters we will keep the radius of the disk

r, where the star-disk collisions happen, Shakura–Sunyaev viscosity parameter αss, ratio of the disk

luminosity to the Eddington luminosity lE , fraction ǫ of the rest mass accretion flux Ṁc2, which is

radiated away, as parameters. We will assume them to be within an order of magnitude from their

typical values of importance for the dynamo problem, which are the following

αss = 0.01, lE = 0.1, ǫ = 0.1, r = 10−2 pc. (A1)

The flux of the stars through the disk, nv/4, peaks at the radii inside r = 10−2 pc (see section 3.2),

therefore we need to know the physics of the accretion disk at r ∼ 10−2 pc. Below, we will define

the gravitational radius as rg = 2GM/c2 = 3.0 · 1013M8 cm = 9.5 · 10−6M8 pc. All formulae for

the structure of Shakura–Sunyaev disk are written for an arbitrary value of the black hole mass

M = 108M8M⊙. However, we will consider only M = 108 M⊙ whenever we invoke the model for

the star distribution in the central cluster, because the best available model of the central star

cluster was calculated for the M = 108M⊙ (section 2.1). Finally, the accuracy of expressions for

the disk parameters is only one significant figure in all cases, and we keep two or even three figures

only to avoid introducing additional round off errors, when using our expressions. Similarly, one

should not be concerned about small jumps of values across the boundaries with different physical

approximations: a more elaborate treatment is needed to find exact matching solutions there,

although the physical principles are unchanged.

We use formulae from the Shakura & Sunyaev (1973) article to obtain estimate of the state of

the accretion disk. We assume the Schwarzschild black hole with the inner edge of the disk being

at 3rg. However, since we consider star-disk collisions happening at ∼ 103rg, general relativistic

corrections are only at a level less than few per cents and do not matter for our approximate

treatment of star-disk collision hydrodynamics. All expressions for disk quantities below were also

verified in later textbooks by Shapiro & Teukolsky (1983) and Krolik (1999).

The inner part of the disk (part (a) as in Shakura & Sunyaev (1973)) is radiation dominated
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and the opacity is dominated by Thomson scattering. In the next zone (part (b)) the opacity is

still Thomson, while the gas pressure exceeds radiation pressure. In the outer most zone (part (c))

the opacity becomes dominated by free-free and bound-free transitions. The boundary between

parts (a) and (b) rab is given by an expression

rab = 236rg

( αss

0.01

)2/21
(

M

108 M⊙

)2/21( lE
0.1

)16/21
( ǫ

0.1

)−16/21

. (A2)

The boundary between parts (b) and (c) rbc is given by the following expression

rbc = 3.4 · 103rg

(

lE
0.1

)2/3
( ǫ

0.1

)−2/3

. (A3)

One can see that, generally, rbc > 10−2 pc. Therefore, we may consider zones (a) and (b) only, for

our purpose of addressing star-disk collisions.

First, we will list parameters following from solving for the vertically averaged radial distribu-

tions of physical parameters inside the zone (a). The surface density is

Σ = 407 g cm−2
0.01

αss

(

lE
0.1

)−1
( ǫ

0.1

)

(

rc2

GM

)3/2
(

1 −
√

3rg

r

)−1

= 4.2 · 106 g cm−2

( αss

0.01

)−6/7
(

lE
0.1

0.1

ǫ

)1/7

M
1/7

8

(

r

rab

)3/2

. (A4)

The half thickness of the disk is

H = 2.6 · 1013 cm
lE
0.1

( ǫ

0.1

)−1

M8

(

1 −
√

3rg

r

)

. (A5)

This H depends upon the radius only via general relativistic corrections. So, the disk has asymp-

totically constant thickness for values of r ≫ rg (Shakura & Sunyaev 1973; Krolik 1999). Moreover,

H does not depend on αss in zone (a) and so H is also independent on the mechanizm of angular

momentum transport. The corresponding density is

ρ =
Σ

2H
= 7.5 · 10−7 g cm−3

0.01

αss

(

lE
0.1

)−2
( ǫ

0.1

)2

×

(

r

10−2 pc

)3/2

M
−5/2

8

(

1 −
√

3rg

r

)−2

. (A6)

At the luminosity of an AGN

L = 1.3 · 1045

(

lE
0.1

)

M8 erg s−1, (A7)

the mass flux is

Ṁ = 0.23M⊙yr−1

(

0.1

ǫ

)(

lE
0.1

)

M8 = 1.4 · 1025 g s−1

(

0.1

ǫ

)(

lE
0.1

)

M8. (A8)
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The energy emitted from the unit surface of the one side of the disk per unit time is

Q =
3

8π
Ṁ

GM

R3

(

1 −
√

3rg

r

)

= 7.6 · 108 erg cm−2s−1

(

0.1

ǫ

)(

lE
0.1

)

×

(

r

10−2 pc

)−3

M2

8

(

1 −
√

3rg

r

)

. (A9)

The effective temperature near the surface of the disk is

Q =
ac

4
T 4

s , Ts = 1900K

(

0.1

ǫ

)1/4( lE
0.1

)1/4

×

(

r

10−2 pc

)−3/4

M
1/2

8

(

1 −
√

3rg

r

)1/4

. (A10)

The article by Shakura & Sunyaev (1973) contains the solution of the radiative transport equation

in the vertical direction of an optically thick disk with assumed local thermodynamic equilibrium

for each z in the disk. Volume emission due to viscous heating is included in the solution. Using this

solution with the Thomson opacity κT = 0.4 cm2g−1 one obtains (section 2a of Shakura & Sunyaev

1973) the temperature at the midplane of the disk

T 4

mpd = T 4

s

(

1 +
3

16
κT Σ

)

. (A11)

Since the disk is very opaque for Thomson scattering one can neglect 1 in the expression (A11) and

obtains

Tmpd = Ts · 41.3
(

0.01

αss

)1/4 ( lE
0.1

)−1/4
( ǫ

0.1

)1/4

×

(

r

10−2 pc

)3/8

M
−3/8

8

(

1 −
√

3rg

r

)−1/4

. (A12)

Using expression (A10) for the effective surface temperature Ts and substituting for Ts in the

equation (A12) one obtains

Tmpd = 7.9 · 104 K

(

0.01

αss

)1/4( r

10−2 pc

)−3/8

M
1/8

8
. (A13)

Note that the terms describing the dependence on the accretion rate cancel out as well as general

relativistic correction term. Therefore, Tmpd in the inner parts of accretion disk does not depend on

the accretion rate, but is determined by the mass of the central black hole and viscosity parameter

αss. Radiation pressure in the midplane of the disk in the zone (a) is

Pr =
1

3
aT 4

mpd = 1.07 · 105 erg cm−3
0.01

αss
M

1/2

8

(

r

10−2 pc

)−3/2

. (A14)
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By integrating surface density (A4) one can obtain the total mass of the disk inside radius r

(assuming r ≫ rg)

Mdisk = 108 M⊙M8

(

r

rsg

)7/2

, (A15)

where the radius rsg, inside of which the mass of the disk is equal to the mass of the black hole, is

given by

rsg = 1400rg · M−2/7

8

( αss

0.01

)2/7
(

lE
0.1

)2/7
( ǫ

0.1

)−2/7

. (A16)

Since the total mass of the disk grows very rapidly with the radius r, the gravitational potential of

the disk would dominate the gravitational potential of the black hole for r > rsg. As follows from

comparing expressions (A2) and (A16) rsg > rab in general. More exactly, the condition rsg > rab

reduces to

M
−8/21

8

( αss

0.01

)4/21
(

lE
0.1

)−10/21
( ǫ

0.1

)10/21

> 0.165. (A17)

The dependence of the left hand side of equation (A17) on the black hole mass M8 and viscosity

parameter αss is weak. One also expects the efficiency of radiation ǫ to be within the order of

magnitude from the value 0.1. The largest variations are expected for the luminosity lE . However,

even for lE = 1, still rab < rsg. Generally, the mass of the inner zone of the disk is small compared

to the mass of the black hole. Below we assume rab < rsg to be always satisfied. The total mass of

the inner part of the disk enclosed inside r < rab is

M(rab) = 1.83 · 105 M⊙

( αss

0.01

)−2/3

M
7/3

8

(

lE
0.1

)5/3
( ǫ

0.1

)−5/3

, (A18)

which is, generally, much smaller than the mass 108M8M⊙ of the black hole.

In the zone (b) the surface density is given by

Σ = 1.75 · 108 g cm−2

( αss

0.01

)−4/5
(

lE
0.1

)3/5
( ǫ

0.1

)−3/5

M
1/5

8

(

rc2

GM

)−3/5

= 4.4 · 106 g cm−2

(

r

rab

)−3/5
( αss

0.01

)−6/7

M
1/7

8

(

lE
0.1

0.1

ǫ

)1/7

. (A19)

The integral of this surface density from rab to any given r gives the mass enclosed between rab and

r as

Mb(r) = 85M⊙

[

( r

M

)7/5

−
(rab

M

)7/5
]

( αss

0.01

)−4/5

×
(

lE
0.1

)3/5
( ǫ

0.1

)−3/5

M
11/5

8
. (A20)

Now we can estimate the value of r = rsg such that Mb(rsg) = 108 M8M⊙ (neglecting the con-

tribution from the part (a) of the disk). Neglecting 1 compared to the ratio rsg/rab ≫ 1, one
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obtains
rsg

rab
≈ 46M

−20/21

8

( αss

0.01

)10/21
(

lE
0.1

)−25/21
( ǫ

0.1

)25/21

. (A21)

The logarithmic width of the zone (b), i.e. the ratio rbc/rab, is given by

rbc

rab
= 14.4

( αss

0.01

)−2/21

M
−2/21

8

(

lE
0.1

)−2/21
( ǫ

0.1

)2/21

, (A22)

i.e. almost a constant, depending on all parameters of the disk and the black hole very weakly.

Depending upon parameters, rsg maybe inside or outside the rbc, however, as we show next, the

disk in part (b) is unstable to fragmentation caused by self gravity, which makes the question on

whether the exact position of rsg is with respect to rbc unimportant. The expressions for radiation

flux Q and surface temperature of the disk Ts remain the same as in the part (a) of the disk, namely

given by the expressions (A9) and (A10). For the temperature at the midplane of the disk one can

obtain from formula (A11)

Tmpd = 3.5 · 107 K
( αss

0.01

)−1/5
(

0.1

ǫ

lE
0.1

)2/5( rc2

GM

)−9/10

M
−1/5

8
. (A23)

The characteristic thickness of the disk is given by

H = 2.75 · 1010 cm
( αss

0.01

)−1/10
(

0.1

ǫ

lE
0.1

)1/5

M
9/10

8

(

rc2

GM

)21/20

. (A24)

Then, from expressions (A19) and (A24), one can obtain the vertically averaged density in the

zone (b) as

ρ =
Σ

2H
= 3.2 · 10−3 g cm−3

( αss

0.01

)−7/10
(

lE
0.1

0.1

ǫ

)2/5

M
−7/10

8

(

rc2

GM

)−33/20

. (A25)

The corresponding values of the radiation pressure Pr =
1

3
aT 4

mpd and the gas pressure Pg = 2nkTmpd

at the midplane are

Pr = 3.8 · 1015 erg cm−3

( αss

0.01

)−4/5
(

0.1

ǫ

lE
0.1

)8/5

×

(

rc2

GM

)−18/5

M
−4/5

8

(

1 −
√

3rg

r

)8/5

, (A26)

Pg = 1.76 · 1013 erg cm−3

( αss

0.01

)−9/10
(

0.1

ǫ

lE
0.1

)4/5

×

(

rc2

GM

)−51/20

M
−9/10

8

(

1 −
√

3rg

r

)4/5

. (A27)

Calculating the ratio of Pr to Pg one can recover the expression (A2) for the radius, when Pr = Pg.
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When the disk becomes self gravitating, it may become subject to gravitational instability.

Let us check that by calculating Toomre parameter To =
κcs

πGΣ
(e.g., Binney & Tremaine 1994).

Epicyclic frequency κ is equal to its value for the point mass M located at the position of the

black hole κ = ΩK = (GM)1/2/r3/2, since the mass of the disk is small compared to the mass of

the black hole. Sound speed is equal to c2

s =
kTmpd

mp
in zone (b) and c2

s =
Pr

ρ
in the zone (a) (a

coefficient close to 1 is neglected). Substituting appropriate expressions we obtain for the sound

speed in zone (b)

cs = 5.37 · 107 cm s−1

( αss

0.01

)−1/10
(

0.1

ǫ

lE
0.1

)1/5

×

(

rc2

GM

)−9/20

M
−1/10

8

(

1 −
√

3rg

r

)1/5

, (A28)

in zone (a)

cs = 3.5 · 1010 cm s−1
lE
0.1

( ǫ

0.1

)−1
(

rc2

GM

)−3/2
(

1 −
√

3rg

r

)

. (A29)

The Toomre parameter becomes in zone (a)

To = 8.33 · 1011
αss

0.01

(

lE
0.1

)2
( ǫ

0.1

)−2
(

rc2

GM

)−9/2

M−1

8

(

1 −
√

3rg

r

)2

= 0.77
( αss

0.01

)4/7

M
−10/7

8

(

lE
0.1

)−10/7
( ǫ

0.1

)10/7
(

r

rab

)−9/2

(A30)

and in the zone (b)

To = 2.97 · 103

( αss

0.01

)7/10
(

0.1

ǫ

lE
0.1

)−2/5

M
−13/10

8

(

rc2

GM

)−27/20

= 0.73

(

r

rab

)−27/20

M
−10/7

8

( αss

0.01

)4/7
(

lE
0.1

0.1

ǫ

)−10/7

(A31)

= 9.7 · 10−2

( αss

0.01

)7/10
(

lE
0.1

0.1

ǫ

)−2/5

M
1/20

8

(

r

0.01 pc

)−27/20

.

Gravitational instability develops if To < 1. One can see from expressions (A30) and (A31) that To

strongly declines with increasing the radius. The disk has a well defined outer radius of gravitational

stability rT such that To(rT ) = 1. For our fiducial parameters, rT is close to the rab. At the outer

edge of the zone (b) one has

To(rbc) = 2.0 · 10−2

( αss

0.01

)7/10

M
−13/10

8

(

lE
0.1

0.1

ǫ

)−13/10

. (A32)

Large values of αss, small masses of the central black hole, and low accretion rates cause the To to

increase and can cause the radius rT to become larger than rab. As follows from expression (A30)
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the value for rT (when rT < rab) is

rT ≈ rab

( αss

0.01

)8/63

M
−20/63

8

(

lE
0.1

)−20/63
( ǫ

0.1

)20/63

(

1 −
√

3rg

r

)4/9

= 218rgM
−2/9

8

( αss

0.01

)2/9
(

0.1

ǫ

lE
0.1

)4/9

. (A33)

Assuming the range of parameters 1 > αss > 10−3, 10−2 < M8 < 102, 10−3 < lE < 1, and ǫ ≈ 0.1

the lowest possible location of rT will be at ≈ 6rg, i.e. in the vicinity of the inner edge of the disk,

where the Toomre stability criterion is not directly applicable. On the other side, the stable region

of the disk can extend over the whole of zone (b) and into the outermost zone (c) as well. At the

radius of r = 0.01 pc and M8 = 1, which corresponds to the width of the broad line region, the disk

would be unstable for the fiducial set of parameters. However, at lower values of accretion rates

lE ≤ 0.01, which are expected in the case of relatively low activity in Seyfert galaxies, and larger

values of αss ≥ 0.1 the stable part of the disk will include 0.01 pc.
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Fig. 1.— The α − Ω dynamo in a galactic black hole accretion disk. The radial component of the

poloidal quadrupole field within the disk (A) is sheared by the differential rotation within the disk,

developing a stronger toroidal component (B). As a star passes through the disk it heats by shock

and by radiation a fraction of the matter of the disk, which expands vertically and lifts a fraction of

the toroidal flux within an expanding plume (C). Due to the conservation of angular momentum,

the expanding plume and embedded flux rotate ∼ π/2 radians before the matter in the plume and

embedded flux falls back to the disk (D). Reconnection allows the new poloidal flux to merge with

and augment the original poloidal flux (D).
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